1
|
Huang J, Ma S, Zhou M, Liu Z, Liang Q. Cytochemical localization and synthesis mechanism of the glucomannan in pseudobulbs of Bletilla striata Reichb. f. HORTICULTURE RESEARCH 2024; 11:uhae092. [PMID: 38799126 PMCID: PMC11116825 DOI: 10.1093/hr/uhae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
The dried pseudobulbs of Bletilla striata, an important traditional Chinese medicine named BaiJi, have an extraordinary polysaccharide content and excellent prospects for medicinal effects. However, the distribution and molecular mechanism underlying biosynthesis are poorly understood. In this study, chemical and immunologic analyses were performed in representative tissues of B. striata, and the results showed that what are conventionally termed Bletilla striata polysaccharides (BSPs) are water-soluble polysaccharides deposited only in pseudobulbs. The structural component of BSPs is glucomannan, with a mannose:glucose mass ratio of ~3:2. BSPs are present in the parenchyma of the pseudobulbs in cells known as glucomannan idioblasts and distributed in the cytoplasm within cellular membranes, but are not contained in the vacuole. Comparative transcriptomics and bioinformatics analyses mapped the pathway from sucrose to BSP and identified BsGPI, BsmanA, and BsCSLAs as the key genes of BSP biosynthesis, suggesting that the functional differentiation of the cellulose synthase-like family A (CSLA) may be critical for the flow of glucomannan to the BSP or cell wall. Subsequently, virus-mediated gene silencing showed that silencing of two CSLAs (Bs03G11846 and Bs03G11849) led to a decrease in BSP content, and yeast two-hybrid and luciferase complementation experiments confirmed that four CSLAs (Bs03G11846, Bs03G11847, Bs03G11848, and Bs03G11849) can form homo- or heterodimers, suggesting that multiple CSLAs may form a large complex that functions in BSP synthesis. Our results provide cytological evidence of BSP and describe the isolation and characterization of candidate genes involved in BSP synthesis, laying a solid foundation for further research on its regulation mechanisms and the genetic engineering breeding of B. striata.
Collapse
Affiliation(s)
- Junfeng Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shuang Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ming Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi City 435002, China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Mi X, Yang C, Qiao D, Tang M, Guo Y, Liang S, Li Y, Chen Z, Chen J. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation. Sci Rep 2023; 13:6015. [PMID: 37045909 PMCID: PMC10097665 DOI: 10.1038/s41598-023-32435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Tea plants are crops with economic, health and cultural value. Catechin, caffeine and theanine are the main secondary metabolites of taste. In the process of germplasm collection, we found a resource in the Sandu Aquatic Autonomous County of Guizhou (SDT) that possessed significantly different characteristic metabolites compared with the cultivar 'Qiancha 1'. SDT is rich in theobromine and theophylline, possesses low levels of (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-gallate, and theanine content, and is almost free of caffeine. However, research on this tea resource is limited. Full-length transcriptome analysis was performed to investigate the transcriptome and gene expression of these metabolites. In total, 78,809 unique transcripts were obtained, of which 65,263 were complete coding sequences. RNA-seq revealed 3415 differentially expressed transcripts in the tender leaves of 'Qiancha 1' and 'SDT'. Furthermore, 2665, 6231, and 2687 differentially expressed transcripts were found in different SDT tissues. These differentially expressed transcripts were enriched in flavonoid and amino acid metabolism processes. Co-expression network analysis identified five modules associated with metabolites and found that genes of caffeine synthase (TCS) may be responsible for the low caffeine content in SDT. Phenylalanine ammonia lyase (PAL), glutamine synthetase (GS), glutamate synthase (GOGAT), and arginine decarboxylase (ADC) play important roles in the synthesis of catechin and theanine. In addition, we identified that ethylene resposive factor (ERF) and WRKY transcription factors may be involved in theanine biosynthesis. Overall, our study provides candidate genes to improve understanding of the synthesis mechanisms of these metabolites and provides a basis for molecular breeding of tea plant.
Collapse
Affiliation(s)
- Xiaozeng Mi
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Chun Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Mengsha Tang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Guo
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Sihui Liang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Li
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Zhengwu Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Juan Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
4
|
Wei J, Luo B, Kong S, Liu W, Zhang C, Wei Z, Min X. Screening and identification of multiple abiotic stress responsive candidate genes based on hybrid-sequencing in Vicia sativa. Heliyon 2023; 9:e13536. [PMID: 36816321 PMCID: PMC9929474 DOI: 10.1016/j.heliyon.2023.e13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
Common vetch is an important leguminous forage for both livestock fodder and green manure and has a tremendous latent capacity in a sustainable agroecosystem. In the present study, a comprehensive transcriptome analysis of the aboveground leaves and underground roots of common vetch under multiple abiotic stress treatments, including NaCl, drought, cold, and cold drought, was performed using hybrid-sequencing technology, i. e. single-molecule real-time sequencing technology (SMRT) and supplemented by next-generation sequencing (NGS) technology. A total of 485,038 reads of insert (ROIs) with a mean length of 2606 bp and 228,261 full-length nonchimeric (FLNC) reads were generated. After deduplication, 39,709 transcripts were generated. Of these transcripts, we identified 1059 alternative splicing (AS) events, 17,227 simple sequence repeats (SSRs), and 1647 putative transcription factors (TFs). Furthermore, 640 candidates long noncoding RNAs (lncRNAs) and 28,256 complete coding sequences (CDSs) were identified. In gene annotation analyses, a total of 38,826 transcripts (97.78%) were annotated in eight public databases. Finally, seven multiple abiotic stress-responsive candidate genes were obtained through gene expression, annotation information, and protein-protein interaction (PPI) networks. Our research not only enriched the structural information of FL transcripts in common vetch, but also provided useful information for exploring the molecular mechanism of multiple abiotic stress tolerance between aboveground and underground tissues in common vetch and related legumes.
Collapse
Affiliation(s)
- Jia Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Bo Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Shiyi Kong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Chuanjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
- Corresponding author.
| | - Xueyang Min
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
- Corresponding author.
| |
Collapse
|
5
|
Zhao C, Gangurde SS, Xin X, Varshney RK. Editorial: Creation and utilization of crop germplasm resources. FRONTIERS IN PLANT SCIENCE 2023; 14:1140037. [PMID: 36760642 PMCID: PMC9905828 DOI: 10.3389/fpls.2023.1140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sunil S. Gangurde
- Crop Protection and Management Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Xia Xin
- National Crop GeneBank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
6
|
Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, Bebeli PJ. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020328. [PMID: 36679041 PMCID: PMC9861506 DOI: 10.3390/plants12020328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
7
|
Hou L, Li G, Chen Q, Zhao J, Pan J, Lin R, Zhu X, Wang P, Wang X. De novo full length transcriptome analysis and gene expression profiling to identify genes involved in phenylethanol glycosides biosynthesis in Cistanche tubulosa. BMC Genomics 2022; 23:698. [PMID: 36209069 PMCID: PMC9548140 DOI: 10.1186/s12864-022-08921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background The dried stem of Cistanche, is a famous Chinese traditional medicine. The main active pharmacodynamic components are phenylethanol glycosides (PhGs). Cistanche tubulosa produces higher level of PhGs in its stems than that of Cistanche deserticola. However, the key genes in the PhGs biosynthesis pathway is not clear in C. tubulosa. Results In this study, we performed the full-length transcriptome sequencing and gene expression profiling of C. tubulosa using PacBio combined with BGISEQ-500 RNA-seq technology. Totally, 237,772 unique transcripts were obtained, ranging from 199 bp to 31,857 bp. Among the unique transcripts, 188,135 (79.12%) transcripts were annotated. Interestingly, 1080 transcripts were annotated as 22 enzymes related to PhGs biosynthesis. We measured the content of echinacoside, acteoside and total PhGs at two development stages, and found that the content of PhGs was 46.74% of dry matter in young fleshy stem (YS1) and then decreased to 31.22% at the harvest stage (HS2). To compare with YS1, 13,631 genes were up-regulated, and 15,521 genes were down regulated in HS2. Many differentially expressed genes (DEGs) were identified to be involved in phenylpropanoid biosynthesis pathway, phenylalanine metabolism pathway, and tyrosine metabolism pathway. Conclusions This is the first report of transcriptome study of C. tubulosa which provided the foundation for understanding of PhGs biosynthesis. Based on these results, we proposed a potential model for PhGs biosynthesis in C. tubulosa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08921-x.
Collapse
Affiliation(s)
- Lei Hou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Guanghui Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Qingliang Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - JinJin Zhao
- Shandong Academy of Grape, Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Ruxia Lin
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Xiujin Zhu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Pengfei Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China.
| |
Collapse
|
8
|
Wang W, He Y, Wu Z, Li T, Xu X, Liu X. De novo transcriptome sequencing of Capsicum frutescens. L and comprehensive analysis of salt stress alleviating mechanism by Bacillus atrophaeus WU-9. PHYSIOLOGIA PLANTARUM 2022; 174:e13728. [PMID: 35675473 DOI: 10.1111/ppl.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Salt stress, as one of the most severe environmental stresses, can cause a series of changes in plants. However, the explanation of plant salt stress alleviating mechanism of plant growth-promoting rhizobacteria (PGPR) was hindered by the limited availability of transcriptomic information for salt stress-treated plants grown in a microorganism-controlled environment. Our previous reports have selected Bacillus atrophaeus WU-9 as PGPR significantly alleviating pepper (Capsicum frutescens. L) salt stress. In this work, the RNA-seq analysis of salt stress-treated and untreated plants, grown with and without WU-9 in a microorganism-controlled environment, was used to reveal the plant salt stress alleviating mechanisms of WU-9. Twelve sequencing libraries, prepared by treating with WU-9 and salt (150 mM NaCl for 36 h), were constructed by RNA-Seq technique. Non-inoculated seedlings mainly respond to salt stress through regulation of signal transduction, such as ethylene-activated signaling pathway, signaling and cell communication, etc. And ethylene signal participated in salt stress response in pepper through regulating defense responses, fruit ripening and senescence. WU-9 inoculation under salt stress mainly improves salt tolerance and plant growth by regulating salt stress-responding ethylene and auxin signal transduction, utilization of proline, photosynthesis, antioxidant enzyme activities and cell enlargement. Furthermore, 86 differentially expressed genes and 20 transcription factors were identified as associated with salt stress response and tolerance. Thus, this innovative transcriptomic study identified the salt stress response and alleviation in C. frutescens. L with PGPR inoculation. This result provided novel insights into the salinity alleviation in pepper regulated by PGPR.
Collapse
Affiliation(s)
- Wenfei Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, People's Republic of China
| | - Zhansheng Wu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People's Republic of China
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, People's Republic of China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People's Republic of China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People's Republic of China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, People's Republic of China
| |
Collapse
|