1
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
2
|
Cai J, Chen Y, Wang K, Li Y, Wu J, Yu H, Li Q, Wu Q, Meng W, Wang H, Lu A, Huang M, Wei G, Guan D. Decoding the key compounds and mechanism of Shashen Maidong decoction in the treatment of lung cancer. BMC Complement Med Ther 2023; 23:158. [PMID: 37189139 PMCID: PMC10184424 DOI: 10.1186/s12906-023-03985-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Lung cancer is a malignant tumour with the fastest increase in morbidity and mortality around the world. The clinical treatments available have significant side effects, thus it is desirable to identify alternative modalities to treat lung cancer. Shashen Maidong decoction (SMD) is a commonly used traditional Chinese medicine (TCM) formula for treating lung cancer in the clinic. While the key functional components (KFC) and the underlying mechanisms of SMD treating lung cancer are still unclear. METHODS We propose a new integrated pharmacology model, which combines a novel node-importance calculation method and the contribution decision rate (CDR) model, to identify the KFC of SMD and to deduce their mechanisms in the treatment of lung cancer. RESULTS The enriched effective Gene Ontology (GO) terms selected from our proposed node importance detection method could cover 97.66% of enriched GO terms of reference targets. After calculating CDR of active components in key functional network, the first 82 components covered 90.25% of the network information, which were defined as KFC. 82 KFC were subjected to functional analysis and experimental validation. 5-40 μM protocatechuic acid, 100-400 μM paeonol or caffeic acid exerted significant inhibitory activity on the proliferation of A549 cells. The results show that KFC play an important therapeutic role in the treatment of lung cancer by targeting Ras, AKT, IKK, Raf1, MEK, and NF-κB in the PI3K-Akt, MAPK, SCLC, and NSCLC signaling pathways active in lung cancer. CONCLUSIONS This study provides a methodological reference for the optimization and secondary development of TCM formulas. The strategy proposed in this study can be used to identify key compounds in the complex network and provides an operable test range for subsequent experimental verification, which greatly reduces the experimental workload.
Collapse
Affiliation(s)
- Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Kexin Wang
- Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
| | - Mianbo Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Genxia Wei
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Wang MX, Wang MM, Liu C, Chen JS, Liu JS, Guo X, Zhang MQ, Zhang J, Sun JY, Liao ZX. A geniposide-phospholipid complex ameliorates posthyperuricemia chronic kidney disease induced by inflammatory reactions and oxidative stress. Eur J Pharmacol 2022; 930:175157. [PMID: 35870480 DOI: 10.1016/j.ejphar.2022.175157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Hyperuricemia is a common metabolic disease and is one of the factors that could induce chronic kidney disease (CKD). Geniposide (GEN) is a typical natural iridoid glucoside compound with a series of biological activities, but the poor bioavailability of GEN limits its clinical application. In this context, the pharmacological activity of the geniposide-phospholipid complex (GEN-PLC) in ameliorating posthyperuricemia CKD was evaluated by in vitro and in vivo experiments in this study. In vitro cell experiments showed that GEN-PLC treatment markedly decreased inflammatory cytokine levels and reactive oxygen species levels compared with those of GEN in uric acid-treated HKC cells. In vivo research results confirmed that a high concentration of uric acid could cause CKD by increasing inflammatory cytokines and reactive oxygen species in hyperuricemic mice. At the same time, GEN-PLC could regulate the PI3K/AKT/NF-κB and Keap1/Nrf2/HO-1 signaling pathways to effectively inhibit the inflammatory response and oxidative stress, thereby ameliorating posthyperuricemia CKD, and the therapeutic effect was better than that of GEN. In addition, the preparation technology of GEN-PLC was optimized, and the physiochemical analysis explained the intermolecular interactions of the two components. Based on the research results, GEN-PLC could enhance the bioavailability of GEN and become a promising candidate for clinical drug development.
Collapse
Affiliation(s)
- Mu-Xuan Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China
| | - Min-Min Wang
- Taian Traditional Chinese Medicine Hospital, Tai'an, 271000, PR China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jian-Shu Liu
- Shanxi Functional Food Engineering Center Co. Ltd, Xian, 710000, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jing Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
4
|
Shang X, Yuan H, Dai L, Liu Y, He J, Chen H, Li H, Li X. Anti-Liver Fibrosis Activity and the Potential Mode of Action of Ruangan Granules: Integrated Network Pharmacology and Metabolomics. Front Pharmacol 2022; 12:754807. [PMID: 35115923 PMCID: PMC8805709 DOI: 10.3389/fphar.2021.754807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Ruangan granules (RGGs) have been used to treat liver fibrosis with good clinical efficacy for many years. However, the potential mechanism of action of RGGs against liver fibrosis is still unclear. In this study, we evaluated the quality and safety of this preparation and aimed to explore the anti-liver fibrosis activity and potential mode of action of RGGs using network pharmacology and metabolomics. The results showed that RGGs contained abundant ferulic acid, salvianolic acid B and paeoniflorin, and at the given contents and doses, RGGs were safe and presented anti-liver fibrosis activity. They presented anti-liver fibrosis activity by improving liver function (ALT and AST, p < 0.01) and pathology and decreasing fibrosis markers in the serum of rats caused by CCl4, including HA, LN, PC III, HYP, CoII-V, and α-SMA, and the oxidant stress and inflammatory response were also alleviated in a dose-dependent manner, especially for high-dose RGGs (p < 0.01). Further studies showed that RGGs inhibited the activation of the PI3K-Akt signaling pathway in rats induced by CCl4, regulated pyrimidine metabolism, improved oxidative stress and the inflammatory response by regulating mitochondrial morphology, and alleviated liver fibrosis. Luteolin, quercetin, morin and kaempferol were active compounds and presented the cytotoxicity toward to LX-02 cells. This study provides an overall view of the mechanism underlying the action of RGGs protecting against liver fibrosis.
Collapse
Affiliation(s)
- Xiaofei Shang
- Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huixin Yuan
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Lixia Dai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jian He
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huan Chen
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiuhui Li
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Guo Y, Wang L, Yang H, Ding N. Knockdown long non-coding RNA HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation. Bioengineered 2022; 13:884-893. [PMID: 34969363 PMCID: PMC8805942 DOI: 10.1080/21655979.2021.2014386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been revealed to participate in cancer therapy. Especial in tumor radiotherapy, lncRNAs usually could enhance or restrict the radiosensitivity in different ways. LncRNA HCP5 is highly expressed in esophageal cancer and influenced the malignant behaviors of esophageal cancer cells. However, this study dedicates to clarify if lncRNA HCP5 affects the radiosensitivity of esophageal carcinoma. The expression levels of HCP5 in esophageal cancer and adjacent noncancerous tissue were first analyzed on the TCGA database and then detected by qRT-PCR. The related functional experiments were used to investigate whether the radiosensitivity of esophageal squamous cell carcinoma was affected by the inhibition of HCP5. The expression results showed HCP5 is upregulated in esophageal cancers compared to the normal tissues. Meanwhile, knockdown HCP5 further suppressed the proliferation and promoted the apoptosis of esophageal cancer cells treated with a 2 Gy dose of radiotherapy. Moreover, we uncovered that knockdown HCP5 eliminated radiotherapy resistance by modulating the miR-216a-3p/PDK1 axis to inhibit the AKT activation. Finally, rescue experiments pointed that lowering the miR-216a-3p expression weakened the inhibition effect of knockdown HCP5 on cells treated with radiotherapy. To summary, our results indicate that HCP5 is involved in esophageal carcinoma radiotherapy and knockdown HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation.
Collapse
Affiliation(s)
- Yue Guo
- Hematology Department, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lan Wang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hui Yang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Nannan Ding
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|