1
|
Maravilha RM, Fernandes T, Barros PM, Leitão ST, Rubiales D, Vaz Patto MC, Santos C. A dual transcriptome analysis reveals accession-specific resistance responses in Lathyrus sativus against Erysiphe pisi. FRONTIERS IN PLANT SCIENCE 2025; 16:1542926. [PMID: 40110352 PMCID: PMC11921622 DOI: 10.3389/fpls.2025.1542926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Lathyrus sativus (grass pea) is a valuable crop for sustainable agriculture, offering dietary benefits and desirable agronomic traits. However, its yield stability is limited by diseases such as powdery mildew caused by Erysiphe pisi. Increasing fungal resistance to pesticides and environmental concerns demand the development of resistant crop varieties. To identify key defense mechanisms and effector genes involved in the Lathyrus sativus-Erysiphe pisi interaction we analyzed four L. sativus accessions exhibiting varying resistance to E. pisi (resistant, partially resistant, partially susceptible, and susceptible) using a dual RNA-Seq experiment across different time points. We observed a host biphasic response, characterized by an initial burst of gene expression, followed by a quiescent phase, and a subsequent wave of intense gene expression. Common L. sativus defense mechanisms included antifungal protein expression, cell wall reinforcement, and reactive oxygen species-mediated defense. These defenses involved respectively Bowman-Birk type proteinase inhibitors, peptidyl-prolyl cis-trans isomerases and mannitol dehydrogenases. The resistant accession specifically activated early reinforcement of structural barriers associated with lignin biosynthesis and the phenylpropanoid pathway, along with sustained chemical defenses (e.g. eugenol synthase 1), epigenetic regulation, and oxidative stress responses thorough peroxidases and heat shock proteins. The partial resistant accession exhibited a front-loaded defense response at early infection stages. Contrastingly, the partially susceptible accession exhibited a weaker baseline defense, with a slower and less robust response targeting pathogen infection. We identified potential E. pisi effectors, including genes involved in cell wall hydrolysis (e.g. mannosidase DCW1), nutrient acquisition (e.g. secreted alpha-glucosidase), and virulence (e.g. SnodProt1), with a higher diversity of effectors identified in the susceptible accession. In conclusion, this study identifies novel targets such as NLRs and effectors, antifungal proteins and genes related to cell wall reinforcement, within the complex Lathyrus sativus-Erysiphe pisi interaction to support future breeding programs aimed at enhancing resistance to E. pisi in L. sativus and related species.
Collapse
Affiliation(s)
- Rita M Maravilha
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Telma Fernandes
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Barros
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana T Leitão
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diego Rubiales
- Resistlab, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carmen Santos
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Commey L, Mechref Y, Burow M, Mendu V. Identification and Characterization of Peanut Seed Coat Secondary Metabolites Inhibiting Aspergillus flavus Growth and Reducing Aflatoxin Contamination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23844-23858. [PMID: 39412821 PMCID: PMC11528429 DOI: 10.1021/acs.jafc.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
The peanut seed coat acts as a physical and biochemical barrier against Aspergillus flavus infection; however, the nature of the inhibitory chemicals in the peanut seed coat in general is not known. This study identified and characterized peanut seed coat metabolites that inhibit A. flavus growth and aflatoxin contamination. Selected peanut accessions grown under well-watered and water-deficit conditions were assayed for A. flavus resistance, and seed coats were metabolically profiled using liquid chromatography mass spectrometry. Kyoto Encyclopedia of Genes and Genome phenylpropanoid pathway reference analysis resulted in the identification of several seed coat metabolic compounds, and ten selected metabolites were tested for inhibition of A. flavus growth and aflatoxin contamination. Radial growth bioassay demonstrated that 2,5-dihydroxybenzaldehyde inhibited A. flavus growth (98.7%) and reduced the aflatoxin contamination estimate from 994 to 1 μg/kg. Scanning electron micrographs showed distorted hyphae and conidiophores in cultures of 2,5-dihydroxybenzaldehyde-treated A. flavus, indicating its potential use for field application as well as seed coat metabolic engineering.
Collapse
Affiliation(s)
- Leslie Commey
- Department
of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Mark Burow
- Department
of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, United States
- Texas
A&M AgriLife Research, Lubbock, Texas 79403, United States
| | - Venugopal Mendu
- Department
of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, United States
- Department
of Agronomy, Agribusiness & Environmental Sciences, Texas A&M University, Kingsville, Texas 78363, United States
| |
Collapse
|
3
|
Geng Q, Hu J, Xu P, Sun T, Qiu H, Wang S, Song F, Shen L, Li Y, Liu M, Peng X, Tian J, Yang K. The Autophagy-Related Protein ATG8 Orchestrates Asexual Development and AFB1 Biosynthesis in Aspergillus flavus. J Fungi (Basel) 2024; 10:349. [PMID: 38786704 PMCID: PMC11122632 DOI: 10.3390/jof10050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy, a conserved cellular recycling process, plays a crucial role in maintaining homeostasis under stress conditions. It also regulates the development and virulence of numerous filamentous fungi. In this study, we investigated the specific function of ATG8, a reliable autophagic marker, in the opportunistic pathogen Aspergillus flavus. To investigate the role of atg8 in A. flavus, the deletion and complemented mutants of atg8 were generated according to the homologous recombination principle. Deletion of atg8 showed a significant decrease in conidiation, spore germination, and sclerotia formation compared to the WT and atg8C strains. Additionally, aflatoxin production was found severely impaired in the ∆atg8 mutant. The stress assays demonstrated that ATG8 was important for A. flavus response to oxidative stress. The fluorescence microscopy showed increased levels of reactive oxygen species in the ∆atg8 mutant cells, and the transcriptional result also indicated that genes related to the antioxidant system were significantly reduced in the ∆atg8 mutant. We further found that ATG8 participated in regulating the pathogenicity of A. flavus on crop seeds. These results revealed the biological role of ATG8 in A. flavus, which might provide a potential target for the control of A. flavus and AFB1 biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xue Peng
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| | - Jun Tian
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| | - Kunlong Yang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| |
Collapse
|
4
|
Feng L, Wei S, Li Y. Thaumatin-like Proteins in Legumes: Functions and Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1124. [PMID: 38674533 PMCID: PMC11055134 DOI: 10.3390/plants13081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent advances related to the classification, structure, and host resistance of legume TLPs to biotic and abiotic stresses; analyzes and predicts possible protein-protein interactions; and presents their roles in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs provide them with broad prospects for plant breeding and other uses. Searching for legume TLP genetic resources and functional genes, and further research on their precise function mechanisms are necessary.
Collapse
Affiliation(s)
- Lanlan Feng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shaowei Wei
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yin Li
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
5
|
Wang Y, Liu D, Yin H, Wang H, Cao C, Wang J, Zheng J, Liu J. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to Aspergillus flavus Infection. Toxins (Basel) 2023; 15:414. [PMID: 37505683 PMCID: PMC10467056 DOI: 10.3390/toxins15070414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Peanut seeds are susceptible to Aspergillus flavus infection, which has a severe impact on the peanut industry and human health. However, the molecular mechanism underlying this defense remains poorly understood. The aim of this study was to analyze the changes in differentially expressed genes (DEGs) and differential metabolites during A. flavus infection between Zhonghua 6 and Yuanza 9102 by transcriptomic and metabolomic analysis. A total of 5768 DEGs were detected in the transcriptomic study. Further functional analysis showed that some DEGs were significantly enriched in pectinase catabolism, hydrogen peroxide decomposition and cell wall tissues of resistant varieties at the early stage of infection, while these genes were differentially enriched in the middle and late stages of infection in the nonresponsive variety Yuanza 9102. Some DEGs, such as those encoding transcription factors, disease course-related proteins, peroxidase (POD), chitinase and phenylalanine ammonialyase (PAL), were highly expressed in the infection stage. Metabolomic analysis yielded 349 differential metabolites. Resveratrol, cinnamic acid, coumaric acid, ferulic acid in phenylalanine metabolism and 13S-HPODE in the linolenic acid metabolism pathway play major and active roles in peanut resistance to A. flavus. Combined analysis of the differential metabolites and DEGs showed that they were mainly enriched in phenylpropane metabolism and the linolenic acid metabolism pathway. Transcriptomic and metabolomic analyses further confirmed that peanuts infected with A. flavus activates various defense mechanisms, and the response to A. flavus is more rapid in resistant materials. These results can be used to further elucidate the molecular mechanism of peanut resistance to A. flavus infection and provide directions for early detection of infection and for breeding peanut varieties resistant to aflatoxin contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.W.); (D.L.); (H.Y.); (H.W.); (C.C.); (J.W.); (J.Z.)
| |
Collapse
|
6
|
Huang R, Li H, Gao C, Yu W, Zhang S. Advances in omics research on peanut response to biotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1101994. [PMID: 37284721 PMCID: PMC10239885 DOI: 10.3389/fpls.2023.1101994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
Peanut growth, development, and eventual production are constrained by biotic and abiotic stresses resulting in serious economic losses. To understand the response and tolerance mechanism of peanut to biotic and abiotic stresses, high-throughput Omics approaches have been applied in peanut research. Integrated Omics approaches are essential for elucidating the temporal and spatial changes that occur in peanut facing different stresses. The integration of functional genomics with other Omics highlights the relationships between peanut genomes and phenotypes under specific stress conditions. In this review, we focus on research on peanut biotic stresses. Here we review the primary types of biotic stresses that threaten sustainable peanut production, the multi-Omics technologies for peanut research and breeding, and the recent advances in various peanut Omics under biotic stresses, including genomics, transcriptomics, proteomics, metabolomics, miRNAomics, epigenomics and phenomics, for identification of biotic stress-related genes, proteins, metabolites and their networks as well as the development of potential traits. We also discuss the challenges, opportunities, and future directions for peanut Omics under biotic stresses, aiming sustainable food production. The Omics knowledge is instrumental for improving peanut tolerance to cope with various biotic stresses and for meeting the food demands of the exponentially growing global population.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Caiji Gao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
- China Good Crop Company (Shenzhen) Limited, Shenzhen, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Liu J, Yang G, Gao Y, Li X, Long Y, Wei S, Zhao Y, Sun S, Gao S. Transcriptome analysis reveals the mechanisms of hepatic injury caused by long-term environmental exposure to atrazine in juvenile common carp (Cyprinus carpio L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36545-36556. [PMID: 36564684 DOI: 10.1007/s11356-022-24933-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is the second most commonly used herbicide worldwide, resulting in the pollution of water bodies and affecting the economic benefits of aquaculture. ATZ is known to cause liver damage in the common carp, Cyprinus carpio L., one of the most widely cultivated fish in China, but the underlying mechanisms are poorly understood. In this study, juvenile common carp Cyprinus carpio L. were exposed to three different environmental levels (0.4, 0.8, and 1.2 μg/L) of ATZ for 12 weeks and changes in the liver transcriptomes between the high-dose group and the control group were analyzed. The data showed that different levels of ATZ exposure caused hepatotoxicity in juvenile carp, shown by biochemical parameters and histopathological changes. Comparative transcriptomics showed that high-dose ATZ exposure led to alterations in the expression of various lipid metabolism-related gene changes, including genes associated with metabolic pathways, fatty acid metabolism, and fatty acid elongation. Furthermore, a connection network analysis of the top 100 differentially expressed genes (DEGs) showed a variety of associations between high-dose ATZ-induced liver damage and the principal DEGs, indicating the complexity of hepatotoxicity induced by ATZ. In conclusion, the molecular mechanisms underlying ATZ-triggered hepatotoxicity in juvenile carp are primarily related to impaired lipid metabolism.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, 271000, Shandong Province, China
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an City, 271000, Shandong Province, China
| | - Yanxia Gao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China.
| | - Xinran Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Yuting Long
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Shuling Wei
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Yuxin Zhao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an City, 271016, Shandong Province, China
| | - Shanshan Sun
- Tai'an City Central Hospital, 29 Longtan Road, Tai'an City, 271000, Shandong Province, China
| | - Shujuan Gao
- Daiyue District Service Center of Animal Husbandry and Veterinary Business Development, 379 Leigu Street, Tai'an City, 271000, Shandong Province, China
| |
Collapse
|
8
|
Kumar A, Kanak KR, Arunachalam A, Dass RS, Lakshmi PTV. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize ( Zea mays L.) silks infected by multiple fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:985396. [PMID: 36388593 PMCID: PMC9647128 DOI: 10.3389/fpls.2022.985396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays L.) is the third most popular Poaceae crop after wheat and rice and used in feed and pharmaceutical sectors. The maize silk contains bioactive components explored by traditional Chinese herbal medicine for various pharmacological activities. However, Fusarium graminearum, Fusarium verticillioides, Trichoderma atroviride, and Ustilago maydis can infect the maize, produce mycotoxins, hamper the quantity and quality of silk production, and further harm the primary consumer's health. However, the defense mechanism is not fully understood in multiple fungal infections in the silk of Z. mays. In this study, we applied bioinformatics approaches to use the publicly available transcriptome data of Z. mays silk affected by multiple fungal flora to identify core genes involved in combatting disease response. Differentially expressed genes (DEGs) were identified among intra- and inter-transcriptome data sets of control versus infected Z. mays silks. Upon further comparison between up- and downregulated genes within the control of datasets, 4,519 upregulated and 5,125 downregulated genes were found. The DEGs have been compared with genes in the modules of weighted gene co-expression network analysis to relevant specific traits towards identifying core genes. The expression pattern of transcription factors, carbohydrate-active enzymes (CAZyme), and resistance genes was analyzed. The present investigation is supportive of our findings that the gene ontology, immunity stimulus, and resistance genes are upregulated, but physical and metabolic processes such as cell wall organizations and pectin synthesis were downregulated respectively. Our results are indicative that terpene synthase TPS6 and TPS11 are involved in the defense mechanism against fungal infections in maize silk.
Collapse
Affiliation(s)
- Amrendra Kumar
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Arunachalam
- Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - P. T. V. Lakshmi
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
9
|
Chen CZ, Li P, Liu L, Li ZH. Transcriptomic and proteomic analysis of Chinese rare minnow (Gobiocypris rarus) larvae in response to acute waterborne cadmium or mercury stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106134. [PMID: 35286993 DOI: 10.1016/j.aquatox.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, Chinese rare minnow (Gobiocypris rarus) larvae were exposed to the control group, Cd concentrations (0.5 and 2.5 mg/L), and Hg concentrations (0.1 and 0.3 mg/L) for 96 h. Transcriptome analysis showed that 816 and 1599 significantly differentially expressed genes (DEGs) were identified in response to 2.5 mg/L Cd2+ and 0.3 mg/L Hg2+, respectively. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses after Cd exposure, such as antigen processing and presentation, phagosome, apoptosis, and lysosome. Similarly, functional enrichment analysis showed that many pathways were mostly involved in metabolism after Hg exposure, such as glutathione metabolism and starch and sucrose metabolism. Results of two-dimensional electrophoresis (2-DE) showed that the abundance of 10 protein spots was significantly altered in the Cd2+ treatments. The proteomic analysis demonstrated that Cd toxicity might impair cytoskeletal and cell motility-related protein activity in the liver of G. rarus. Similarly, the abundance of 24 protein spots was significantly altered in the Hg2+ treatments. Hg toxicity regulates the expression of proteins belonging to several functional categories, including cytoskeleton, oxidative stress, digestive system, and energy metabolism. This study provides valuable relevant insight into the molecular mechanisms in response to Cd or Hg toxicity in aquatic organisms and will help screen for potential biomarkers to respond to Cd and Hg pollutants.
Collapse
Affiliation(s)
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|