1
|
Pan H, Shi P, Zhong S, Ding X, Bao S, Zhao S, Chen J, Dai C, Zhang D, Qiu X, Liao B, Huang Z. Genome-wide identification and expression analysis of the ADH gene family in Artemisia annua L. under UV-B stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1533225. [PMID: 40177011 PMCID: PMC11961895 DOI: 10.3389/fpls.2025.1533225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
ADHs are key genes that catalyze the interconversion between alcohols and aldehydes, which play crucial roles in plant adaptation to a range of abiotic stresses. However, the characterization and evolutionary pathways of ADH genes in the antimalarial plant Artemisia annua are still unclear. This study identified 49 ADH genes in A. annua and conducted a detailed analysis of their structural features, conserved motifs, and duplication types, revealing that tandem and dispersed duplications are the primary mechanisms of gene expansion. Evolutionary analysis of ADH genes between A. annua (AanADH) and A. argyi (AarADH) revealed dynamic changes, with 35 genes identified deriving from their most recent common ancestor in both species. ADH1, crucial for artemisinin production, had two copies in both species, expanding via dispersed duplication in A. annua but whole-genome duplication in A. argyi. CREs and WGCNA analysis suggested that AanADH genes may be regulated by UV-B stress. Following short-term UV-B treatment, 16 DEGs were identified, including ADH1 (AanADH6 and AanADH7), and these genes were significantly downregulated after two hours treatment (UV2h) and upregulated after four hours treatment (UV4h). The expression changes of these genes were further confirmed by GO enrichment analysis and qRT-PCR experiments. Overall, this study comprehensively characterized the ADH gene family in A. annua and systematically identified AanADH genes that were responsive to UV-B stress, providing a foundation for further research on their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Hengyu Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiqi Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Zhong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xiaoxia Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengye Bao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyu Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieting Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunyan Dai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Zhang H, Wang S, Li O, Zeng C, Liu X, Wen J, Zhao L, Fu T, Wan H, Shen J. Genome-wide identification of alcohol dehydrogenase (ADH) gene family in oilseed rape (Brassica napus L.) and BnADH36 functional verification under salt stress. BMC PLANT BIOLOGY 2024; 24:1013. [PMID: 39465389 PMCID: PMC11520067 DOI: 10.1186/s12870-024-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) is an enzyme that binds to zinc, facilitating the interconversion of ethanol and acetaldehyde or other corresponding alcohols/aldehydes in the pathway of ethanol fermentation. It plays a pivotal role in responding to environmental stress. However, the response of the ADH family to abiotic stress remains unknown in rapeseed. RESULT In this study, we conducted a comprehensive genome-wide investigation of the ADH family in rapeseed, encompassing analysis of their gene structure, replication patterns, conserved motifs, cis-acting elements, and response to stress. A total of 47 ADH genes were identified within the rapeseed genome. Through phylogenetic analysis, BnADHs were classified into four distinct clades (I, II, IV, V). Prediction of protein domains revealed that all BnADH members possessed a GroES-like (ADH_N) domain and a zinc-bound (ADH_zinc_N) domain. Analysis of promoter sequences demonstrated that BnADHs contained numerous cis-acting elements associated with hormone and stress responses, indicating their widespread involvement in various biological regulatory processes. Expression profiling under different concentrations of salt stress treatments (0%, 0.4%, 0.8%, 1.0% NaCl) further highlighted the significant role played by the BnADH family in abiotic stress response mechanisms. Overexpression of BnADH36 in rapeseed significantly improved the salt tolerance of rapeseed. CONCLUSION The features of the BnADH family in rapeseed was comprehensively characterized in this study, which could provide reference to the research of BnADHs in abiotic stress response.
Collapse
Affiliation(s)
- Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Ouqi Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Zhao Y, Chen Y, Gao M, Wang Y. Alcohol dehydrogenases regulated by a MYB44 transcription factor underlie Lauraceae citral biosynthesis. PLANT PHYSIOLOGY 2024; 194:1674-1691. [PMID: 37831423 DOI: 10.1093/plphys/kiad553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
Lineage-specific terpenoids have arisen throughout the evolution of land plants and are believed to play a role in interactions between plants and the environment. Species-specific gene clusters in plants have provided insight on the evolution of secondary metabolism. Lauraceae is an ecologically important plant family whose members are also of considerable economic value given their monoterpene contents. However, the gene cluster responsible for the biosynthesis of monoterpenes remains yet to be elucidated. Here, a Lauraceae-specific citral biosynthetic gene cluster (CGC) was identified and investigated using a multifaceted approach that combined phylogenetic, collinearity, and biochemical analyses. The CGC comprises MYB44 as a regulator and 2 alcohol dehydrogenases (ADHs) as modifying enzymes, which derived from species-specific tandem and proximal duplication events. Activity and substrate divergence of the ADHs has resulted in the fruit of mountain pepper (Litsea cubeba), a core Lauraceae species, consisting of more than 80% citral. In addition, MYB44 negatively regulates citral biosynthesis by directly binding to the promoters of the ADH-encoding genes. The aggregation of citral biosynthetic pathways suggests that they may form the basis of important characteristics that enhance adaptability. The findings of this study provide insights into the evolution of and the regulatory mechanisms involved in plant terpene biosynthesis.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
4
|
Wang R, Du C, Gu G, Zhang B, Lin X, Chen C, Li T, Chen R, Xie X. Genome-wide identification and expression analysis of the ADH gene family under diverse stresses in tobacco (Nicotiana tabacum L.). BMC Genomics 2024; 25:13. [PMID: 38166535 PMCID: PMC10759372 DOI: 10.1186/s12864-023-09813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Alcohol dehydrogenases (ADHs) are the crucial enzymes that can convert ethanol into acetaldehyde. In tobacco, members of ADH gene family are involved in various stresses tolerance reactions, lipid metabolism and pathways related to plant development. It will be of great application significance to analyze the ADH gene family and expression profile under various stresses in tobacco. RESULTS A total of 53 ADH genes were identified in tobacco (Nicotiana tabacum L.) genome and were grouped into 6 subfamilies based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were highly conserved among the NtADH genes, especially the members within the same subfamily. A total of 5 gene pairs of tandem duplication, and 3 gene pairs of segmental duplication were identified based on the analysis of gene duplication events. Cis-regulatory elements of the NtADH promoters participated in cell development, plant hormones, environmental stress, and light responsiveness. The analysis of expression profile showed that NtADH genes were widely expressed in topping stress and leaf senescence. However, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 13 NtADH genes displayed their differential expression pattern in response to the bacterial pathogen Ralstonia solanacearum L. INFECTION Metabolomics analysis revealed that NtADH genes were primarily associated with carbohydrate metabolism, and moreover, four NtADH genes (NtADH20/24/48/51) were notably involved in the pathway of alpha-linolenic acid metabolism which related to the up-regulation of 9-hydroxy-12-oxo-10(E), 15(Z)-octadecadienoic acid and 9-hydroxy-12-oxo-15(Z)-octadecenoic acid. CONCLUSION The genome-wide identification, evolutionary analysis, expression profiling, and exploration of related metabolites and metabolic pathways associated with NtADH genes have yielded valuable insights into the roles of these genes in response to various stresses. Our results could provide a basis for functional analysis of NtADH gene family under stressful conditions.
Collapse
Affiliation(s)
- Ruiqi Wang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Chaofan Du
- Longyan Tobacco Company, Longyan, 364000, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, 350003, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, 350003, China
| | - Xiaolu Lin
- Longyan Tobacco Company, Longyan, 364000, China
| | - Chengliang Chen
- Jianning Branch of Sanming Tobacco Company, Sanming, 354500, China
| | - Tong Li
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Rui Chen
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Mallikarjuna MG, Tomar R, Lohithaswa HC, Sahu S, Mishra DC, Rao AR, Chinnusamy V. Genome-wide identification of potassium channels in maize showed evolutionary patterns and variable functional responses to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108235. [PMID: 38039585 DOI: 10.1016/j.plaphy.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Potassium (K) channels are essential components of plant biology, mediating not only K ion (K+) homeostasis but also regulating several physiological processes and stress tolerance. In the current investigation, we identified 27 K+ channels in maize and deciphered the evolution and divergence pattern with four monocots and five dicot species. Chromosomal localization and expansion of K+ channel genes showed uneven distribution and were independent of genome size. The dispersed duplication is the major force in expanding K+ channels in the target genomes. The mean Ka/Ks ratio of <0.5 in paralogs and orthologs indicates horizontal and vertical expansions of K+ channel genes under strong purifying selection. The one-to-one K+ channel orthologs were prominent among the closely related species, with higher synteny between maize and the rest of the monocots. Comprehensive K+ channels promoter analysis revealed various cis-regulatory elements mediating stress tolerance with the predominance of MYB and STRE binding sites. The regulatory network showed AP2-EREBP TFs, miR164 and miR399 are prominent regulatory elements of K+ channels. The qRT-PCR analysis of K+ channels and regulatory miRNAs showed significant expressions in response to drought and waterlogging stresses. The present study expanded the knowledge on K+ channels in maize and will serve as a basis for an in-depth functional analysis.
Collapse
Affiliation(s)
| | - Rakhi Tomar
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Sarika Sahu
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Atmakuri Ramakrishna Rao
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
6
|
Zhu Q, Han Y, Yang W, Zhu H, Li G, Xu K, Long M. Genome-wide identification and characterization of ADH gene family and the expression under different abiotic stresses in tomato ( Solanum lycopersicum L.). Front Genet 2023; 14:1186192. [PMID: 37727375 PMCID: PMC10506264 DOI: 10.3389/fgene.2023.1186192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
The SlADH gene plays a key role in environmental stress response. However, limited studies exist regarding the tomato SlADH gene. In this study, we identified 35 SlADH genes in tomato by genome-wide identification. Among the 12 chromosomes of tomato, SlADH gene is distributed on 10 chromosomes, among which the 7th and 10th chromosomes have no family members, while the 11th chromosome has the most members with 8 family members. Members of this gene family are characterized by long coding sequences, few amino acids, and introns that make up a large proportion of the genetic structure of most members of this family. Moreover, the molecular weight of the proteins of the family members was similar, and the basic proteins were mostly, and the overall distribution was relatively close to neutral (pI = 7). This may indicate that proteins in this family have a more conserved function. In addition, a total of four classes of cis-acting elements were detected in all 35 SlADH promoter regions, most of which were associated with biotic and abiotic stresses. The results indicate that SlADH gene had a certain response to cold stress, salt stress, ABA treatment and PEG stress. This study provides a new candidate gene for improving tomato stress resistance.
Collapse
Affiliation(s)
- Qingdong Zhu
- School of Biological Sciences, Jining Medical University, Rizhao, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Li R, Yan D, Tan C, Li C, Song M, Zhao Q, Yang Y, Yin W, Liu Z, Ren X, Liu C. Transcriptome and Metabolomics Integrated Analysis Reveals MdMYB94 Associated with Esters Biosynthesis in Apple ( Malus × domestica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7904-7920. [PMID: 37167631 DOI: 10.1021/acs.jafc.2c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Volatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.
Collapse
Affiliation(s)
- Rui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyan Tan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cen Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meijie Song
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaming Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijie Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Identifying the “Dangshan” Physiological Disease of Pear Woolliness Response via Feature-Level Fusion of Near-Infrared Spectroscopy and Visual RGB Image. Foods 2023; 12:foods12061178. [PMID: 36981105 PMCID: PMC10048714 DOI: 10.3390/foods12061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The “Dangshan” pear woolliness response is a physiological disease that causes large losses for fruit farmers and nutrient inadequacies.The cause of this disease is predominantly a shortage of boron and calcium in the pear and water loss from the pear. This paper used the fusion of near-infrared Spectroscopy (NIRS) and Computer Vision Technology (CVS) to detect the woolliness response disease of “Dangshan” pears. This paper employs the merging of NIRS features and image features for the detection of “Dangshan” pear woolliness response disease. Near-infrared Spectroscopy (NIRS) reflects information on organic matter containing hydrogen groups and other components in various biochemical structures in the sample under test, and Computer Vision Technology (CVS) captures image information on the disease. This study compares the results of different fusion models. Compared with other strategies, the fusion model combining spectral features and image features had better performance. These fusion models have better model effects than single-feature models, and the effects of these models may vary according to different image depth features selected for fusion modeling. Therefore, the model results of fusion modeling using different image depth features are further compared. The results show that the deeper the depth model in this study, the better the fusion modeling effect of the extracted image features and spectral features. The combination of the MLP classification model and the Xception convolutional neural classification network fused with the NIR spectral features and image features extracted, respectively, was the best combination, with accuracy (0.972), precision (0.974), recall (0.972), and F1 (0.972) of this model being the highest compared to the other models. This article illustrates that the accuracy of the “Dangshan” pear woolliness response disease may be considerably enhanced using the fusion of near-infrared spectra and image-based neural network features. It also provides a theoretical basis for the nondestructive detection of several techniques of spectra and pictures.
Collapse
|
9
|
Zhang R, Xuan L, Ni L, Yang Y, Zhang Y, Wang Z, Yin Y, Hua J. ADH Gene Cloning and Identification of Flooding-Responsive Genes in Taxodium distichum (L.) Rich. PLANTS (BASEL, SWITZERLAND) 2023; 12:678. [PMID: 36771761 PMCID: PMC9919530 DOI: 10.3390/plants12030678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
As a flooding-tolerant tree species, Taxodium distichum has been utilized in afforestation projects and proven to have important value in flooding areas. Alcohol dehydrogenase (ADH), which participates in ethanol fermentation, is essential for tolerance to the anaerobic conditions caused by flooding. In a comprehensive analysis of the ADH gene family in T. distichum, TdADHs were cloned on the basis of whole-genome sequencing, and then bioinformatic analysis, subcellular localization, and gene expression level analysis under flooding were conducted. The results show that the putative protein sequences of 15 cloned genes contained seven TdADHs and eight TdADH-like genes (one Class III ADH included) that were divided into five clades. All the sequences had an ADH_N domain, and except for TdADH-likeE2, all the other genes had an ADH_zinc_N domain. Moreover, the TdADHs in clades A, B, C, and D had a similar motif composition. Additionally, the number of TdADH amino acids ranged from 277 to 403, with an average of 370.13. Subcellular localization showed that, except for TdADH-likeD3, which was not expressed in the nucleus, the other genes were predominantly expressed in both the nucleus and cytosol. TdADH-likeC2 was significantly upregulated in all three organs (roots, stems, and leaves), and TdADHA3 was also highly upregulated under 24 h flooding treatment; the two genes might play key roles in ethanol fermentation and flooding tolerance. These findings offer a comprehensive understanding of TdADHs and could provide a foundation for the molecular breeding of T. distichum and current research on the molecular mechanisms driving flooding tolerance.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Lei Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Longjie Ni
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ying Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ya Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
10
|
Genome-Wide Comparative Analysis of the R2R3-MYB Gene Family in Five Solanaceae Species and Identification of Members Regulating Carotenoid Biosynthesis in Wolfberry. Int J Mol Sci 2022; 23:ijms23042259. [PMID: 35216373 PMCID: PMC8875911 DOI: 10.3390/ijms23042259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The R2R3-MYB is a large gene family involved in various plant functions, including carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry (Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome provides an opportunity for investigating the organization and evolutionary characteristics of R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene family. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expression (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.
Collapse
|
11
|
Zhao B, Yi X, Qiao X, Tang Y, Xu Z, Liu S, Zhang S. Genome-Wide Identification and Comparative Analysis of the ASR Gene Family in the Rosaceae and Expression Analysis of PbrASRs During Fruit Development. Front Genet 2022; 12:792250. [PMID: 35003225 PMCID: PMC8727533 DOI: 10.3389/fgene.2021.792250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The members of the Abscisic Acid (ABA) Stress and Ripening gene family (ASR) encode a class of plant-specific proteins with ABA/WDS domains that play important roles in fruit ripening, abiotic stress tolerance and biotic stress resistance in plants. The ASR gene family has been widely investigated in the monocotyledons and dicotyledons. Although the genome sequence is already available for eight fruit species of the Rosaceae, there is far less information about the evolutionary characteristics and the function of the ASR genes in the Rosaceae than in other plant families. Twenty-seven ASR genes were identified from species in the Rosaceae and divided into four subfamilies (I, II, III, and IV) on the basis of structural characteristics and phylogenetic analysis. Purifying selection was the primary force for ASR family gene evolution in eight Rosaceae species. qPCR experiments showed that the expression pattern of PbrASR genes from Pyrus bretschneideri was organ-specific, being mainly expressed in flower, fruit, leaf, and root. During fruit development, the mRNA abundance levels of different PbrASR genes were either down- or up-regulated, and were also induced by exogenous ABA. Furthermore, subcellular localization results showed that PbrASR proteins were mainly located in the nucleus and cytoplasm. These results provide a theoretical foundation for investigation of the evolution, expression, and functions of the ASR gene family in commercial fruit species of the Rosaceae family.
Collapse
Affiliation(s)
- Biying Zhao
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Xianrong Yi
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Tang
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Zhimei Xu
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Shanting Liu
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Yu Y, He L, Xu H, Zhang L, Zhang H, Li M. Mathematical model of the ratio of sucrose added to dangshan pear paste based on GC analysis of d-allose as the characteristic component. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Genome‑wide characterization of the Gα subunit gene family in Rosaceae and expression analysis of PbrGPAs under heat stress. Gene 2021; 810:146056. [PMID: 34732368 DOI: 10.1016/j.gene.2021.146056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
The Gα subunit is an important component of the heterotrimeric G-protein complex and an integral component of several signal transduction pathways. It plays crucial roles in the diverse processes of plant growth and development, including the response to abiotic stress, regulation of root development, involvement in stomatal movement, and participation in hormone responses, which have been well investigated in many species. However, no comprehensive analysis has identified and explored the evolution, expression pattern characteristics and heat stress response of the Gα subunit genes in Rosaceae. In this study, 52 Gα subunit genes were identified in eight Rosaceae species; these genes were divided into three subfamilies (I, II, and III) based on their phylogenetic, conserved motif, and structural characteristics. Whole genome and dispersed duplication events were found to have contributed significantly to the expansion of the Gα subunit gene family, and purifying selection to have played a key role in the evolution of Gα subunit genes. An expression analysis identified some PbrGPA genes that were highly expressed in leaf, root, and fruit, and exhibited diverse spatiotemporal expression models in pear. Under abiotic stress conditions, the mRNA transcript levels of PbrGPA genes were up-regulated in response to high temperature treatment in leaves. Furthermore, three Gα subunit genes were shown to be located in the plasma membrane and nucleus in pear. In conclusion, the study of the Gα subunit gene family will help us to better understand its evolutionary history and expression patterns, while facilitating further investigations into the function of the Gα subunit gene in response to heat stress.
Collapse
|
15
|
Chen G, Li Y, Qiao X, Duan W, Jin C, Cheng R, Wang J. Genome-wide survey of Gγ subunit gene family in eight Rosaceae and expression analysis of PbrGGs in pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2021; 21:471. [PMID: 34654373 PMCID: PMC8518290 DOI: 10.1186/s12870-021-03250-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heterotrimeric G-proteins, composed of Gα, Gβ and Gγ subunits, are important signal transmitters, mediating the cellular response to multiple stimuli in animals and plants. The Gγ subunit is an essential component of the G-protein, providing appropriate functional specificity to the heterotrimer complex and has been well studied in many species. However, the evolutionary history, expression pattern and functional characteristics of Gγ subunits has not been explored in the Rosaceae, representing many important fruit crops. RESULTS In this study, 35 Gγ subunit genes were identified from the eight species belonging to the Rosaceae family. Based on the structural gene characteristics, conserved protein motifs and phylogenetic analysis of the Gγ subunit genes, the genes were classified into three clades. Purifying selection was shown to play an important role in the evolution of Gγ subunit genes, while a recent whole-genome duplication event was the principal force determining the expansion of the Gγ subunit gene family in the subfamily Maloideae. Gγ subunit genes exhibited diverse spatiotemporal expression patterns in Chinese white pear, including fruit, root, ovary and bud, and under abiotic stress conditions, the relative expression of Gγ subunit genes were up-regulated or down-regulated. In addition, seven of the Gγ subunit proteins in pear were located on the plasma membrane, in the cytoplasm or nucleus. CONCLUSION Overall, this study of the Gγ subunit gene family in eight Rosaceae species provided useful information to better understand the evolution and expression of these genes and facilitated further exploration of their functions in these important crop plants.
Collapse
Affiliation(s)
- Guodong Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yang Li
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weike Duan
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Cong Jin
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rui Cheng
- Huai'an Key Laboratory for Facility Vegetables, Huaiyin Institute of Agricultural Sciences of Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Jizhong Wang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
16
|
Shen C, Yuan J, Ou X, Ren X, Li X. Genome-wide identification of alcohol dehydrogenase (ADH) gene family under waterlogging stress in wheat ( Triticum aestivum). PeerJ 2021; 9:e11861. [PMID: 34386306 PMCID: PMC8312495 DOI: 10.7717/peerj.11861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Alcohol dehydrogenase (ADH) plays an important role in plant survival under anaerobic conditions. Although some research about ADH in many plants have been carried out, the bioinformatics analysis of the ADH gene family from Triticum aestivum and their response to abiotic stress is unclear. Methods A total of 22 ADH genes were identified from the wheat genome, and these genes could be divided into two subfamilies (subfamily I and subfamily II). All TaADH genes belonged to the Medium-chain ADH subfamily. Sequence alignment analysis showed that all TaADH proteins contained a conservative GroES-like domain and Zinc-binding domain. A total of 64 duplicated gene pairs were found, and the Ka/Ks value of these gene pairs was less than 1, which indicated that these genes were relatively conservative and did not change greatly in the process of duplication. Results The organizational analysis showed that nine TaADH genes were highly expressed in all organs, and the rest of TaADH genes had tissue specificity. Cis-acting element analysis showed that almost all of the TaADH genes contained an anaerobic response element. The expression levels of ADH gene in waterlogging tolerant and waterlogging sensitive wheat seeds were analyzed by quantitative real-time PCR (qRT-PCR). This showed that some key ADH genes were significantly responsive to waterlogging stress at the seed germination stage, and the response of waterlogging tolerant and waterlogging sensitive wheat seeds to waterlogging stress was regulated by different ADH genes. The results may be helpful to further study the function of TaADH genes and to determine the candidate gene for wheat stress resistance breeding.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiujuan Ren
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xinhua Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|