1
|
Fee K, Zabransky K, Burgess E, Baeza JA. The complete mitochondrial genome of the imperiled Bullnose ray Myliobatis freminvillei (Myliobatiformes: Myliobatidae) with comments on its phylogenetic position and claims of diversifying selection affecting protein coding genes in a closely related species. Gene 2025; 933:148902. [PMID: 39214320 DOI: 10.1016/j.gene.2024.148902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The Bullnose ray Myliobatis freminvillei is a bentho-pelagic eagle ray that inhabits the north Gulf of Mexico and the Western Atlantic Ocean Coast, discontinuously, from Massachusetts, USA to Buenos Aires, Argentina. Myliobatis freminvillei is currently listed as vulnerable by the 2019 IUCN Red List of Threatened Species given that it is often captured as bycatch by artisanal and commercial fisheries, along the coasts of Argentina, Brazil, and Venezuela. This study, for the first time, assembled and characterized the mitochondrial genome of M. fremnvillei. The A+T rich mitochondrial genome of M. fremnvillei is 18,356 bp long and encodes 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (12S ribosomal RNA and 16S ribosomal RNA), 13 protein coding genes (PCGs), and also contains a non coding control region 2,617 bp long. Nonsynonomous codon usage with a preference for A+T rich codons was observed in all 13 PCGs. Leu (CTA), Ile (ATC), Phe (TTC), Thr (ACA), and Ala (GCC) were the most frequently used codons. Ka/Ks ratios estimated for all 13 PCGs exhibited values < 1, indicating strong purifying selection affecting all these genes. In contrast to the results of a previous study that claimed diversifying selective pressure in two mitochondrial PCGs of Mobula tarapacana, reanalysis of the Ka/Ks values for the same species indicated purifying selection in all 13 PCGs. Of the 22 tRNA genes, all have a cloverleaf secondary structure except tRNA-Ser1 which has a truncated dihydrouridine arm. In the control region, A+T rich microsatellites (n = 42) and short tandem repeats (n = 6) were identified, and the secondary structure of the same region contained numerous hairpin loops. Phylomitogenomic analyses supported the monophyletic status of the order Myliobatiformes and family Myliobatidae. The assembled mitochondrial genome will assist with conservation efforts in Myliobatis fremnvillei.
Collapse
Affiliation(s)
- Kate Fee
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Katrina Zabransky
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Evan Burgess
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - J A Baeza
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA; Smithsonian Marine Station at Fort Pierce , 701 Seaway Drive, Fort Pierce, FL 34949, USA; Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
2
|
Jeena NS, Rahuman S, Sebastian W, Kumar R, Sajeela KA, Kizhakudan JK, Menon KK, Roul SK, Gopalakrishnan A, Radhakrishnan EV. Mitogenomic recognition of incognito lineages in the mud spiny lobster Panulirus polyphagus (Herbst, 1793): A tale of unique genetic structuring and diversification. Int J Biol Macromol 2024; 277:134327. [PMID: 39098694 DOI: 10.1016/j.ijbiomac.2024.134327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
This study provides the first documentation of three deep conspecific lineages within Panulirus polyphagus in the Indian Ocean, bridging the gap in genetic research. Comparative mitogenomics between lineages (L) at both species and family levels, evolutionary relationships and heterogeneity of sequence divergence within Decapoda, and divergence time estimation were performed. The characterized mitogenomes ranged from 15,685-15,705 bp in size and exhibited a typical pancrustacean pattern. Among the three lineages, L1 predominated the Bay of Bengal, L2 the Arabian Sea, and L2.a, a less common lineage genetically closer to L2, was restricted to the latter region. A minor lineage L1.a, was observed in the Coral Triangle area. All PCGs displayed evidence of purifying selection across species and family levels. The largest genetic distance (K2P) between lineages was 9 %, notably between L1.a and L2.a. The phylogenetic tree subdivided the Achelates into Palinuridae and Scyllaridae, and the topology demonstrated a distinct pattern of lineage diversification within P. polyphagus. AliGROOVE analysis revealed no discernible divergence in Decapoda. The diversification of P. polyphagus appears to have occurred during Miocene, with further diversification in Pliocene. Furthermore, genetic stocks and population connectivity recognized here will provide valuable insight for spatial management planning of this dwindling resource.
Collapse
Affiliation(s)
- N S Jeena
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, Kerala, India.
| | - Summaya Rahuman
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, Kerala, India
| | - Wilson Sebastian
- Centre for Marine Living Resources and Ecology (CMLRE), Kochi, Kerala, India
| | - Rajan Kumar
- Shellfish Fisheries Division, Regional Station of CMFRI, Veraval, Gujarat, India
| | - K A Sajeela
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, Kerala, India
| | - Joe K Kizhakudan
- Mariculture Division, Regional Centre of CMFRI, Visakhapatnam, Andhra Pradesh, India
| | | | - Subal Kumar Roul
- Finfish Fisheries Division, Regional Station of CMFRI, Digha, West Bengal, India
| | | | | |
Collapse
|
3
|
Shi Y, Fang S, Gu X, Hao C, Du F, Cui P, Tang X. The Complete Mitochondrial Genome Sequence of Eimeria kongi (Apicomplexa: Coccidia). Life (Basel) 2024; 14:699. [PMID: 38929682 PMCID: PMC11204793 DOI: 10.3390/life14060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Rabbit coccidiosis is caused by infection with one or, more commonly, several Eimeria species that parasitize the hepatobiliary ducts or intestinal epithelium of rabbits. Currently, there are eleven internationally recognized species of rabbit coccidia, with the complete mitochondrial (mt) genomes of six species commonly infecting rabbits having been sequenced and annotated. Eimeria kongi was initially discovered in 2011 and prompted a preliminary study on this species. Through traditional morphological analysis, E. kongi was identified as a novel species of rabbit coccidia. To further validate this classification, we sequenced and annotated its mitochondrial genome. The complete mt genome of E. kongi spans 6258 bp and comprises three cytochrome genes (cytb, cox1, cox3), fourteen gene fragments for the large subunit (LSU) rRNA, and nine gene fragments for the small subunit (SSU) rRNA, lacking transfer RNA (tRNA) genes. Moreover, phylogenetic analysis of the mitochondrial genome sequence of E. kongi revealed its clustering with six other species of rabbit coccidia into a monophyletic group. Additionally, E. irresidua and E. flavescens were grouped within the lineage lacking oocyst residuum, consistent with their morphological characteristics. Consistent with multiple molecular phylogenies, in this investigation, E. kongi was further confirmed as a new species of rabbit coccidia. Our research findings are of great significance for the classification of coccidia and for coccidiosis prevention and control in rabbits.
Collapse
Affiliation(s)
- Yubo Shi
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China; (Y.S.); (S.F.); (X.G.); (C.H.); (F.D.)
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sufang Fang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China; (Y.S.); (S.F.); (X.G.); (C.H.); (F.D.)
| | - Xiaolong Gu
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China; (Y.S.); (S.F.); (X.G.); (C.H.); (F.D.)
| | - Chengyu Hao
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China; (Y.S.); (S.F.); (X.G.); (C.H.); (F.D.)
| | - Fangchen Du
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China; (Y.S.); (S.F.); (X.G.); (C.H.); (F.D.)
| | - Ping Cui
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China; (Y.S.); (S.F.); (X.G.); (C.H.); (F.D.)
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North), Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Ke Z, Zhou K, Hou M, Luo H, Li Z, Pan X, Zhou J, Jing T, Ye H. Characterization of the Complete Mitochondrial Genome of the Elongate Loach and Its Phylogenetic Implications in Cobitidae. Animals (Basel) 2023; 13:3841. [PMID: 38136877 PMCID: PMC10740543 DOI: 10.3390/ani13243841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The elongate loach is an endemic fish in China. Previous studies have provided some insights into the mitochondrial genome composition and the phylogenetic relationships of the elongate loach inferred using protein-coding genes (PCGs), yet detailed information about it remains limited. Therefore, in this study we sequenced the complete mitochondrial genome of the elongate loach and analyzed its structural characteristics. The PCGs and mitochondrial genome were used for selective stress analysis and genomic comparative analysis. The complete mitochondrial genome of the elongate loach, together with those of 35 Cyprinidae species, was used to infer the phylogenetic relationships of the Cobitidae family through maximum likelihood (ML) reconstruction. The results showed that the genome sequence has a full length of 16,591 bp, which includes 13 PCGs, 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 2 non-coding regions (CR D-loop and light chain sub-chain replication origin OL). Overall, the elongate loach shared the same gene arrangement and composition of the mitochondrial genes with other teleost fishes. The Ka/Ks ratios of all mitochondrial PCGs were less than 1, indicating that all of the PCGs were evolving under purifying selection. Genome comparison analyses showed a significant sequence homology of species of Leptobotia. A significant identity between L. elongata and the other five Leptobotia species was observed in the visualization result, except for L. mantschurica, which lacked the tRNA-Arg gene and had a shorter tRNA-Asp gene. The phylogenetic tree revealed that the Cobitidae species examined here can be grouped into two clades, with the elongate loach forming a sister relationship with L. microphthalma. This study could provide additional inferences for a better understanding of the phylogenetic relationships among Cobitidae species.
Collapse
Affiliation(s)
- Zhenlin Ke
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (Z.K.); (M.H.); (H.L.); (T.J.)
- Key Laboratory of Aquatic Science of Chongqing, Chongqing 400175, China
| | - Kangqi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (K.Z.); (Z.L.); (X.P.)
| | - Mengdan Hou
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (Z.K.); (M.H.); (H.L.); (T.J.)
- Key Laboratory of Aquatic Science of Chongqing, Chongqing 400175, China
| | - Hui Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (Z.K.); (M.H.); (H.L.); (T.J.)
- Key Laboratory of Aquatic Science of Chongqing, Chongqing 400175, China
| | - Zhe Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (K.Z.); (Z.L.); (X.P.)
| | - Xianhui Pan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (K.Z.); (Z.L.); (X.P.)
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Tingsen Jing
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (Z.K.); (M.H.); (H.L.); (T.J.)
- Key Laboratory of Aquatic Science of Chongqing, Chongqing 400175, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (Z.K.); (M.H.); (H.L.); (T.J.)
- Key Laboratory of Aquatic Science of Chongqing, Chongqing 400175, China
| |
Collapse
|
5
|
Ennis CC, Ortega J, Baeza JA. First genomic resource for an endangered neotropical mega-herbivore: the complete mitochondrial genome of the forest-dweller (Baird's) tapir ( Tapirus bairdii). PeerJ 2022; 10:e13440. [PMID: 35669959 PMCID: PMC9166683 DOI: 10.7717/peerj.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 01/14/2023] Open
Abstract
Baird's tapir, or the Central American Tapir Tapirus bairdii (family Tapiridae), is one of the largest mammals native to the forests and wetlands of southern North America and Central America, and is categorized as 'endangered' on the 2014 IUCN Red List of Threatened Species. This study reports, for the first time, the complete mitochondrial genome of T. bairdii and examines the phylogenetic position of T. bairdii amongst closely related species in the same family and order to which it belongs using mitochondrial protein-coding genes (PCG's). The circular, double-stranded, A-T rich mitochondrial genome of T. bairdii is 16,697 bp in length consisting of 13 protein-coding genes (PCG's), two ribosomal RNA genes (rrnS (12s ribosomal RNA and rrnL (16s ribosomal RNA)), and 22 transfer RNA (tRNA) genes. A 33 bp long region was identified to be the origin of replication for the light strand (OL), and a 1,247 bp long control region (CR) contains the origin of replication for the heavy strand (OH). A majority of the PCG's and tRNA genes are encoded on the positive, or heavy, strand. The gene order in T. baiirdi is identical to that of T. indicus and T. terrestris, the only two other species of extant tapirs with assembled mitochondrial genomes. An analysis of Ka/Ks ratios for all the PCG's show values <1, suggesting that all these PCGs experience strong purifying selection. A maximum-likelihood phylogenetic analysis supports the monophyly of the genus Tapirus and the order Perissodactyla. The complete annotation and analysis of the mitochondrial genome of T. bairdii will contribute to a better understanding of the population genomic diversity and structure of this species, and it will assist in the conservation and protection of its dwindling populations.
Collapse
Affiliation(s)
- Caroline C. Ennis
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico DF, Mexico
| | - J. Antonio Baeza
- Biological Sciences, Clemson University, Clemson, SC, United States of America,Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, IV Region, Chile,Smithsonian Marine Station at Fort Pierce, Smithsonian Institute, Fort Pierce, FL, United States of America
| |
Collapse
|
6
|
Rodriguez-Pilco MA, Leśny P, Podsiadłowski L, Schubart CD, Baeza JA. Characterization of The Complete Mitochondrial Genome of the Bromeliad Crab Metopaulias depressus (Rathbun, 1896) (Crustacea: Decapoda: Brachyura: Sesarmidae). Genes (Basel) 2022; 13:genes13020299. [PMID: 35205344 PMCID: PMC8872168 DOI: 10.3390/genes13020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Metopaulias depressus is a non-marine crab endemic to Jamaica that dwells in rainforest bromeliads and exhibits elaborate active parental care behavior. Current genomic resources on M. depressus are rare, limiting the understanding of its adaptation to terrestrial life in species that evolved from marine ancestors. This study reports the complete mitochondrial genome of M. depressus assembled using Sanger sequencing. The AT-rich mitochondrial genome of M. depressus is 15,765 bp in length and comprises 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. A single 691 bp-long intergenic space is assumed to be the control region (CR) or D-loop. A set of selective pressure analyses indicate that the entirety of the PCGs experience purifying selection. Cox1, cox2, nad5, cox3, and atp6 experience strong purifying selection, and atp8 experiences weak purifying selection compared to the rest of the PCGs. The secondary structures of most tRNA genes exhibit a standard ‘cloverleaf’ structure, with the exception of trnS1, which lacks the dihydroxyuridine (DHU) arm but not the loop, the trnH gene, which lacks the thymine pseudouracil cytosine (T) loop but not the arm, and trnM, which exhibits an overly developed T loop. A maximum likelihood phylogenetic analysis based on all PCGs indicated that M. depressus is more closely related to the genera Clistocoeloma, Nanosesarma, and Parasesarma than to Chiromantes, Geosesarma, and Orisarma. This study contributes to deciphering the phylogenetic relationships within the family Sesarmidae and represents a new genomic resource for this iconic crab species.
Collapse
Affiliation(s)
- Milena A. Rodriguez-Pilco
- Facultad de Ciencias Biológicas, Universidad Nacional de San Agustin, Av. Daniel Alcides Carreon s/n, Arequipa 04001, Peru;
| | - Peter Leśny
- Institute for Evolutionary Biology & Animal Ecology, University Bonn, 53121 Bonn, Germany;
| | - Lars Podsiadłowski
- Centre for Molecular Biodiversity Research (ZMB), Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), 53113 Bonn, Germany;
| | | | - Juan Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL 34949, USA
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, Coquimbo 1281, Chile
- Correspondence:
| |
Collapse
|
7
|
López-Cuamatzi IL, Ortega J, Baeza JA. The complete mitochondrial genome of the 'Zacatuche' Volcano rabbit (Romerolagus diazi), an endemic and endangered species from the Volcanic Belt of Central Mexico. Mol Biol Rep 2021; 49:1141-1149. [PMID: 34783988 DOI: 10.1007/s11033-021-06940-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND The 'Zacatuche', 'Teporingo', or Volcano rabbit (Romerolagus diazi) belongs to the family Leporidae, is an endemic species restricted to the Central part of the Trans-Mexican Volcanic Belt, and is considered 'endangered' by the IUCN Red List of Threatened Species. METHODS AND RESULTS This study reports, for the first time, the complete mitochondrial genome of R. diazi and examined the phylogenetic position of R. diazi among other closely related co-familiar species using mitochondrial protein-coding genes (PCGs). The mitogenome of R. diazi was assembled from short Illumina 150 bp pair-end reads with a coverage of 189x. The AT-rich mitochondrial genome of R. diazi is 17,400 bp in length and is comprised of 13 PCGs, two ribosomal RNA genes, and 22 transfer RNA genes. The gene order observed in the mitochondrial genome of R. diazi is identical to that reported for other leporids. Phylogenetic analyses based on PCGs support the basal position of Romerolagus within the Leporidae, at least when compared to the genera Oryctolagus and Lepus. Nonetheless, additional mitochondrial genomes from species belonging to the genera Bunolagus, Sylvilagus, and Pronolagus, among others, are needed before a more robust conclusion about the derived vs basal placement of Romerolagus within the family Leporidae can be reached based on mitochondrial PCGs. CONCLUSIONS This is the first genomic resource developed for R. diazi and it represents a tool to improve our understanding about the ecology and evolutionary biology of this iconic and endangered species.
Collapse
Affiliation(s)
- Issachar Leonardo López-Cuamatzi
- Posgrado en Ecología Tropical, Centro de Investigaciones Tropicales, Universidad Veracruzana, José María Morelos 44, Zona Centro, Centro, 91000, Xalapa-Enríquez, Mexico.
| | - Jorge Ortega
- Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Quimicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, 11340, Ciudad de México, México
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL, 34949, USA.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|