1
|
Zhao Z, Qin T, Zheng H, Guan Y, Gu W, Wang H, Yu D, Qu J, Wei J, Xu W. Mutation of ZmDIR5 Reduces Maize Tolerance to Waterlogging, Salinity, and Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:785. [PMID: 40094739 PMCID: PMC11902002 DOI: 10.3390/plants14050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
The DIR (Dirigent) gene family plays a multifaceted role in plant growth, development, and stress responses, making it one of the key gene families for plant adaptation to environmental changes. However, research on ZmDIRs in maize remains limited. In this study, we identified a member of the maize DIR gene family, ZmDIR5, whose promoter region contains numerous elements associated with responses to abiotic stresses. ZmDIR5 is upregulated in response to waterlogging, salt, and drought stresses, and its protein is localized in the endoplasmic reticulum. Subsequent studies revealed that ZmDIR5-EMS (ethyl methane sulfonate) mutant lines exhibited reduced growth compared to WT (wild-type) plants under waterlogging, salt, and drought stress conditions. The mutant lines also demonstrated a relatively higher accumulation of malondialdehyde and reactive oxygen species, lower synthesis of proline and total lignans, and decreased antioxidant enzyme activity under these stress conditions. Additionally, the mutant lines displayed impaired sodium and potassium ion transport capabilities, reduced synthesis of abscisic acid and zeatin, and decreased expression of related genes. The mutation of ZmDIR5 also inhibited the phenylpropanoid biosynthesis pathway in maize. These results indicate that ZmDIR5 serves as a positive regulator of maize tolerance to waterlogging, salt, and drought stresses.
Collapse
Affiliation(s)
- Zhixiong Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tao Qin
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongjian Zheng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuan Guan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Gu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Diansi Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jingtao Qu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihui Wei
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wen Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Specialty Maize, Crop Breeding and Cultivation Research Institution/CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Agriculture, Xinjiang Agricultural University, Ürümqi 830052, China
| |
Collapse
|
2
|
Li H, Hu F, Zhou J, Yang L, Li D, Zhou R, Zhou T, Zhang Y, Wang L, You J. Genome-wide characterization of the DIR gene family in sesame reveals the function of SiDIR21 in lignan biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109282. [PMID: 39527898 DOI: 10.1016/j.plaphy.2024.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Furofuran-type lignans, mainly sesamin and sesamolin, are the most representative functional active ingredients in sesame (Sesamum indicum L.). Their exceptional antioxidant properties, medicinal benefits, and health-promoting functions have garnered significant attention. Dirigent (DIR) proteins, found in vascular plants, are crucial for the biosynthesis of secondary metabolites, like lignans, and essential for responding to abiotic and biotic stresses. Despite their importance, they have yet to be systematically analyzed, especially those involved in lignan synthesis in sesame. This study unveiled 44 DIR genes in sesame. Phylogenetic analysis categorized these SiDIRs into five subgroups (DIR-a, DIR-b/d, DIR-e, DIR-f, and DIR-g), aligning with conserved motifs and gene structures analyses. Expression analysis unveiled distinct tissue-specific and hormone-responsive expression patterns among the SiDIR gene family members. Particularly, SiDIR21, a member of the DIR-a subgroup, exhibited robust expression in lignan-accumulating tissues and consistently high expression levels in germplasm during seed development with high sesamin content. Furthermore, SiDIR21 overexpression in hairy roots significantly increased sesamin and sesamolin contents, confirming its role in lignan synthesis. Overall, our study offers a valuable resource for exploring SiDIRs' functions and the lignan biosynthesis pathway in sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
3
|
Zhang Q, Luo N, Dai X, Lin J, Ahmad B, Chen Q, Lei Y, Wen Z. Ectopic and transient expression of VvDIR4 gene in Arabidopsis and grapes enhances resistance to anthracnose via affecting hormone signaling pathways and lignin production. BMC Genomics 2024; 25:895. [PMID: 39342082 PMCID: PMC11439227 DOI: 10.1186/s12864-024-10830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND DIR (Dirigent) proteins play important roles in the biosynthesis of lignin and lignans and are involved in various processes such as plant growth, development, and stress responses. However, there is less information about VvDIR proteins in grapevine (Vitis vinifera L). RESULTS In this study, we used bioinformatics methods to identify members of the DIR gene family in grapevine and identified 18 VvDIR genes in grapevine. These genes were classified into 5 subfamilies based on phylogenetic analysis. In promoter analysis, various plant hormones, stress, and light-responsive cis-elements were detected. Expression profiling of all genes following Colletotrichum gloeosporioides infection and phytohormones (salicylic acid (SA) and jasmonic acid (JA)) application suggested significant upregulation of 17 and 6 VvDIR genes, respectively. Further, we overexpressed the VvDIR4 gene in Arabidopsis thaliana and grapes for functional analysis. Ectopic expression of VvDIR4 in A. thaliana and transient expression in grapes increased resistance against C. gloeosporioides and C. higginsianum, respectively. Phenotypic observations showed small disease lesions in transgenic plants. Further, the expression patterns of genes having presumed roles in SA and JA signaling pathways were also influenced. Lignin contents were measured before and after C. higginsianum infection; the transgenic A. thaliana lines showed higher lignin content than wild-type, and a significant increase was observed after C. higginsianum infection. CONCLUSIONS Based on the findings, we surmise that VvDIR4 is involved in hormonal and lignin synthesis pathways which regulate resistance against anthracnose. Our study provides novel insights into the function of VvDIR genes and new candidate genes for grapevine disease resistance breeding programs.
Collapse
Affiliation(s)
- Qimeng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Luo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xicheng Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinhui Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Bilal Ahmad
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Afairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Lei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.
| | - Zhifeng Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Li T, Luo W, Du C, Lin X, Lin G, Chen R, He H, Wang R, Lu L, Xie X. Functional and evolutionary comparative analysis of the DIR gene family in Nicotiana tabacum L. and Solanum tuberosum L. BMC Genomics 2024; 25:671. [PMID: 38970011 PMCID: PMC11229024 DOI: 10.1186/s12864-024-10577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.
Collapse
Affiliation(s)
- Tong Li
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Wenbin Luo
- Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Chaofan Du
- Longyan Tobacco Company, Longyan, 364000, China
| | - Xiaolu Lin
- Longyan Tobacco Company, Longyan, 364000, China
| | - Guojian Lin
- Longyan Tobacco Company, Longyan, 364000, China
| | - Rui Chen
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Ruiqi Wang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Libin Lu
- Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Dokka N, Tyagi S, Ramkumar MK, Rathinam M, Senthil K, Sreevathsa R. Genome-wide identification and characterization of DIRIGENT gene family (CcDIR) in pigeonpea (Cajanus cajan L.) provide insights on their spatial expression pattern and relevance to stress response. Gene 2024; 914:148417. [PMID: 38555003 DOI: 10.1016/j.gene.2024.148417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
This study is a thorough characterization of pigeonpea dirigent gene (CcDIR) family, an important component of the lignin biosynthesis pathway. Genome-wide analysis identified 25 CcDIR genes followed by a range of analytical approaches employed to unravel their structural and functional characteristics. Structural examination revealed a classic single exon and no intron arrangement in CcDIRs contributing to our understanding on evolutionary dynamics. Phylogenetic analysis elucidated evolutionary relationships among CcDIR genes with six DIR sub-families, while motif distribution analysis displayed and highlighted ten conserved protein motifs in CcDIRs. Promoter analyses of all the dirigent genes detected 18 stress responsive cis-acting elements offering insights into transcriptional regulation. While spatial expression analyses across six plant tissues showed preferential expression of CcDIR genes, exposure to salt (CcDIR2 and CcDIR9) and herbivory (CcDIR1, CcDIR2, CcDIR3 and CcDIR11), demonstrated potential roles of specific DIRs in plant defense. Interestingly, increased gene expression during herbivory, also correlated with increased lignin content authenticating the specific response. Furthermore, exogenous application of stress hormones, SA and MeJA on leaves significantly induced the expression of CcDIRs that responded to herbivory. Taken together, these findings contribute to a comprehensive understanding of CcDIR genes impacting development and stress response in the important legume pigeonpea.
Collapse
Affiliation(s)
- Narasimham Dokka
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - M K Ramkumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Kameshwaran Senthil
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
6
|
Yong B, Zhu W, Wei S, Li B, Wang Y, Xu N, Lu J, Chen Q, He C. Parallel selection of loss-of-function alleles of Pdh1 orthologous genes in warm-season legumes for pod indehiscence and plasticity is related to precipitation. THE NEW PHYTOLOGIST 2023; 240:863-879. [PMID: 37501344 DOI: 10.1111/nph.19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Pod dehiscence facilitates seed dispersal in wild legumes but results in yield loss in cultivated legumes. The evolutionary genetics of the legume pod dehiscence trait remain largely elusive. We characterized the pod dehiscence of chromosome segment substitution lines of Glycine max crossed with Glycine soja and found that the gene underlying the predominant quantitative trait locus (QTL) of soybean pod-shattering trait was Pod dehiscence 1 (Pdh1). A few rare loss-of-function (LoF) Pdh1 alleles were identified in G. soja, while only an allele featuring a premature stop codon was selected for pod indehiscence in cultivated soybean and spread to low-precipitation regions with increased frequency. Moreover, correlated interactions among Pdh1's haplotype, gene expression, and environmental changes for the developmental plasticity of the pod dehiscence trait were revealed in G. max. We found that orthologous Pdh1 genes specifically originated in warm-season legumes and their LoF alleles were then parallel-selected during the domestication of legume crops. Our results provide insights into the convergent evolution of pod dehiscence in warm-season legumes, facilitate an understanding of the intricate interactions between genetic robustness and environmental adaptation for developmental plasticity, and guide the breeding of new legume varieties with pod indehiscence.
Collapse
Affiliation(s)
- Bin Yong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Siming Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Bingbing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Nan Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Jia W, Xiong Y, Li M, Zhang S, Han Z, Li K. Genome-wide identification, characterization, evolution and expression analysis of the DIR gene family in potato ( Solanum tuberosum). Front Genet 2023; 14:1224015. [PMID: 37680198 PMCID: PMC10481866 DOI: 10.3389/fgene.2023.1224015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The dirigent (DIR) gene is a key player in environmental stress response and has been identified in many multidimensional tube plant species. However, there are few studies on the StDIR gene in potato. In this study, we used genome-wide identification to identify 31 StDIR genes in potato. Among the 12 potato chromosomes, the StDIR gene was distributed on 11 chromosomes, among which the third chromosome did not have a family member, while the tenth chromosome had the most members with 11 members. 22 of the 31 StDIRs had a classical DIR gene structure, with one exon and no intron. The conserved DIR domain accounts for most of the proteins in the 27 StDIRs. The structure of the StDIR gene was analyzed and ten different motifs were detected. The StDIR gene was divided into three groups according to its phylogenetic relationship, and 22 duplicate genes were identified. In addition, four kinds of cis-acting elements were detected in all 31 StDIR promoter regions, most of which were associated with biotic and abiotic stress. The findings demonstrated that the StDIR gene exhibited specific responses to cold stress, salt stress, ABA, and drought stress. This study provides new candidate genes for improving potato's resistance to stress.
Collapse
Affiliation(s)
- Wenqi Jia
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Yuting Xiong
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Man Li
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Shengli Zhang
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin, China
| | - Zhongcai Han
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
8
|
Pei Y, Cao W, Yu W, Peng C, Xu W, Zuo Y, Wu W, Hu Z. Identification and functional characterization of the dirigent gene family in Phryma leptostachya and the contribution of PlDIR1 in lignan biosynthesis. BMC PLANT BIOLOGY 2023; 23:291. [PMID: 37259047 DOI: 10.1186/s12870-023-04297-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Furofuran lignans, the main insecticidal ingredient in Phryma leptostachya, exhibit excellent controlling efficacy against a variety of pests. During the biosynthesis of furofuran lignans, Dirigent proteins (DIRs) are thought to be dominant in the stereoselective coupling of coniferyl alcohol to form ( ±)-pinoresinol. There are DIR family members in almost every vascular plant, but members of DIRs in P. leptostachya are unknown. To identify the PlDIR genes and elucidate their functions in lignan biosynthesis, this study performed transcriptome-wide analysis and characterized the catalytic activity of the PlDIR1 protein. RESULTS Fifteen full-length unique PlDIR genes were identified in P. leptostachya. A phylogenetic analysis of the PlDIRs classified them into four subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-g), and 12 conserved motifs were found among them. In tissue-specific expression analysis, except for PlDIR7, which displayed the highest transcript abundance in seeds, the other PlDIRs showed preferential expression in roots, leaves, and stems. Furthermore, the treatments with signaling molecules demonstrated that PlDIRs could be significantly induced by methyl jasmonate (MeJA), salicylic acid (SA), and ethylene (ETH), both in the roots and leaves of P. leptostachya. In examining the tertiary structure of the protein and the critical amino acids, it was found that PlDIR1, one of the DIR-a subfamily members, might be involved in the region- and stereo-selectivity of the phenoxy radical. Accordingly, LC-MS/MS analysis demonstrated the catalytic activity of recombinant PlDIR1 protein from Escherichia coli to direct coniferyl alcohol coupling into ( +)-pinoresinol. The active sites and hydrogen bonds of the interaction between PlDIR1 and bis-quinone methide (bisQM), the intermediate in ( +)-pinoresinol formation, were analyzed by molecular docking. As a result, 18 active sites and 4 hydrogen bonds (Asp-42, Ala-113, Leu-138, Arg-143) were discovered in the PlDIR1-bisQM complex. Moreover, correlation analysis indicated that the expression profile of PlDIR1 was closely connected with lignan accumulations after SA treatment. CONCLUSIONS The results of this study will provide useful clues for uncovering P. leptostachya's lignan biosynthesis pathway as well as facilitate further studies on the DIR family.
Collapse
Affiliation(s)
- Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenhan Cao
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenwen Yu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Chaoyang Peng
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Wenhao Xu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Integrated Pest Management On Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Kapoor P, Rakhra G, Kumar V, Joshi R, Gupta M, Rakhra G. Insights into the functional characterization of DIR proteins through genome-wide in silico and evolutionary studies: a systematic review. Funct Integr Genomics 2023; 23:166. [PMID: 37202648 DOI: 10.1007/s10142-023-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Dirigent proteins (DIRs) are a new class of proteins that were identified during the 8-8' lignan biosynthetic pathway and involves the formation of ( +) or ( -)-pinoresinol through stereoselective coupling from E-coniferyl alcohol. These proteins are known to play a vital role in the development and stress response in plants. Various studies have reported the functional and structural characterization of dirigent gene family in different plants using in silico approaches. Here, we have summarized the importance of dirigent proteins in plants and their role in plant stress tolerance by analyzing the genome-wide analysis including gene structure, mapping of chromosomes, phylogenetic evolution, conserved motifs, gene structure, and gene duplications in important plants. Overall, this review would help to compare and clarify the molecular and evolutionary characteristics of dirigent gene family in different plants.
Collapse
Affiliation(s)
- Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gurseen Rakhra
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ridhi Joshi
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
10
|
Li X, Sheng W, Dong Q, Huang R, Dong R, Liu G, Ding X, Zhang J. Analysis of seed production and seed shattering in a new artificial grassland forage: pigeon pea. FRONTIERS IN PLANT SCIENCE 2023; 14:1146398. [PMID: 37251779 PMCID: PMC10213504 DOI: 10.3389/fpls.2023.1146398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Pigeon pea is a perennial leguminous plant that is widely cultivated as a forage and pharmaceutical plant in subtropical and tropical areas, especially in artificial grasslands. Higher seed shattering is one of the most important factors in potentially increasing the seed yield of pigeon pea. Advance technology is necessary to increase the seed yield of pigeon pea. Through 2 consecutive years of field observations, we found that fertile tiller number was the key component of the seed yield of pigeon pea due to the direct effect of fertile tiller number per plant (0.364) on pigeon pea seed yield was the highest. Multiplex morphology, histology, and cytological and hydrolytic enzyme activity analysis showed that shatter-susceptible and shatter-resistant pigeon peas possessed an abscission layer at the same time (10 DAF); however, abscission layer cells dissolved earlier in shattering-susceptible pigeon pea (15 DAF), which led to the tearing of the abscission layer. The number of vascular bundle cells and vascular bundle area were the most significant negative factors (p< 0.01) affecting seed shattering. Cellulase and polygalacturonase were involved in the dehiscence process. In addition, we inferred that larger vascular bundle tissues and cells in the ventral suture of seed pods could effectively resist the dehiscence pressure of the abscission layer. This study provides foundation for further molecular studies to increase the seed yield of pigeon pea.
Collapse
Affiliation(s)
- Xinyong Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Wei Sheng
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Qianzhen Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rui Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xipeng Ding
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China
| |
Collapse
|
11
|
Zhou J, Luan X, Liu Y, Wang L, Wang J, Yang S, Liu S, Zhang J, Liu H, Yao D. Strategies and Methods for Improving the Efficiency of CRISPR/Cas9 Gene Editing in Plant Molecular Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1478. [PMID: 37050104 PMCID: PMC10097296 DOI: 10.3390/plants12071478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Following recent developments and refinement, CRISPR-Cas9 gene-editing technology has become increasingly mature and is being widely used for crop improvement. The application of CRISPR/Cas9 enables the generation of transgene-free genome-edited plants in a short period and has the advantages of simplicity, high efficiency, high specificity, and low production costs, which greatly facilitate the study of gene functions. In plant molecular breeding, the gene-editing efficiency of the CRISPR-Cas9 system has proven to be a key step in influencing the effectiveness of molecular breeding, with improvements in gene-editing efficiency recently becoming a focus of reported scientific research. This review details strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding, including Cas9 variant enzyme engineering, the effect of multiple promoter driven Cas9, and gRNA efficient optimization and expression strategies. It also briefly introduces the optimization strategies of the CRISPR/Cas12a system and the application of BE and PE precision editing. These strategies are beneficial for the further development and optimization of gene editing systems in the field of plant molecular breeding.
Collapse
Affiliation(s)
- Junming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Xinchao Luan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Yixuan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Lixue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jiaxin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Songnan Yang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| |
Collapse
|
12
|
Marsh JI, Nestor BJ, Petereit J, Tay Fernandez CG, Bayer PE, Batley J, Edwards D. Legume-wide comparative analysis of pod shatter locus PDH1 reveals phaseoloid specificity, high cowpea expression, and stress responsive genomic context. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36970933 DOI: 10.1111/tpj.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pod dehiscence is a major source of yield loss in legumes, which is exacerbated by aridity. Disruptive mutations in "Pod indehiscent 1" (PDH1), a pod sclerenchyma-specific lignin biosynthesis gene, has been linked to significant reductions in dehiscence in several legume species. We compared syntenic PDH1 regions across 12 legumes and two outgroups to uncover key historical evolutionary trends at this important locus. Our results clarified the extent to which PDH1 orthologs are present in legumes, showing the typical genomic context surrounding PDH1 has only arisen relatively recently in certain phaseoloid species (Vigna, Phaseolus, Glycine). The notable absence of PDH1 in Cajanus cajan may be a major contributor to its indehiscent phenotype compared with other phaseoloids. In addition, we identified a novel PDH1 ortholog in Vigna angularis and detected remarkable increases in PDH1 transcript abundance during Vigna unguiculata pod development. Investigation of the shared genomic context of PDH1 revealed it lies in a hotspot of transcription factors and signaling gene families that respond to abscisic acid and drought stress, which we hypothesize may be an additional factor influencing expression of PDH1 under specific environmental conditions. Our findings provide key insights into the evolutionary history of PDH1 and lay the foundation for optimizing the pod dehiscence role of PDH1 in major and understudied legume species.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Cassandria G Tay Fernandez
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Luo R, Pan W, Liu W, Tian Y, Zeng Y, Li Y, Li Z, Cui L. The barley DIR gene family: An expanded gene family that is involved in stress responses. Front Genet 2022; 13:1042772. [PMID: 36406120 PMCID: PMC9667096 DOI: 10.3389/fgene.2022.1042772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/09/2023] Open
Abstract
Gene family expansion plays a central role in adaptive divergence and, ultimately, speciation is influenced by phenotypic diversity in different environments. Barley (Hordeum vulgare) is the fourth most important cereal crop in the world and is used for brewing purposes, animal feed, and human food. Systematic characterization of expanded gene families is instrumental in the research of the evolutionary history of barley and understanding of the molecular function of their gene products. A total of 31,750 conserved orthologous groups (OGs) were identified using eight genomes/subgenomes, of which 1,113 and 6,739 were rapidly expanded and contracted OGs in barley, respectively. Five expanded OGs containing 20 barley dirigent genes (HvDIRs) were identified. HvDIRs from the same OG were phylogenetically clustered with similar gene structure and domain organization. In particular, 7 and 5 HvDIRs from OG0000960 and OG0001516, respectively, contributed greatly to the expansion of the DIR-c subfamily. Tandem duplication was the driving force for the expansion of the barley DIR gene family. Nucleotide diversity and haplotype network analysis revealed that the expanded HvDIRs experienced severe bottleneck events during barley domestication, and can thus be considered as potential domestication-related candidate genes. The expression profile and co-expression network analysis revealed the critical roles of the expanded HvDIRs in various biological processes, especially in stress responses. HvDIR18, HvDIR19, and HvDIR63 could serve as excellent candidates for further functional genomics studies to improve the production of barley products. Our study revealed that the HvDIR family was significantly expanded in barley and might be involved in different developmental processes and stress responses. Thus, besides providing a framework for future functional genomics and metabolomics studies, this study also identified HvDIRs as candidates for use in improving barley crop resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenqiang Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yuan Tian
- Xintai Urban and Rural Development Group Co., Ltd., Taian, Shandong, China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Characterization, expression, and functional analysis of the pathogenesis-related gene PtDIR11 in transgenic poplar. Int J Biol Macromol 2022; 210:182-195. [PMID: 35545137 DOI: 10.1016/j.ijbiomac.2022.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
Lignins and lignans are important for plant resistance to pathogens. Dirigent (DIR) proteins control the regio- and stereo-selectivity of coniferyl alcohol in lignan and lignin biosynthesis. DIR genes have been implicated in defense-related responses in several plant species, but their role in poplar immunity is unclear. We cloned PtDIR11 from Populus trichocarpa; we found that overexpression of PtDIR11 in poplar improved the lignan biosynthesis and enhanced the resistance of poplar to Septotis populiperda. PtDIR11 has a typical DIR domain; it belongs to the DIR-b/d family and is expressed in the cell membrane. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis showed that PtDIR11 expression was highest in stems, followed by leaves and roots. Furthermore, PtDIR11 expression was induced by S. populiperda, salicylic acid (SA), jasmonate (JA), and ethylene (ET) stresses. The recombinant PtDIR11 protein inhibited the growth of S. populiperda in vitro. Overexpressing (OE) PtDIR11 in "Nanlin 895" poplar enhanced growth. The OE lines exhibited minimal changes in lignin content, but their total lignan and flavonoid contents were significantly greater than in the wild-type (WT) lines. Overexpression of PtDIR11 affected multiple biological pathways of poplar, such as phenylpropanoid biosynthesis. The methanol extracts of OE-PtDIR11 lines showed greater anti-S. populiperda activity than did lignin extracts from the WT lines. Furthermore, OE-PtDIR11 lines upregulated genes that were related to phenylpropanoid biosynthesis and genes associated with the JA and ET signal transduction pathways; it downregulated genes that were related to SA signal transduction compared with the WT line under S. populiperda stress. Therefore, the OE transgenic plants analysis revealed that PtDIR11 is a good candidate gene for breeding of disease resistant poplar.
Collapse
|
15
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
16
|
Xu W, Liu T, Zhang H, Zhu H. Mungbean DIRIGENT Gene Subfamilies and Their Expression Profiles Under Salt and Drought Stresses. Front Genet 2021; 12:658148. [PMID: 34630501 PMCID: PMC8493098 DOI: 10.3389/fgene.2021.658148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
DIRIGENT (DIR) genes are key players in environmental stress responses that have been identified in many vascular plant species. However, few studies have examined the VrDIR genes in mungbean. In this study, we characterized 37 VrDIR genes in mungbean using a genome-wide identification method. VrDIRs were distributed on seven of the 11 mungbean chromosomes, and chromosome three contained the most VrDIR genes, with seven members. Thirty-two of the 37 VrDIRs contained a typical DIR gene structure, with one exon; the conserved DIR domain (i.e., Pfam domain) occupied most of the protein in 33 of the 37 VrDIRs. The gene structures of VrDIR genes were analyzed, and a total of 19 distinct motifs were detected. VrDIR genes were classified into five groups based on their phylogenetic relationships, and 13 duplicated gene pairs were identified. In addition, a total of 92 cis-acting elements were detected in all 37 VrDIR promoter regions, and VrDIR genes contained different numbers and types of cis-acting elements. As a result, VrDIR genes showed distinct expression patterns in different tissues and in response to salt and drought stress.
Collapse
Affiliation(s)
- Wenying Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tong Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|