1
|
Ponsuksili S, Hadlich F, Li S, Trakooljul N, Reyer H, Oster M, Abitew YA, Sommerfeld V, Rodehutscord M, Wimmers K. DNA methylation dynamics in the small intestine of egg-selected laying hens along egg production stages. Physiol Genomics 2025; 57:125-139. [PMID: 39869094 DOI: 10.1152/physiolgenomics.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann Selected Leghorn-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics. Our sampling encompassed key developmental stages: the pullet stage (10 and 16 wk old), peak production (24 and 30 wk old), and later stage (60 wk old) (n = 99; 10 per group), allowing us to elucidate the temporal dynamics of epigenetic regulation. Our findings highlight a crucial window of epigenetic modulation during the prelaying period, characterized by stage-specific methylation alterations and the involvement of predicted transcription factor motifs within methylated regions. This observation was consistent with the expression patterns of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B. In addition, a higher methylation level was observed in specific loci or regions in the LSL compared with the LB strain. Notably, we uncover strain-specific differences in methylation levels, particularly pronounced in genomic regions associated with intestinal integrity, inflammation, and energy homeostasis. Our research contributes to the multidisciplinary framework of epigenetics and egg-laying performance, offering valuable implications for poultry production and welfare.NEW & NOTEWORTHY Our study reveals key methylation changes in the jejunum mucosa of laying hens across developmental stages and between strains, with implications for gut health, immune function, and egg production. These findings highlight a crucial role of epigenetic regulation in optimizing performance.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shuaichen Li
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Yang H, Li M, Zhang B, Zhang J, Shi Y, Ma T, Sun Y. CircGRB14 Inhibits Proliferation and Promotes Apoptosis of Granulosa Cells in Chicken Follicle Selection Through Sponging miR-12264-3p and miR-6660-3p. Int J Mol Sci 2025; 26:2214. [PMID: 40076832 PMCID: PMC11901040 DOI: 10.3390/ijms26052214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The development and selection of ovarian follicles are essential for continuous egg production in chickens. Non-coding RNAs, particularly circular RNAs (circRNAs), play a critical regulatory role in follicle selection, a process heavily involving granulosa cells (GCs). In this study, we analyzed circRNA expression profiles in small yellow follicles (SYFs) and large yellow follicles (LYFs) of Taihang chickens using RNA sequencing. We identified 14,586 circRNAs, with 57 showing differential expression (DE-circRNAs) between SYFs and LYFs. Functional enrichment analysis revealed that these DE-circRNAs are involved in key biological processes, including signal transduction, cell membrane formation, and nuclear enzymatic regulation. We focused on circGRB14, a circRNA derived from the growth factor receptor-bound protein 14 (GRB14) gene, as a potential regulator of follicle selection. Using qPCR, CCK-8 proliferation assays, and Annexin V/PI apoptosis analysis, we demonstrated that circGRB14 inhibits GC proliferation and promotes apoptosis. In contrast, miR-12264-3p and miR-6660-3p, validated as direct targets of circGRB14 via Dual-Luciferase Reporter assays, exhibited opposing effects by promoting GC proliferation and inhibiting apoptosis. These findings highlight the circGRB14-miR-12264-3p/miR-6660-3p axis as a key regulatory mechanism in GC dynamics during follicle selection. This study provides novel insights into the functional interplay between circRNAs and miRNAs in avian follicle development, offering potential targets for improving egg production in poultry.
Collapse
Affiliation(s)
- Huanqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Mengxiao Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Beibei Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Jinming Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Tenghe Ma
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Qasir H, Reyer H, Oster M, Ponsuksili S, Trakooljul N, Sommerfeld V, Rodehutscord M, Wimmers K. Effects of a transient lack of dietary mineral phosphorus on renal gene expression and plasma metabolites in two high-yielding laying hen strains. BMC Genomics 2025; 26:129. [PMID: 39930376 PMCID: PMC11812262 DOI: 10.1186/s12864-025-11294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND There is an emerging body of evidence that current poultry feed is formulated in excess for phosphorus (P), which results in unnecessarily high P excretions. Sustainable concepts for agricultural P flows should trigger animal-intrinsic mechanisms for efficient P utilization. In the current study, Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens were fed either a high P diet (P+) with 1 g/kg mineral P supplement or a low P diet (P-) with 0 g/kg mineral P supplement for a period of 4 weeks prior to sampling. Before and after onset of laying, i.e., at 19 and 24 weeks of life, kidney and plasma samples were collected to investigate the endogenous P utilization in response to restricted dietary P, laying hen strain, and sexual maturation. RESULTS Plasma analyses of minerals and metabolites confirmed the response to a low P diet, which was characterized by a significant reduction in plasma P levels at week 19 in both strains. The plasma calcium (Ca) levels were tightly regulated throughout the entire experimental period. Notably, there was a numerical trend of increased plasma calcitriol levels in P- fed birds of both strains compared to the P + group, which might have mediated a substantial role regarding the adaptive responses to low P supply. At week 19, RNA sequencing of kidney identified 1,114 and 556 differentially expressed genes (DEGs) unique to the LB and LSL strains, respectively. The number of DEGs declined with increasing maturity of the hens culminating in 90 and 146 DEGs for LB and LSL strains at week 24. Analyses revealed an enrichment of pathways related to energy metabolism and cell cycle, particularly at week 19 in both strains. The diet-specific expression of target genes involved in P homeostasis highlighted transcripts related to active (SLC34A1, SLC20A2) and passive mineral transport (CLDN14, CLDN16), Ca utilization (STC1, CALB1), and acid-base balance (CA2, SLC4A1). CONCLUSIONS Results suggest that both laying hen strains adapted to the lack of mineral P supplements and achieved a physiological Ca: P-ratio in body compartments through endogenous regulation as evidenced via the endocrine profile.
Collapse
Affiliation(s)
- Hiba Qasir
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Faculty of Agricultural and Environmental Sciences, University Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|
4
|
Abitew YA, Reyer H, Hadlich F, Oster M, Trakooljul N, Sommerfeld V, Rodehutscord M, Wimmers K, Ponsuksili S. Transcriptional responses to diets without mineral phosphorus supplementation in the jejunum of two high-yielding laying hen strains. Poult Sci 2024; 103:104484. [PMID: 39515113 PMCID: PMC11584914 DOI: 10.1016/j.psj.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphorus (P) is an essential mineral for all forms of life including laying hens, playing a crucial role in growth and efficient egg production. Recent studies suggest that current P recommendations might exceed the physiological demand, leading to unnecessarily high P excretions. This study on Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens (n=80; 10 replicates per strain, production period, and dietary group) investigates transcriptional changes in the jejunum, a critical intestinal segment for mineral absorption, in response to a diet either without (P-) or with (P+) a mineral supplement from monocalcium phosphate, administered over a 4-week period during the transition (15-19 weeks) or onset of laying (20-24 weeks). DESeq2 analysis of RNA sequencing data revealed that most differentially expressed genes (DEGs) varied between strains and age groups, with less pronounced effects from dietary mineral P content. The 19-week-old LB hens showed a stronger response to dietary mineral P removal, with transcripts affiliated with increased adaptation of the metabolism and decreased immune pathway activation. The identified pathways such as folate biosynthesis and p53 signaling, potentially link altered energy and amino acid metabolism (2-oxocarboxylic acid and arginine). Interestingly, genes involved in calcium transport (CALB1) and cellular signaling (PRKCA, STEAP4) along with tight junctions (CLDN2) were affected by complete removal of mineral P supplements, suggesting a promoted intestinal mineral uptake. Transcriptional regulation in the jejunum in response to low dietary mineral content is strain-specific when the laying phase begins, which may contribute to a physiological Ca:P ratio.
Collapse
Affiliation(s)
- Yosef A Abitew
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; University of Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | | |
Collapse
|
5
|
Iqbal MA, Hadlich F, Reyer H, Oster M, Trakooljul N, Murani E, Perdomo‐Sabogal A, Wimmers K, Ponsuksili S. RNA-Seq-based discovery of genetic variants and allele-specific expression of two layer lines and broiler chicken. Evol Appl 2023; 16:1135-1153. [PMID: 37360029 PMCID: PMC10286233 DOI: 10.1111/eva.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the selective breeding of broilers and layers have made poultry production one of the fastest-growing industries. In this study, a transcriptome variant calling approach from RNA-seq data was used to determine population diversity between broilers and layers. In total, 200 individuals were analyzed from three different chicken populations (Lohmann Brown (LB), n = 90), Lohmann Selected Leghorn (LSL, n = 89), and Broiler (BR, n = 21). The raw RNA-sequencing reads were pre-processed, quality control checked, mapped to the reference genome, and made compatible with Genome Analysis ToolKit for variant detection. Subsequently, pairwise fixation index (F ST) analysis was performed between broilers and layers. Numerous candidate genes were identified, that were associated with growth, development, metabolism, immunity, and other economically significant traits. Finally, allele-specific expression (ASE) analysis was performed in the gut mucosa of LB and LSL strains at 10, 16, 24, 30, and 60 weeks of age. At different ages, the two-layer strains showed significantly different allele-specific expressions in the gut mucosa, and changes in allelic imbalance were observed across the entire lifespan. Most ASE genes are involved in energy metabolism, including sirtuin signaling pathways, oxidative phosphorylation, and mitochondrial dysfunction. A high number of ASE genes were found during the peak of laying, which were particularly enriched in cholesterol biosynthesis. These findings indicate that genetic architecture as well as biological processes driving particular demands relate to metabolic and nutritional requirements during the laying period shape allelic heterogeneity. These processes are considerably affected by breeding and management, whereby elucidating allele-specific gene regulation is an essential step towards deciphering the genotype to phenotype map or functional diversity between the chicken populations. Additionally, we observed that several genes showing significant allelic imbalance also colocalized with the top 1% of genes identified by the FST approach, suggesting a fixation of genes in cis-regulatory elements.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Henry Reyer
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Michael Oster
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Nares Trakooljul
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Eduard Murani
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
- Faculty of Agricultural and Environmental SciencesUniversity RostockRostockGermany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| |
Collapse
|
6
|
Ponsuksili S, Hadlich F, Perdomo-Sabogal A, Reyer H, Oster M, Trakooljul N, Iqbal MA, Schmucker S, Stefanski V, Roth C, Silva AC, Huber K, Sommerfeld V, Rodehutscord M, Wimmers K. The dynamics of molecular, immune and physiological features of the host and the gut microbiome, and their interactions before and after onset of laying in two hen strains. Poult Sci 2022; 102:102256. [PMID: 36335740 PMCID: PMC9640326 DOI: 10.1016/j.psj.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Aggregation of data, including deep sequencing of mRNA and miRNA data in jejunum mucosa, abundance of immune cells, metabolites, or hormones in blood, composition of microbiota in digesta and duodenal mucosa, and production traits collected along the lifespan, provides a comprehensive picture of lifelong adaptation processes. Here, respective data from two laying hen strains (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) collected at 10, 16, 24, 30, and 60 wk of age were analyzed. Data integration revealed strain- and stage-specific biosignatures, including elements indicative of molecular pathways discriminating the strains. Although the strains performed the same, they differed in the activity of immunological and metabolic functions and pathways and showed specific gut-microbiota-interactions in different production periods. The study shows that both strains employ different strategies to acquire and maintain their capabilities under high performance conditions, especially during the transition phase. Furthermore, the study demonstrates the capacity of such integrative analyses to elucidate molecular pathways that reflect functional biodiversity. The bioinformatic reduction of the multidimensional data provides good guidance for further manual review of the data.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany,Corresponding author:
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany
| | - Sonja Schmucker
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| | - Volker Stefanski
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Christoph Roth
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | | | - Korinna Huber
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 Dummerstorf, Germany,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| |
Collapse
|
7
|
The impact of dietary calcium and phosphorus on mitochondrial-linked gene expression in five tissues of laying hens. PLoS One 2022; 17:e0270550. [PMID: 35749523 PMCID: PMC9231785 DOI: 10.1371/journal.pone.0270550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria and the energy metabolism are linked to both, the availability of Ca and P to provide the eukaryotic cell with energy. Both minerals are commonly used supplements in the feed of laying hens but little is known about the relationship between the feed content, energy metabolism and genetic background. In this study, we provide a large-scaled gene expression analysis of 31 mitochondrial and nuclear encoded genes in 80 laying hens in the context of dietary P and Ca concentrations. The setup included five tissues and gene expression was analysed under four different diets of recommended and reduced Ca and P concentrations. Our study shows, that mitochondrial gene expression is reacting to a reduction in P and that an imbalance of the nutrients has a higher impact than a combined reduction. The results suggest, that both strains (Lohmann Brown and Lohmann Selected Leghorn) react in a similar way to the changes and that a reduction of both nutrients might be possible without crucial influence on the animals’ health or gene expression.
Collapse
|
8
|
Iqbal MA, Reyer H, Oster M, Hadlich F, Trakooljul N, Perdomo-Sabogal A, Schmucker S, Stefanski V, Roth C, Camarinha Silva A, Huber K, Sommerfeld V, Rodehutscord M, Wimmers K, Ponsuksili S. Multi-Omics Reveals Different Strategies in the Immune and Metabolic Systems of High-Yielding Strains of Laying Hens. Front Genet 2022; 13:858232. [PMID: 35432452 PMCID: PMC9010826 DOI: 10.3389/fgene.2022.858232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) are two commercially important laying hen strains due to their high egg production and excellent commercial suitability. The present study integrated multiple data sets along the genotype-phenotype map to better understand how the genetic background of the two strains influences their molecular pathways. In total, 71 individuals were analyzed (LB, n = 36; LSL, n = 35). Data sets include gut miRNA and mRNA transcriptome data, microbiota composition, immune cells, inositol phosphate metabolites, minerals, and hormones from different organs of the two hen strains. All complex data sets were pre-processed, normalized, and compatible with the mixOmics platform. The most discriminant features between two laying strains included 20 miRNAs, 20 mRNAs, 16 immune cells, 10 microbes, 11 phenotypic traits, and 16 metabolites. The expression of specific miRNAs and the abundance of immune cell types were related to the enrichment of immune pathways in the LSL strain. In contrast, more microbial taxa specific to the LB strain were identified, and the abundance of certain microbes strongly correlated with host gut transcripts enriched in immunological and metabolic pathways. Our findings indicate that both strains employ distinct inherent strategies to acquire and maintain their immune and metabolic systems under high-performance conditions. In addition, the study provides a new perspective on a view of the functional biodiversity that emerges during strain selection and contributes to the understanding of the role of host–gut interaction, including immune phenotype, microbiota, gut transcriptome, and metabolome.
Collapse
Affiliation(s)
- Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Sonja Schmucker
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Volker Stefanski
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Christoph Roth
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Korinna Huber
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- University Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- *Correspondence: Siriluck Ponsuksili,
| |
Collapse
|
9
|
Jejunal transcriptomic profiling of two layer strains throughout the entire production period. Sci Rep 2021; 11:20086. [PMID: 34635722 PMCID: PMC8505660 DOI: 10.1038/s41598-021-99566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
The jejunum plays crucial roles for the digestion and absorption of nutrients and minerals and for barrier functions that are essential for a healthy, productive life cycle of farm animals, including laying hens. Accordingly, knowledge of the molecular pathways that emerge in the intestine during development, and particularly at the beginning of laying activity, will help to derive strategies for improving nutrient efficiency in laying hens. In this study, jejunal samples were obtained from two high-yielding layer strains at five developmental stages (weeks 10, 16, 24, 30 and 60 of life) for RNA-sequencing, alongside the profiling of blood plasma parameters to approximate the dynamics of mineral homeostasis. The results reflected a marked distinction between the pre-laying and laying phase as inferred from levels of parathyroid hormone, triiodothyronine, estradiol, vitamin D, and calcium. Moreover, the expression patterns of the intestinal mucosa responded directly to the changing metabolic and nutritional profiles at the beginning of the laying phase in maturing high-yielding strains of laying hens. These comprise signaling events namely RANK/RANKL signaling and cellular senescence. Taken together, the timing of sexual maturity of laying hens demands closer examination to unravel metabolic requirements and associated endogenous mechanisms.
Collapse
|