1
|
Taiwo OO, Rehman S, Storey KB. Pancreatic MicroRNAs in Ictidomys tridecemlineatus Associated with Metabolic Diseases: Nature's Insights into Important Biomarkers. Biomolecules 2025; 15:616. [PMID: 40427509 PMCID: PMC12109365 DOI: 10.3390/biom15050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Hibernation involves a profound metabolic rate depression (MRD) that enables certain species to survive prolonged periods of low energy availability. The thirteen-lined ground squirrel uses MRD to arrange cellular and biochemical pathways which suppress nonvital genetic and cellular pathways to conserve internal energy while preserving all essential processes. This study investigates the role of microRNAs (miRNAs) in controlling key signaling pathways and cellular processes in pancreatic tissue during hibernation. Using next-generation sequencing and broad genomic analysis, we analyzed and identified seven differentially expressed miRNAs (miR-29a-3p, miR-22-3p, miR-125-5p, miR-200a-3p, miR-328-3p, miR-21-5p, and miR-148-3p) in the pancreas of hibernating 13-lined ground squirrels (Ictidomys tridecemlineatus). Our findings reveal that these miRNAs regulate pathways involved in glucose homeostasis, including insulin secretion and metabolic regulation, contributing to the unique adaptations of hibernation. These insights advance our understanding of the molecular adaptations underlying hibernation and may have implications for therapeutic strategies targeting metabolic disorders such as diabetes.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (O.O.T.); (S.R.)
| |
Collapse
|
2
|
Ingelson-Filpula WA, Kübber-Heiss A, Painer J, Stalder G, Hadj-Moussa H, Bertile F, Habold C, Giroud S, Storey KB. The role of microRNA in the regulation of hepatic metabolism and energy-expensive processes in the hibernating dormouse. Cryobiology 2025; 118:105191. [PMID: 39732156 DOI: 10.1016/j.cryobiol.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression. Using next-generation sequencing, we analyzed an RNA-seq dataset to determine which miRNAs are differentially regulated during hibernation in the dormouse liver. We found that the expression of 19 miRNAs was altered during hibernation; however, only one major miRNA (miR-34a-5p) remained significantly downregulated after correcting for false discovery rate. Gene Ontology, KEGG Pathway Analysis, and DIANA-miRPath predicted that energy metabolism, nuclear-related functions such as histone binding, chromatin- and chromosomal binding, and the cell cycle are processes that may be differentially regulated during hibernation due to miRNA regulation. Taken together, our data suggest that miRNA influence appears to be strongly directed toward suppressing energy-intensive processes in the nucleus hence contributing to extend the animal's endogenous fuel reserves for the duration of hibernation.
Collapse
Affiliation(s)
- W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Hanane Hadj-Moussa
- The Babraham Institute, Babraham Hall House, Babraham, Cambridge, CB22 3AT, United Kingdom
| | - Fabrice Bertile
- University of Strasbourg, CNRS, IPHC, UMR, 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR, 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
3
|
Ingelson-Filpula WA, Breedon SA, Storey KB. MicroRNA, Myostatin, and Metabolic Rate Depression: Skeletal Muscle Atrophy Resistance in Hibernating Myotis lucifugus. Cells 2024; 13:2074. [PMID: 39768165 PMCID: PMC11674624 DOI: 10.3390/cells13242074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Little brown bats (Myotis lucifugus) cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid M. lucifugus as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms. Taken together, our results indicate miRNA regulation corresponding to both widely utilized MRD survival strategies, as well as more hibernation- and tissue-specific roles in M. lucifugus, including skeletal muscle atrophy resistance via myostatin inhibition and insulin signaling suppression.
Collapse
Affiliation(s)
- W. Aline Ingelson-Filpula
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (W.A.I.-F.); (K.B.S.)
| | - Sarah A. Breedon
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (W.A.I.-F.); (K.B.S.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (W.A.I.-F.); (K.B.S.)
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Li RL, Kang S. Rewriting cellular fate: epigenetic interventions in obesity and cellular programming. Mol Med 2024; 30:169. [PMID: 39390356 PMCID: PMC11465847 DOI: 10.1186/s10020-024-00944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
External constraints, such as development, disease, and environment, can induce changes in epigenomic patterns that may profoundly impact the health trajectory of fetuses and neonates into adulthood, influencing conditions like obesity. Epigenetic modifications encompass processes including DNA methylation, covalent histone modifications, and RNA-mediated regulation. Beyond forward cellular differentiation (cell programming), terminally differentiated cells are reverted to a pluripotent or even totipotent state, that is, cellular reprogramming. Epigenetic modulators facilitate or erase histone and DNA modifications both in vivo and in vitro during programming and reprogramming. Noticeably, obesity is a complex metabolic disorder driven by both genetic and environmental factors. Increasing evidence suggests that epigenetic modifications play a critical role in the regulation of gene expression involved in adipogenesis, energy homeostasis, and metabolic pathways. Hence, we discuss the mechanisms by which epigenetic interventions influence obesity, focusing on DNA methylation, histone modifications, and non-coding RNAs. We also analyze the methodologies that have been pivotal in uncovering these epigenetic regulations, i.e., Large-scale screening has been instrumental in identifying genes and pathways susceptible to epigenetic control, particularly in the context of adipogenesis and metabolic homeostasis; Single-cell RNA sequencing (scRNA-seq) provides a high-resolution view of gene expression patterns at the individual cell level, revealing the heterogeneity and dynamics of epigenetic regulation during cellular differentiation and reprogramming; Chromatin immunoprecipitation (ChIP) assays, focused on candidate genes, have been crucial for characterizing histone modifications and transcription factor binding at specific genomic loci, thereby elucidating the epigenetic mechanisms that govern cellular programming; Somatic cell nuclear transfer (SCNT) and cell fusion techniques have been employed to study the epigenetic reprogramming accompanying cloning and the generation of hybrid cells with pluripotent characteristics, etc. These approaches have been instrumental in identifying specific epigenetic marks and pathways implicated in obesity, providing a foundation for developing targeted therapeutic interventions. Understanding the dynamic interplay between epigenetic regulation and cellular programming is crucial for advancing mechanism and clinical management of obesity.
Collapse
Affiliation(s)
- Rui-Lin Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China.
| |
Collapse
|
5
|
Lv Y, Chen C, Yan C, Liao W. The paddy frog genome provides insight into the molecular adaptations and regulation of hibernation in ectotherms. iScience 2024; 27:108844. [PMID: 38261954 PMCID: PMC10797549 DOI: 10.1016/j.isci.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Amphibians, like the paddy frog (Fejervarya multistriata), have played a critical role in the transition from water to land. Hibernation is a vital survival adaptation in cold environments with limited food resources. We decoded the paddy frog genome to reveal the molecular adaptations linked to hibernation in ectotherms. The genome contained 13 chromosomes, with a significant proportion of repetitive sequences. We identified the key genes encoding the proteins of AANAT, TRPM8, EGLN1, and VEGFA essential for circadian rhythms, thermosensation, and hypoxia during hibernation by comparing the hibernator and non-hibernator genomes. Examining organ changes during hibernation revealed the central regulatory role of the brain. We identified 21 factors contributing to hibernation, involving hormone biosynthesis, protein digestion, DNA replication, and the cell cycle. These findings provide deeper insight into the complex mechanisms of ectothermic hibernation and contribute to our understanding of the broader significance of this evolutionary adaptation.
Collapse
Affiliation(s)
- Yunyun Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Chuan Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
- College of Panda, China West Normal Univetsity, Nanchong, Sichuan 637009, China
| |
Collapse
|
6
|
Ingelson-Filpula WA, Storey KB. Hibernation-Induced microRNA Expression Promotes Signaling Pathways and Cell Cycle Dysregulation in Ictidomys tridecemlineatus Cardiac Tissue. Metabolites 2023; 13:1096. [PMID: 37887421 PMCID: PMC10608741 DOI: 10.3390/metabo13101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The thirteen-lined ground squirrel Ictidomys tridecemlineatus is a rodent that lives throughout the United States and Canada and uses metabolic rate depression to facilitate circannual hibernation which helps it survive the winter. Metabolic rate depression is the reorganization of cellular physiology and molecular biology to facilitate a global downregulation of nonessential genes and processes, which conserves endogenous fuel resources and prevents the buildup of waste byproducts. Facilitating metabolic rate depression requires a complex interplay of regulatory approaches, including post-transcriptional modes such as microRNA. MicroRNA are short, single-stranded RNA species that bind to mRNA transcripts and target them for degradation or translational suppression. Using next-generation sequencing, we analyzed euthermic vs. hibernating cardiac tissue in I. tridecemlineatus to predict seven miRNAs (let-7e-5p, miR-122-5p, miR-2355-3p, miR-6715b-3p, miR-378i, miR-9851-3p, and miR-454-3p) that may be differentially regulated during hibernation. Gene ontology and KEGG pathway analysis suggested that these miRNAs cause a strong activation of ErbB2 signaling which causes downstream effects, including the activation of MAPK and PI3K/Akt signaling and concurrent decreases in p53 signaling and cell cycle-related processes. Taken together, these results predict critical miRNAs that may change during hibernation in the hearts of I. tridecemlineatus and identify key signaling pathways that warrant further study in this species.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
7
|
Breedon SA, Varma A, Quintero-Galvis JF, Gaitán-Espitia JD, Mejías C, Nespolo RF, Storey KB. Torpor-responsive microRNAs in the heart of the Monito del monte, Dromiciops gliroides. Biofactors 2023; 49:1061-1073. [PMID: 37219063 DOI: 10.1002/biof.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The marsupial Monito del monte (Dromiciops gliroides) utilizes both daily and seasonal bouts of torpor to preserve energy and prolong survival during periods of cold and unpredictable food availability. Torpor involves changes in cellular metabolism, including specific changes to gene expression that is coordinated in part, by the posttranscriptional gene silencing activity of microRNAs (miRNA). Previously, differential miRNA expression has been identified in D. gliroides liver and skeletal muscle; however, miRNAs in the heart of Monito del monte remained unstudied. In this study, the expression of 82 miRNAs was assessed in the hearts of active and torpid D. gliroides, finding that 14 were significantly differentially expressed during torpor. These 14 miRNAs were then used in bioinformatic analyses to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were predicted to be most affected by these differentially expressed miRNAs. Overexpressed miRNAs were predicted to primarily regulate glycosaminoglycan biosynthesis, along with various signaling pathways such as Phosphoinositide-3-kinase/protein kinase B and transforming growth factor-β. Similarly, signaling pathways including phosphatidylinositol and Hippo were predicted to be regulated by the underexpression of miRNAs during torpor. Together, these results suggest potential molecular adaptations that protect against irreversible tissue damage and enable continued cardiac and vascular function despite hypothermia and limited organ perfusion during torpor.
Collapse
Affiliation(s)
- Sarah A Breedon
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Anchal Varma
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Julian F Quintero-Galvis
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Carlos Mejías
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Millenium Nucleus of Limit of Life (LiLi), Valdivia, Chile
| | - Roberto F Nespolo
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Millenium Nucleus of Limit of Life (LiLi), Valdivia, Chile
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Vogt G. Phenotypic plasticity in the monoclonal marbled crayfish is associated with very low genetic diversity but pronounced epigenetic diversity. Curr Zool 2023; 69:426-441. [PMID: 37614917 PMCID: PMC10443617 DOI: 10.1093/cz/zoac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/19/2022] [Indexed: 08/25/2023] Open
Abstract
Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, Procambarus virginalis, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish Procambarus fallax. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Varma A, Breedon SA, Storey KB. Sub-zero microRNA expression in the liver of the frozen hatchling painted turtle, Chrysemys picta marginata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159304. [PMID: 36220468 DOI: 10.1016/j.scitotenv.2022.159304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The Midland painted turtle (Chrysemys picta marginata) are the highest known vertebrate species to experience and survive freezing and sub-zero temperatures. Painted turtles typically hatch from their eggs in the fall and remain underground in their nests until the following spring. While in these nests over the winter, hatchling turtles withstand over 50 % of their total extracellular body water freezing. Herein, the expression of microRNAs (miRNAs) was investigated in response to freezing stress in the hatchling painted turtle liver. A total of 204 known miRNAs were identified to be expressed in turtles, with 17 being upregulated and 13 being downregulated during freezing. KEGG and GO analyses suggested that upregulated miRNAs inhibit genes of cell cycle and Focal adhesion and Adherens junction, suggesting their role in downregulation of central metabolic processes necessary for metabolic rate depression (MRD) and maintaining the tissue homeostasis. Only 9 of the 36 enriched KEGG pathways were less targeted by miRNAs during freezing, including linoleic acid metabolism and multiple signaling pathways. These predicted upregulated pathways likely promote homeoviscous adaptation and expression of pro-survival/protective proteins for metabolic adaptations necessary for defence of liver during MRD. Overall, miRNA-seq analysis of liver revealed a strong role of miRNA in the adaptive strategy that not only enables hatchlings to substantially suppress their nonessential energy needs but also makes them flexible enough to restore and protect their basal organ functions by activating pro-survival processes.
Collapse
Affiliation(s)
- Anchal Varma
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Sarah A Breedon
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
10
|
Naranjo M, Breedon SA, Storey KB. Cardiac microRNA expression profile in response to estivation. Biochimie 2023:S0300-9084(23)00001-9. [PMID: 36627041 DOI: 10.1016/j.biochi.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Couch's spadefoot toad (Scaphiopus couchii) spends most of the year underground in a hypometabolic state known as estivation. During this time, they overcome significant dehydration and lack of food through many mechanisms including employing metabolic rate depression (MRD), increasing urea concentration, switching to lipid oxidation as the primary energy source, and decreasing their breathing and heart rate. MicroRNA (miRNA) are known to regulate translation by targeting messenger RNA (mRNA) for degradation or temporary storage, with several studies having reported that miRNA is differentially expressed during MRD, including estivation. Thus, we hypothesized that miRNA would be involved in gene regulation during estivation in S. couchii heart. Next-generation sequencing and bioinformatic analyses were used to assess changes in miRNA expression in response to two-month estivation and to predict the downstream effects of this expression. KEGG and GO analyses indicated that ribosome and cardiac muscle contraction are among the pathways predicted to be upregulated, whereas cell signaling and fatty acid metabolism were predicted to be downregulated. Together these results suggest that miRNAs contribute to the regulation of gene expression related to cardiac muscle physiology and energy metabolism during estivation.
Collapse
Affiliation(s)
- Mairelys Naranjo
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Sarah A Breedon
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6.
| |
Collapse
|
11
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|