1
|
Liu Z, Gao D. The Cause-Effect Model of Master Sex Determination Gene Acquisition and the Evolution of Sex Chromosomes. Int J Mol Sci 2025; 26:3282. [PMID: 40244140 PMCID: PMC11989894 DOI: 10.3390/ijms26073282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The canonical model of vertebrate sex chromosome evolution predicts a one-way trend toward degradation. However, most sex chromosomes in lower vertebrates are homomorphic. Recent progress in studies of sex determination has resulted in the discovery of more than 30 master sex determination (MSD) genes, most of which are from teleost fish. An analysis of MSD gene acquisition, recombination suppression, and sex chromosome-specific sequences revealed correlations in the modes of MSD gene acquisition and the evolution of sex chromosomes. Sex chromosomes remain homomorphic with MSD genes acquired by simple mutations, gene duplications, allelic variations, or neofunctionalization; in contrast, they become heteromorphic with MSD genes acquired by chromosomal inversion, fusion, and fission. There is no recombination suppression with sex chromosomes carrying MSD genes gained through simple mutations. In contrast, there is extensive recombination suppression with sex chromosomes carrying MSD genes gained through chromosome inversion. There is limited recombination suppression with sex chromosomes carrying MSD genes gained through transposition or translocation. We propose a cause-effect model that predicts sex chromosome evolution as a consequence of the acquisition modes of MSD genes, which explains the evolution of sex chromosomes in various vertebrates. A key factor determining the trend of sex chromosome evolution is whether non-homologous regions are created during the acquisition of MSD genes. Chromosome inversion creates inversely homologous but directly non-homologous sequences, which lead to recombination suppression but retain recombination potential. Over time, recurrent recombination in the inverted regions leads to the formation of strata and may cause the degradation of sex chromosomes. Depending on the nature of deletions in the inverted regions, sex chromosomes may evolve with dosage compensation, or the selective retention of haplo-insufficient genes may be used as an alternative strategy.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN 38505, USA
| | | |
Collapse
|
2
|
Mukiibi R, Ferraresso S, Franch R, Peruzza L, Dalla Rovere G, Babbucci M, Bertotto D, Toffan A, Pascoli F, Faggion S, Peñaloza C, Tsigenopoulos CS, Houston RD, Bargelloni L, Robledo D. Integrated functional genomic analysis identifies regulatory variants underlying a major QTL for disease resistance in European sea bass. BMC Biol 2025; 23:75. [PMID: 40069747 PMCID: PMC11899128 DOI: 10.1186/s12915-025-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Viral nervous necrosis (VNN) is an important viral disease threatening global aquaculture sustainability and affecting over 50 farmed and ecologically important fish species. A major QTL for resistance to VNN has been previously detected in European sea bass, but the underlying causal gene(s) and mutation(s) remain unknown. To identify the mechanisms and genetic factors underpinning resistance to VNN in European sea bass, we employed integrative analyses of multiple functional genomics assays in European sea bass. RESULTS The estimated heritability of VNN resistance was high (h2 ~ 0.40), and a major QTL explaining up to 38% of the genetic variance of the trait was confirmed on chromosome 3, with individuals with the resistant QTL genotype showing a 90% survivability against a VNN outbreak. Whole-genome resequencing analyses narrowed the location of this QTL to a small region containing 4 copies of interferon alpha inducible protein 27-like 2A (IFI27L2A) genes, and one copy of the interferon alpha inducible protein 27-like 2 (IFI27L2) gene. RNA sequencing revealed a clear association between the QTL genotype and the expression of two of the IFI27L2A genes, and the IFI27L2 gene. Integration with chromatin accessibility and histone modification data pinpointed two SNPs in active regulatory regions of two of these genes (IFI27L2A and IFI27L2), and transcription factor binding site gains for the resistant alleles were predicted. These alleles, particularly the SNP variant CHR3:10,077,301, exhibited higher frequencies (0.55 to 0.77) in Eastern Mediterranean Sea bass populations, which show considerably higher levels of resistance to VNN, as compared to susceptible West Mediterranean and Atlantic populations (0.15-0.25). CONCLUSIONS The SNP variant CHR3:10,077,301, through modulation of IFI27L2 and IFI27L2A genes, is likely the causative mutation underlying resistance to VNN in European sea bass. This is one of the first causative mutations discovered for disease resistance traits in fish and paves the way for marker-assisted selection as well as biotechnological approaches to enhance resistance to VNN in European sea bass and other susceptible species.
Collapse
Affiliation(s)
- Robert Mukiibi
- The Roslin Institute and Royal (Dick), University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Laboratory for Fish Diseases, Legnaro, 35020, Italy
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Laboratory for Fish Diseases, Legnaro, 35020, Italy
| | - Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick), University of Edinburgh, Edinburgh, EH25 9RG, UK
- Benchmark Genetics, Roslin Innovation Centre, Edinburgh, EH25 9RG, UK
| | - Costas S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, 715 00, Greece
| | - Ross D Houston
- Benchmark Genetics, Roslin Innovation Centre, Edinburgh, EH25 9RG, UK
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick), University of Edinburgh, Edinburgh, EH25 9RG, UK.
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
| |
Collapse
|
3
|
Fang J, Li G, Luo W, Hu Q. Understanding Genetic Regulation of Sex Differentiation in Hermaphroditic Fish. Animals (Basel) 2025; 15:119. [PMID: 39858119 PMCID: PMC11759146 DOI: 10.3390/ani15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
As a fundamental taxonomic group within vertebrates, fish represent an invaluable resource for investigating the mechanisms underlying sex determination and differentiation owing to their extensive geographical distribution and rich biodiversity. Within this biological cohort, the processes of sex determination and differentiation are intricately governed by both genetic factors and the complex interplay of environmental cues. While variations in external environmental factors, particularly temperature, can exert a modulatory influence on sex differentiation in fish to a limited degree, genetic factors remain the primary determinants of sexual traits. Hermaphroditic fish display three distinct types of sexual transitions: protandry (male to female), protogyny (female-to-male), bidirectional sex change (both directions serially). These fish, characterized by their unique reproductive strategies and sexual plasticity, serve as exemplary natural models for elucidating the mechanisms of sex differentiation and sexual transitions in fish. The present review delves into the histological dynamics during gonadal development across three types of sequential hermaphroditic fish, meticulously delineating the pivotal characteristics at each stage, from the inception of primordial gonads to sexual specialization. Furthermore, it examines the regulatory genes and associated signaling pathways that orchestrate sex determination and differentiation. By systematically synthesizing these research advancements, this paper endeavors to offer a comprehensive and profound insight into the intricate mechanisms governing sex differentiation in sequential hermaphroditic fish.
Collapse
Affiliation(s)
- Junchao Fang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Guanglve Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Wenyin Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| |
Collapse
|
4
|
Ramírez D, Anaya-Romero M, Rodríguez ME, Arias-Pérez A, Mukiibi R, D’Cotta H, Robledo D, Rebordinos L. Insights into Solea senegalensis Reproduction Through Gonadal Tissue Methylation Analysis and Transcriptomic Integration. Biomolecules 2025; 15:54. [PMID: 39858448 PMCID: PMC11764300 DOI: 10.3390/biom15010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In S. senegalensis aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages. RRBS (Reduced Representation Bisulfite Sequencing) was employed to detect notable methylation variations across groups, while RNA was extracted and sequenced for differential expression analysis. Our findings suggest that DNA methylation significantly regulates gene expression, acting as a mechanism that can both repress and enhance gene expression depending on the genomic context. The complexity of this epigenetic mechanism is evident from the varying levels of methylation and correlation rates observed in different CpGs neighboring specific genes linked to reproduction. Differential methylation comparisons revealed the highest number of differently methylated CpGs between maturation stages, followed by rearing conditions, and lastly between sexes. These findings underscore the crucial role of methylation in regulating gene expression and its potential role in sex differentiation, highlighting the complex interplay between epigenetic modifications and gene expression.
Collapse
Affiliation(s)
- Daniel Ramírez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Marco Anaya-Romero
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Alberto Arias-Pérez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH259RG, UK
| | - Helena D’Cotta
- UMR-Institut des Sciences de l’Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche, Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, 34295 Montpellier, France
| | - Diego Robledo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH259RG, UK
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| |
Collapse
|
5
|
Miura I, Hasegawa Y, Ito M, Ezaz T, Ogata M. Disruption of Sex-Linked Sox3 Causes ZW Female-to-Male Sex Reversal in the Japanese Frog Glandirana rugosa. Biomolecules 2024; 14:1566. [PMID: 39766273 PMCID: PMC11673724 DOI: 10.3390/biom14121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Sox3 is an ancestral homologous gene of the male-determining Sry in eutherian mammals and determines maleness in medaka fish. In the Japanese frog, Glandirana rugosa, Sox3 is located on the Z and W chromosomes. To assess the sex-determining function of Sox3 in this frog, we investigated its expression in gonads during early tadpole development and conducted genome-editing experiments. We found that the Sox3 mRNA levels in the gonads/mesonephroi were much higher in ZW females than that in ZZ males, and that the W-borne allele was dominantly expressed. A higher expression in ZW females preceded the onset of the sexually dimorphic expression of other autosomal sex differentiation genes. The Sox3 protein was detected by immunostaining in the somatic cells of early tadpole gonads around the boundary between the medulla and cortex in ZW females, whereas it was outside the gonads in ZZ males. Disrupting Sox3 using TALEN, which targets two distinct sites, generated sex-reversed ZW males and hermaphrodites, whereas no sex reversal was observed in ZZ males. These results suggest that the sex-linked Sox3 is involved in female determination in the ZZ-ZW sex-determining system of the frog, an exact opposite function to the male determination of medaka Sox3y and eutherian Sry.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia;
| | | | - Michihiko Ito
- School of Science, Kitasato University, Sagamihara 252-0373, Japan;
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia;
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama 241-0804, Japan;
| |
Collapse
|
6
|
Kocher TD, Meisel RP, Gamble T, Behrens KA, Gammerdinger WJ. Yes, polygenic sex determination is a thing! Trends Genet 2024; 40:1001-1017. [PMID: 39505660 DOI: 10.1016/j.tig.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
The process of sexual development in animals is modulated by a variety of mechanisms. Some species respond to environmental cues, while, in others, sex determination is thought to be controlled by a single 'master regulator' gene. However, many animals respond to a combination of environmental cues (e.g., temperature) and genetic factors (e.g., sex chromosomes). Even among species in which genetic factors predominate, there is a continuum between monofactorial and polygenic systems. The perception that polygenic systems are rare may result from experiments that lack the statistical power to detect multiple loci. Intellectual biases against the existence of polygenic sex determination (PSD) may further arise from misconceptions about the regulation of developmental processes and a misreading of theoretical results on the stability of polygenic systems of sex determination.
Collapse
Affiliation(s)
- Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
7
|
Yang H, Li YL, Xing TF, Liu JX. Characterization of the sex determining region and development of a molecular sex identification method in a Salangid fish. BMC Genomics 2024; 25:1120. [PMID: 39567903 PMCID: PMC11580623 DOI: 10.1186/s12864-024-11047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The short-snout icefish, Neosalanx brevirostris, a member of the Salangidae family, is an economically important fishery species in China. Understanding the mechanisms underlying sex determination in this species has crucial implications for conservation, ecology and evolution. Meanwhile, there is a shortage of rapid and cost-effective genetic methods for sex identification, which poses challenges in identifying the sex of immature individuals in sex determination mechanism studies and aquaculture breeding applications. RESULTS Based on whole genome resequencing data, sex-specific loci and regions were found to be concentrated in a region on chromosome 2. All sex-specific loci exhibited excess heterozygosity in females and complete homozygosity in males. This sex determining region contains seven genes, including cytochrome P450 aromatase CYP19B, which is involved in steroidogenesis and is associated with 24 sex-specific loci and two W-deletions. A haploid female-specific sequence was identified as paralogous to a diploid sequence with a significant length difference, making it suitable for rapid and cost-effective genetic sex identification by traditional PCR and agarose gel electrophoresis, which were further validated in 24 females and 24 males with known phenotypic sexes. CONCLUSIONS Our results confirm that N. brevirostris exhibits a female heterogametic sex determination system (ZZ/ZW), with chromosome 2 identified as the putative sex chromosome containing a relatively small sex determining region (~ 48 Kb). The gene CYP19B is proposed as a candidate sex determining gene. Moreover, the development of PCR based method enables genetic sex identification at any developmental stage, thereby facilitating further studies on sex determination mechanisms and advancing aquaculture breeding applications for this species.
Collapse
Affiliation(s)
- Hao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
8
|
Hsu CW, Chung BC. Two phases of gonadal sex differentiation in zebrafish with ZZ/ZW sex determination system. Gen Comp Endocrinol 2024; 358:114613. [PMID: 39303945 DOI: 10.1016/j.ygcen.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Zebrafish sex chromosomes have been identified in the wild Nadia (NA) strain, and its sex determination belongs to the female-heterogametic ZZ/ZW system. Here, we investigate the correlation between ZZ/ZW sex chromosomes in the NA strain with sex-related factors, and sort out the complicated process of sex determination in zebrafish. Two phases exist during zebrafish sex differentiation. In the first phase, ZW gonads differentiate into juvenile ovary while ZZ gonads remain indifferent. In the second phase, ZW gonads either continue ovary development or undergo female-to-male transition, while ZZ gonads undergo direct male development. The W chromosome may contribute to the first phase while the abundance of germ cells and other factors may be involved in the second phase of sex differentiation in zebrafish.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan; Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
9
|
Liu H, Zhang J, Cui T, Xia W, Luo Q, Fei S, Zhu X, Chen K, Zhao J, Ou M. Genome-Wide Association Studies (GWAS) and Transcriptome Analysis Reveal Male Heterogametic Sex-Determining Regions and Candidate Genes in Northern Snakeheads ( Channa argus). Int J Mol Sci 2024; 25:10889. [PMID: 39456674 PMCID: PMC11507226 DOI: 10.3390/ijms252010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The Northern snakehead (Channa argus) is a significant economic aquaculture species in China. Exhibiting sexual dimorphism in the growth rate between females and males, mono-sex breeding holds substantial value for aquaculture. This study employed GWAS and transcriptome analysis were applied to identify sex determination genomic regions and develop sex-specific markers. A total of 270 single-nucleotide polymorphisms (SNPs) and 31 insertion-deletions (InDels) were identified as being sexually dimorphic through GWAS and fixation index (Fst) scanning. Based on GWAS results, two sex-specific InDel markers were developed, effectively distinguishing genetic sex for XX females, XY males, and YY super-males via (polymerase chain reaction) PCR amplification. A major genomic segment of approximately 115 kb on chromosome 3 (Chr 03) was identified as the sex-determination region. A comparative transcriptome analysis of gonads for three sexes identified 158 overlapping differentially expressed genes (DEGs). Additionally, three sex-related candidate genes were identified near the sex determination region, including id2, sox11, and rnf144a. Further studies are required to elucidate the functions of these genes. Overall, two sex-specific InDel markers support a male heterogametic XX/XY sex-determination system in Northern snakeheads and three candidate genes offer new insights into sex determination and the evolution of sex chromosomes in teleost fish.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tongxin Cui
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Weiwei Xia
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (J.Z.); (T.C.); (W.X.); (Q.L.); (S.F.); (X.Z.); (K.C.)
| |
Collapse
|
10
|
Behrens KA, Koblmüller S, Kocher TD. Genome assemblies for Chromidotilapia guntheri (Teleostei: Cichlidae) identify a novel candidate gene for vertebrate sex determination, RIN3. Front Genet 2024; 15:1447628. [PMID: 39221227 PMCID: PMC11361979 DOI: 10.3389/fgene.2024.1447628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in genome sequencing have greatly accelerated the identification of sex chromosomes in a variety of species. Many of these species have experienced structural rearrangements that reduce recombination between the sex chromosomes, allowing the accumulation of sequence differences over many megabases. Identification of the genes that are responsible for sex determination within these sometimes large regions has proved difficult. Here, we identify an XY sex chromosome system on LG19 in the West African cichlid fish Chromidotilapia guntheri in which the region of differentiation extends over less than 400 kb. We develop high-quality male and female genome assemblies for this species, which confirm the absence of structural variants, and which facilitate the annotation of genes in the region. The peak of differentiation lies within rin3, which has experienced several debilitating mutations on the Y chromosome. We suggest two hypotheses about how these mutations might disrupt endocytosis, leading to Mendelian effects on sexual development.
Collapse
Affiliation(s)
- Kristen A. Behrens
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
11
|
Nwachi OF, Irabor AE, Umehai MC, Omonigho T, Sanubi JO. Pattern of color inheritance in African catfish (Clarias gariepinus): an expression of a Mendelian law. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:881-889. [PMID: 38085448 DOI: 10.1007/s10695-023-01282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/26/2023] [Indexed: 06/29/2024]
Abstract
In this study the pattern of color of inheritance based on Mendel's laws on the Clarias gariepinus strain was evaluated, to ascertain the different traits of albino, normally pigmented, and a combination of both traits that could be passed across from the parent stocks to the progenies. Since albinism is caused by a series of genetic abnormalities resulting in the reduction of melanin production, partial diallel cross between normally pigmented and albino fish was carried out using two females (albino and normal pigmented brood fish) weighing 2.5 kg and 3 kg, respectively; they were used in crossing two males (albino and normal pigmented brood fish) that weighed 1.5 kg and 1 kg, respectively. They were paired with normal pigmented (♂Np × ♀Np) and albino C. gariepinus (♂Ae × ♀Ae) fish to produce a pure strain of normally pigmented and albino strain, respectively. To produce the hybrids, they were paired (♂Np × ♀Ae) and (♂Ae × ♀Np), respectively. The outcomes of this study showed that crossbreeding between normally pigmented females and albino males produced all normally pigmented F1 generation, while some quantity of albino (36.67%) at crossing male albino to normally pigmented females were produced. However, the pure strains breed true (100%). Each hybrid exhibits heterosis after 56 days of rearing compared to the normal strain that was crossed, although the normally pigmented fish gives a better SGR. Hence, there is a need to investigate if sex is linked with albinism.
Collapse
Affiliation(s)
- Oster Francis Nwachi
- Department of Fisheries and Aquaculture, Faculty of Agriculture, Delta State University, Abraka, Nigeria
| | - Arnold Ebuka Irabor
- Department of Fisheries and Aquaculture Faculty of Agriculture, Dennis Osadebay University, Anwai Asaba, Nigeria.
| | - Michael Chukwuemeka Umehai
- Department of Fisheries and Aquaculture, Faculty of Agriculture, Delta State University, Abraka, Nigeria
| | - Truth Omonigho
- Department of Fisheries and Aquaculture, Faculty of Agriculture, Delta State University, Abraka, Nigeria
| | - Jovita Oghenenyerhovwo Sanubi
- Department of Animal Science and Production, Faculty of Agriculture, Dennis Osadebay University, Anwai, Asaba, Nigeria
| |
Collapse
|
12
|
Villarreal F, Burguener GF, Sosa EJ, Stocchi N, Somoza GM, Turjanski AG, Blanco A, Viñas J, Mechaly AS. Genome sequencing and analysis of black flounder (Paralichthys orbignyanus) reveals new insights into Pleuronectiformes genomic size and structure. BMC Genomics 2024; 25:297. [PMID: 38509481 PMCID: PMC10956332 DOI: 10.1186/s12864-024-10081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/02/2024] [Indexed: 03/22/2024] Open
Abstract
Black flounder (Paralichthys orbignyanus, Pleuronectiformes) is a commercially significant marine fish with promising aquaculture potential in Argentina. Despite extensive studies on Black flounder aquaculture, its limited genetic information available hampers the crucial role genetics plays in the development of this activity. In this study, we first employed Illumina sequencing technology to sequence the entire genome of Black flounder. Utilizing two independent libraries-one from a female and another from a male-with 150 bp paired-end reads, a mean insert length of 350 bp, and over 35 X-fold coverage, we achieved assemblies resulting in a genome size of ~ 538 Mbp. Analysis of the assemblies revealed that more than 98% of the core genes were present, with more than 78% of them having more than 50% coverage. This indicates a somehow complete and accurate genome at the coding sequence level. This genome contains 25,231 protein-coding genes, 445 tRNAs, 3 rRNAs, and more than 1,500 non-coding RNAs of other types. Black flounder, along with pufferfishes, seahorses, pipefishes, and anabantid fish, displays a smaller genome compared to most other teleost groups. In vertebrates, the number of transposable elements (TEs) is often correlated with genome size. However, it remains unclear whether the sizes of introns and exons also play a role in determining genome size. Hence, to elucidate the potential factors contributing to this reduced genome size, we conducted a comparative genomic analysis between Black flounder and other teleost orders to determine if the small genomic size could be explained by repetitive elements or gene features, including the whole genome genes and introns sizes. We show that the smaller genome size of flounders can be attributed to several factors, including changes in the number of repetitive elements, and decreased gene size, particularly due to lower amount of very large and small introns. Thus, these components appear to be involved in the genome reduction in Black flounder. Despite these insights, the full implications and potential benefits of genome reduction in Black flounder for reproduction and aquaculture remain incompletely understood, necessitating further research.
Collapse
Affiliation(s)
- Fernando Villarreal
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Germán F Burguener
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Nicolas Stocchi
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés Blanco
- Facultade de Veterinaria, Universidade de Santiago de Compostela, Santiago de Compostela, Lugo, Spain
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jordi Viñas
- Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Maria Aurèlia Campmany, 40, Girona, Spain
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina.
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| |
Collapse
|
13
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
14
|
Lasalle A, Benech-Correa G, Brunet FG, Vizziano-Cantonnet D. hsd17b1 is a key gene for ovarian differentiation of the Siberian sturgeon. Mol Reprod Dev 2024; 91:e23729. [PMID: 38282315 DOI: 10.1002/mrd.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17β. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.
Collapse
Affiliation(s)
- André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Germán Benech-Correa
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon, France
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
15
|
Maekawa M, Yoshii E, Akase Y, Huang H, Yoshikawa S, Matsuda M, Kuruma Y, Sawayama E. Sex-Associated SNP Confirmation of Sex-Reversed Male Farmed Japanese Flounder Paralichthys olivaceus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:718-728. [PMID: 37541964 DOI: 10.1007/s10126-023-10235-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Female Japanese flounder Paralichthys olivaceus grow more rapidly than the male. The goal of all-female commercial production requires an efficient method of genetic sex identification. We conducted genome-wide association analysis of female and male farmed Japanese flounder (n = 24 per phenotypic sex) and found all regions of chromosome 24 to be significantly associated with phenotypic sex, suggesting it as the sex chromosome. Genetic sex was identified based on single nucleotide polymorphisms (SNP) on chromosome 24 (n = 3568) using multidimensional scaling analysis, and individuals were clearly separated according to sex by the first dimension. The 61 SNPs most highly associated with sex were selected, and an amplicon-based SNP panel was developed. This was used to determine genetic sex of 39 females and 40 males. Eleven phenotypic males were assigned as female with XX genotype, suggesting sex reversal. Genetic sex was also assessed based on the indel of the amh gene promoter, which is the major candidate sex gene of Japanese flounder. We found four SNPs perfectly associated with genotypic sex in the sex-associated SNP panel, one of which was located in exon 2 of the amh gene. Along with the indel of the amh gene promoter, the sex-associated SNP panel will be of value in identifying genetic sex of farmed Japanese flounder. Molecular sexing will facilitate all-female production by breeding sex-reversed males.
Collapse
Affiliation(s)
- Mari Maekawa
- Department of Marine Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Emiri Yoshii
- Department of Marine Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Yuri Akase
- R&D Division, Marua Suisan Co., Ltd., Ehime, Japan
| | - He Huang
- Bioengineering Lab. Co., Ltd., Kanagawa, Japan
| | - Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, Nagasaki, Japan
| | | | - Yosuke Kuruma
- Nagasaki Prefectural Institute of Fisheries, Nagasaki, Japan
| | - Eitaro Sawayama
- Department of Marine Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan.
| |
Collapse
|
16
|
Gao J, Wang Y, Liu J, Chen F, Guo Y, Ke H, Wang X, Luo M, Fu S. Genome-wide association study reveals genomic loci of sex differentiation and gonadal development in Plectropomus leopardus. Front Genet 2023; 14:1229242. [PMID: 37645057 PMCID: PMC10461086 DOI: 10.3389/fgene.2023.1229242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Plectropomus leopardus, a commercially significant marine fish, is primarily found in the Western Pacific regions and along the coast of Southeast Asia. A thorough analysis of the molecular mechanisms involved in sex differentiation is crucial for gaining a comprehensive understanding of gonadal development and improving sex control breeding. However, the relevant fundamental studies of P. leopardus are relatively lacking. Methods: In this study, a genome-wide association study (GWAS) was conducted to investigate the genetic basis mechanism of sex differentiation and gonadal developmental traits in P. leopardus utilizing about 6,850,000 high-quality single-nucleotide polymorphisms (SNPs) derived from 168 individuals (including 126 females and 42 males) by the genome-wide efficient mixed-model association (GEMMA) algorithm. Results: The results of these single-trait GWASs showed that 46 SNP loci (-log10 p > 7) significantly associated with sex differentiation, and gonadal development traits were distributed in multiple different chromosomes, which suggested the analyzed traits were all complex traits under multi-locus control. A total of 1,838 potential candidate genes were obtained by considering a less-stringent threshold (-log10 p > 6) and ±100 kb regions surrounding the significant genomic loci. Moreover, 31 candidate genes were identified through a comprehensive analysis of significant GWAS peaks, gene ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, including taf7, ddx6, apoeb, sgk1, a2m, usf1, hsd3b7, dll4, xbp1, tet3, esr1, and gli3. These trait-associated genes have been shown to be involved in germline development, male sex differentiation, gonad morphogenesis, hormone receptor binding, oocyte development, male gonad development, steroidogenesis, estrogen-synthetic pathway, etc. Discussion: In the present study, multiple genomic loci of P. leopardus associated with sex differentiation and gonadal development traits were identified for the first time by using GWAS, providing a valuable resource for further research on the molecular genetic mechanism and sex control in P. leopardus. Our results also can contribute to understanding the genetic basis of the sex differentiation mechanism and gonadal development process in grouper fish.
Collapse
Affiliation(s)
- Jin Gao
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
| | - Yongbo Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
| | - Jinye Liu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Provincial Engineering Research Center for Tropical Sea-Farming, Haikou, China
| | - Fuxiao Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
| | - Yilan Guo
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Hongji Ke
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xulei Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Ming Luo
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Shuyuan Fu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
- Hainan Provincial Engineering Research Center for Tropical Sea-Farming, Haikou, China
| |
Collapse
|
17
|
Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus). Sci Rep 2023; 13:3019. [PMID: 36810752 PMCID: PMC9944912 DOI: 10.1038/s41598-023-29826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Non-synonymous variation (NSV) of protein coding genes represents raw material for selection to improve adaptation to the diverse environmental scenarios in wild and livestock populations. Many aquatic species face variations in temperature, salinity and biological factors throughout their distribution range that is reflected by the presence of allelic clines or local adaptation. The turbot (Scophthalmus maximus) is a flatfish of great commercial value with a flourishing aquaculture which has promoted the development of genomic resources. In this study, we developed the first atlas of NSVs in the turbot genome by resequencing 10 individuals from Northeast Atlantic Ocean. More than 50,000 NSVs where detected in the ~ 21,500 coding genes of the turbot genome, and we selected 18 NSVs to be genotyped using a single Mass ARRAY multiplex on 13 wild populations and three turbot farms. We detected signals of divergent selection on several genes related to growth, circadian rhythms, osmoregulation and oxygen binding in the different scenarios evaluated. Furthermore, we explored the impact of NSVs identified on the 3D structure and functional relationship of the correspondent proteins. In summary, our study provides a strategy to identify NSVs in species with consistently annotated and assembled genomes to ascertain their role in adaptation.
Collapse
|
18
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
19
|
de la Herrán R, Hermida M, Rubiolo JA, Gómez-Garrido J, Cruz F, Robles F, Navajas-Pérez R, Blanco A, Villamayor PR, Torres D, Sánchez-Quinteiro P, Ramirez D, Rodríguez ME, Arias-Pérez A, Cross I, Duncan N, Martínez-Peña T, Riaza A, Millán A, De Rosa MC, Pirolli D, Gut M, Bouza C, Robledo D, Rebordinos L, Alioto T, Ruíz-Rejón C, Martínez P. A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex-determining gene in the flatfish Solea senegalensis. Mol Ecol Resour 2023; 23:886-904. [PMID: 36587276 DOI: 10.1111/1755-0998.13750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.
Collapse
Affiliation(s)
- Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Hermida
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Juan Andres Rubiolo
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jèssica Gómez-Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Fernando Cruz
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Blanco
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodriguez Villamayor
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Dorinda Torres
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Sánchez-Quinteiro
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Daniel Ramirez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Maria Esther Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Alberto Arias-Pérez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Ismael Cross
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Neil Duncan
- IRTA Sant Carles de la Rapita, Tarragona, Spain
| | | | - Ana Riaza
- Stolt Sea Farm SA, Departamento I+D, A Coruña, Spain
| | | | - M Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, Rome, Italy
| | - Marta Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Laureana Rebordinos
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmelo Ruíz-Rejón
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
20
|
Hermida M, Robledo D, Díaz S, Costas D, Bruzos AL, Blanco A, Pardo BG, Martínez P. The first high-density genetic map of common cockle (Cerastoderma edule) reveals a major QTL controlling shell color variation. Sci Rep 2022; 12:16971. [PMID: 36216849 PMCID: PMC9551087 DOI: 10.1038/s41598-022-21214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
Shell color shows broad variation within mollusc species and despite information on the genetic pathways involved in shell construction and color has recently increased, more studies are needed to understand its genetic architecture. The common cockle (Cerastoderma edule) is a valuable species from ecological and commercial perspectives which shows important variation in shell color across Northeast Atlantic. In this study, we constructed a high-density genetic map, as a tool for screening common cockle genome, which was applied to ascertain the genetic basis of color variation in the species. The consensus genetic map comprised 19 linkage groups (LGs) in accordance with the cockle karyotype (2n = 38) and spanned 1073 cM, including 730 markers per LG and an inter-marker distance of 0.13 cM. Five full-sib families showing segregation for several color-associated traits were used for a genome-wide association study and a major QTL on chromosome 13 associated to different color-traits was detected. Mining on this genomic region revealed several candidate genes related to shell construction and color. A genomic region previously reported associated with divergent selection in cockle distribution overlapped with this QTL suggesting its putative role on adaptation.
Collapse
Affiliation(s)
- Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Seila Díaz
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, 36331, Vigo, Spain
| | - Alicia L Bruzos
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Mosaicism and Precision Medicine Group, Department of Genetics and Genomic Medicine, The Francis Crick Institute, University College of London, London, UK
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Belén G Pardo
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain.
| |
Collapse
|
21
|
Hattori RS, Kumazawa K, Nakamoto M, Nakano Y, Yamaguchi T, Kitano T, Yamamoto E, Fuji K, Sakamoto T. Y-specific amh allele, amhy, is the master sex-determining gene in Japanese flounder Paralichthys olivaceus. Front Genet 2022; 13:1007548. [PMID: 36186422 PMCID: PMC9523440 DOI: 10.3389/fgene.2022.1007548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Japanese flounder (Paralichthys olivaceus) is an important marine fish species of both fisheries and aquaculture in Northeast Asia. The commercial interest for all-female progenies due to several sex-related traits has prompted basic research on the mechanisms of sex determination in this species. By conducting a linkage analysis of the sex-determining locus, we initially identified 12 microsatellite markers linked to sex in 11 scaffolds, whose localization was restricted to a specific region of linkage group 9. Sequence analysis of this region identified 181 genes based on the UniProt database annotations. Among them, the amh gene was considered a potential candidate for sex determination because this gene is known to have taken over the role of sex determination in many teleosts. An in-depth sequence analysis of both the coding and non-coding regions of amh in XX and XY individuals detected nine SNPs linked with maleness. However, because these substitutions were synonymous, the upstream and downstream regions of amh were also investigated and a male-specific variant with deletions in the promoter region was detected. This truncated Y-specific amh variant was named amhy, and the amh shared by both sexes was named amhx. The association analysis using both females and males of the genotypic sex inferred by the presence/absence of amhy found complete association with phenotypic sex and genotype. Gene expression analysis in larvae derived from a single-pair progeny by quantitative real-time PCR detected amhy transcripts in the larval trunks between 20 and 100 days after hatching only in XY larvae. Localization of amhy by in situ hybridization was detected in presumptive Sertoli cells of XY gonads. Expression of amhx was almost undetectable in both XX and XY genotypes. Loss of Amh function by CRISPR-Cas9 induced male-to-female sex reversal, indicating that this gene was necessary for the masculinization of XY individuals. In conclusion, the complete linkage of amhy with males, its early expression in XY gonads before testicular differentiation, and the induction of sex reversal by loss-of-function mutation support the view that amhy is the sex-determining gene in this species.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Keiichiro Kumazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masatoshi Nakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuki Nakano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Toshiya Yamaguchi
- Nansei Field Station, National Research and Development Agency, Japan Fisheries Research and Education Agency, Mie, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Eiichi Yamamoto
- Tottori Prefectural Fisheries Experimental Station, Tottori, Japan
| | - Kanako Fuji
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takashi Sakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Takashi Sakamoto,
| |
Collapse
|
22
|
Identification of stress-related genes by co-expression network analysis based on the improved turbot genome. Sci Data 2022; 9:374. [PMID: 35768602 PMCID: PMC9243025 DOI: 10.1038/s41597-022-01458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Turbot (Scophthalmus maximus), commercially important flatfish species, is widely cultivated in Europe and China. With the continuous expansion of the intensive breeding scale, turbot is exposed to various stresses, which greatly impedes the healthy development of turbot industry. Here, we present an improved high-quality chromosome-scale genome assembly of turbot using a combination of PacBio long-read and Illumina short-read sequencing technologies. The genome assembly spans 538.22 Mb comprising 27 contigs with a contig N50 size of 25.76 Mb. Annotation of the genome assembly identified 104.45 Mb repetitive sequences, 22,442 protein-coding genes and 3,345 ncRNAs. Moreover, a total of 345 stress responsive candidate genes were identified by gene co-expression network analysis based on 14 published stress-related RNA-seq datasets consisting of 165 samples. Significantly improved genome assembly and stress-related candidate gene pool will provide valuable resources for further research on turbot functional genome and stress response mechanism, as well as theoretical support for the development of molecular breeding technology for resistant turbot varieties. Measurement(s) | whole genome sequencing | Technology Type(s) | PacBio long-read and Illumina short-read sequencing technologies |
Collapse
|
23
|
Zhu C, Liu H, Pan Z, Cheng L, Sun Y, Wang H, Chang G, Wu N, Ding H, Zhao H, Zhang L, Yu X. Insights into chromosomal evolution and sex determination of Pseudobagrus ussuriensis (Bagridae, Siluriformes) based on a chromosome-level genome. DNA Res 2022; 29:dsac028. [PMID: 35861402 PMCID: PMC9358014 DOI: 10.1093/dnares/dsac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
Pseudobagrus ussuriensis is an aquaculture catfish with significant sexual dimorphism. In this study, a chromosome-level genome with a size of 741.97 Mb was assembled for female P. ussuriensis. A total of 26 chromosome-level contigs covering 97.34% of the whole-genome assembly were obtained with an N50 of 28.53 Mb and an L50 of 11. A total of 24,075 protein-coding genes were identified, with 91.54% (22,039) genes being functionally annotated. Based on the genome assembly, four chromosome evolution clusters of catfishes were identified and the formation process of P. ussuriensis chromosomes was predicted. A total of 55 sex-related quantitative trait loci (QTLs) with a phenotypic variance explained value of 100% were located on chromosome 8 (chr08). The QTLs and other previously identified sex-specific markers were located in a sex-determining region of 16.83 Mb (from 6.90 to 23.73 Mb) on chr08, which was predicted as the X chromosome. The sex-determining region comprised 554 genes, with 135 of which being differently expressed between males and females/pseudofemales, and 16 candidate sex-determining genes were screened out. The results of this study provided a useful chromosome-level genome for genetic, genomic and evolutionary studies of P. ussuriensis, and also be useful for further studies on sex-determination mechanism analysis and sex-control breeding of this fish.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhengjun Pan
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Lei Cheng
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yanhong Sun
- Wuhan Aquaculture Science Research Institute, Wuhan 430207, China
| | - Hui Wang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Guoliang Chang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Nan Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Huaiyu Ding
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Haitao Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Lei Zhang
- Key Laboratory of Fishery Sustainable Development and Water Environment Protection of Huai’an City, Huai’an Sub Center of the Institute of Hydrobiology, Chinese Academy of Sciences, Huai’an 223002, China
| | - Xiangsheng Yu
- Huai’an Fisheries Technical Guidance Station, Huai’an 223001, China
| |
Collapse
|
24
|
Wang Y, Yang Y, Li Y, Chen M. Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. BMC Genomics 2022; 23:391. [PMID: 35606723 PMCID: PMC9128100 DOI: 10.1186/s12864-022-08632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sex determination mechanisms are complicated and diverse across taxonomic categories. Sea cucumber Apostichopus japonicus is a benthic echinoderm, which is the closest group of invertebrates to chordate, and important economic and ecologically aquaculture species in China. A. japonicus is dioecious, and no phenotypic differences between males and females can be detected before sexual maturation. Identification of sex determination locus will broaden knowledge about sex-determination mechanism in echinoderms, which allows for the identification of sex-linked markers and increases the efficiency of sea cucumber breeding industry. Results Here, we integrated assembly of a novel chromosome-level genome and resequencing of female and male populations to investigate the sex determination mechanisms of A. japonicus. We built a chromosome-level genome assembly AJH1.0 using Hi-C technology. The assembly AJH1.0 consists of 23 chromosomes ranging from 22.4 to 60.4 Mb. To identify the sex-determination locus of A. japonicus, we conducted genome-wide association study (GWAS) and analyses of distribution characteristics of sex-specific SNPs and fixation index FST. The GWAS analysis showed that multiple sex-associated loci were located on several chromosomes, including chromosome 4 (24.8%), followed by chromosome 9 (10.7%), chromosome 17 (10.4%), and chromosome 18 (14.1%). Furthermore, analyzing the homozygous and heterozygous genotypes of plenty of sex-specific SNPs in females and males confirmed that A. japonicus might have a XX/XY sex determination system. As a physical region of 10 Mb on chromosome 4 included the highest number of sex-specific SNPs and higher FST values, this region was considered as the candidate sex determination region (SDR) in A. japonicus. Conclusions In the present study, we integrated genome-wide association study and analyses of sex-specific variations to investigate sex determination mechanisms. This will bring novel insights into gene regulation during primitive gonadogenesis and differentiation and identification of master sex determination gene in sea cucumber. In the sea cucumber industry, investigation of molecular mechanisms of sex determination will be helpful for artificial fertilization and precise breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08632-3.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Yulong Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences (CAS), Qingdao, China
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
25
|
Jasonowicz AJ, Simeon A, Zahm M, Cabau C, Klopp C, Roques C, Iampietro C, Lluch J, Donnadieu C, Parrinello H, Drinan DP, Hauser L, Guiguen Y, Planas JV. Generation of a chromosome‐level genome assembly for Pacific halibut (
Hippoglossus stenolepis
) and characterization of its sex‐determining genomic region. Mol Ecol Resour 2022; 22:2685-2700. [PMID: 35569134 PMCID: PMC9541706 DOI: 10.1111/1755-0998.13641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
The Pacific halibut (Hippoglossus stenolepis) is a key species in the North Pacific Ocean and Bering Sea ecosystems, where it also supports important fisheries. However, the lack of genomic resources limits our understanding of evolutionary, environmental and anthropogenic forces affecting key life history characteristics of Pacific halibut and prevents the application of genomic tools in fisheries management and conservation efforts. In the present study, we report on the first generation of a high‐quality chromosome‐level assembly of the Pacific halibut genome, with an estimated size of 602 Mb, 24 chromosome‐length scaffolds that contain 99.8% of the assembly and a N50 scaffold length of 27.3 Mb. In the first application of this important resource, we conducted genome‐wide analyses of sex‐specific genetic variation by pool sequencing and characterized a potential sex‐determining region in chromosome 9 with a high density of female‐specific SNPs. Within this region, we identified the bmpr1ba gene as a potential candidate for master sex‐determining (MSD) gene. bmpr1ba is a member of the TGF‐β family that in teleosts has provided the largest number of MSD genes, including a paralogue of this gene in Atlantic herring. The genome assembly constitutes an essential resource for future studies on Pacific halibut population structure and dynamics, evolutionary history and responses to environmental and anthropogenic influences. Furthermore, the genomic location of the sex‐determining region in Pacific halibut has been identified and a putative candidate MSD gene has been proposed, providing further support for the rapid evolution of sex‐determining mechanisms in teleost fish.
Collapse
Affiliation(s)
| | - Anna Simeon
- International Pacific Halibut Commission Seattle, WA 98199 USA
- Present address: School of Aquatic and Fishery Science University of Washington Seattle WA
| | - Margot Zahm
- SIGENAE, Bioinfo Genotoul, UMIAT, INRAE Castanet‐Tolosan France
| | - Cédric Cabau
- SIGENAE, GenPhySE Université de Toulouse INRAE, ENVT, 31326 Castanet‐Tolosan France
| | | | - Céline Roques
- INRAE, GeT‐PlaGe, Genotoul, 31326 Castanet‐Tolosan France
| | | | - Jérôme Lluch
- INRAE, GeT‐PlaGe, Genotoul, 31326 Castanet‐Tolosan France
| | | | - Hugues Parrinello
- MGX‐Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM Montpellier France
| | - Daniel P. Drinan
- School of Aquatic and Fishery Science University of Washington Seattle, WA 98105 USA
| | - Lorenz Hauser
- School of Aquatic and Fishery Science University of Washington Seattle, WA 98105 USA
| | | | - Josep V. Planas
- International Pacific Halibut Commission Seattle, WA 98199 USA
| |
Collapse
|
26
|
Ramírez D, Rodríguez ME, Cross I, Arias-Pérez A, Merlo MA, Anaya M, Portela-Bens S, Martínez P, Robles F, Ruiz-Rejón C, Rebordinos L. Integration of Maps Enables a Cytogenomics Analysis of the Complete Karyotype in Solea senegalensis. Int J Mol Sci 2022; 23:ijms23105353. [PMID: 35628170 PMCID: PMC9140517 DOI: 10.3390/ijms23105353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
The Pleuronectiformes order, which includes several commercially-important species, has undergone extensive chromosome evolution. One of these species is Solea senegalensis, a flatfish with 2n = 42 chromosomes. In this study, a cytogenomics approach and integration with previous maps was applied to characterize the karyotype of the species. Synteny analysis of S. senegalensis was carried out using two flatfish as a reference: Cynoglossus semilaevis and Scophthalmus maximus. Most S. senegalensis chromosomes (or chromosome arms for metacentrics and submetacentrics) showed a one-to-one macrosyntenic pattern with the other two species. In addition, we studied how repetitive sequences could have played a role in the evolution of S. senegalensis bi-armed (3, and 5–9) and acrocentric (11, 12 and 16) chromosomes, which showed the highest rearrangements compared with the reference species. A higher abundance of TEs (Transposable Elements) and other repeated elements was observed adjacent to telomeric regions on chromosomes 3, 7, 9 and 16. However, on chromosome 11, a greater abundance of DNA transposons was detected in interstitial BACs. This chromosome is syntenic with several chromosomes of the other two flatfish species, suggesting rearrangements during its evolution. A similar situation was also found on chromosome 16 (for microsatellites and low complexity sequences), but not for TEs (retroelements and DNA transposons). These differences in the distribution and abundance of repetitive elements in chromosomes that have undergone remodeling processes during the course of evolution also suggest a possible role for simple repeat sequences in rearranged regions.
Collapse
Affiliation(s)
- Daniel Ramírez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Alberto Arias-Pérez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Manuel Alejandro Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Marco Anaya
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidad de Santiago de Compostela, 27002 Lugo, Spain;
| | - Francisca Robles
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; (F.R.); (C.R.-R.)
| | - Carmelo Ruiz-Rejón
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; (F.R.); (C.R.-R.)
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
- Correspondence: ; Tel.: +34-956-016181
| |
Collapse
|
27
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ferchaud AL, Mérot C, Normandeau E, Ragoussis J, Babin C, Djambazian H, Bérubé P, Audet C, Treble M, Walkusz W, Bernatchez L. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3-GENES GENOMES GENETICS 2021; 12:6428537. [PMID: 34791178 DOI: 10.1093/g3journal/jkab376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022]
Abstract
Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Charles Babin
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Haig Djambazian
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Pierre Bérubé
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Margaret Treble
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Wocjciech Walkusz
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
29
|
Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci Rep 2021; 11:21920. [PMID: 34753974 PMCID: PMC8578632 DOI: 10.1038/s41598-021-01062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Temperature tolerance is an important trait from both an economic and evolutionary perspective in fish. Because of difficulties with measurements, genome-wide selection using quantitative trait loci (QTLs) affecting Upper temperature tolerance may be an alternative for genetic improvement. Turbot Scophthalmus maximus (L.) is a cold-water marine fish with high economic value in Europe and Asia. The genetic bases of upper temperature tolerance (UTTs) traits have been rarely studied. In this study, we constructed a genetic linkage map of turbot using simple sequence repeats (SSRs) and single nucleotide polymorphism (SNP) markers. A total of 190 SSR and 8,123 SNP were assigned to 22 linkage groups (LGs) of a consensus map, which spanned 3,648.29 cM of the turbot genome, with an average interval of 0.44 cM. Moreover, we re-anchored genome sequences, allowing 93.8% physical sequences to be clustered into 22 turbot pseudo-chromosomes. A high synteny was observed between two assemblies from the literature. QTL mapping and validation analysis identified thirteen QLTs which are major effect QTLs, of these, 206 linked SNP loci, and two linked SSR loci were considered to have significant QTL effects. Association analysis for UTTs with 129 QTL markers was performed for different families, results showed that eight SNP loci were significantly correlated with UTT, which markers could be helpful in selecting thermal tolerant breeds of turbot. 1,363 gene sequences were genomically annotated, and 26 QTL markers were annotated. We believe these genes could be valuable candidates affecting high temperatures, providing valuable genomic resources for the study of genetic mechanisms regulating thermal stress. Similarly, they may be used in marker-assisted selection (MAS) programs to improve turbot performance.
Collapse
|