1
|
López-Solano A, Doadrio I, Nester TL, Perea S. De novo genome hybrid assembly and annotation of the endangered and euryhaline fish Aphanius iberus (Valenciennes, 1846) with identification of genes potentially involved in salinity adaptation. BMC Genomics 2025; 26:136. [PMID: 39939939 PMCID: PMC11817801 DOI: 10.1186/s12864-025-11327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The sequencing of non-model species has increased exponentially in recent years, largely due to the advent of novel sequencing technologies. In this study, we construct the Reference Genome of the Spanish toothcarp (Aphanius iberus (Valenciennes, 1846)), a renowned euryhaline fish species. This species is native to the marshes along the Mediterranean coast of Spain and has been threatened with extinction as a result of habitat modification caused by urbanization, agriculture, and its popularity among aquarium hobbyists since the mid-twentieth century. It is also one of the first Reference Genome for Euro-Asian species within the globally distributed order Cyprinodontiformes. Additionally, this effort aims to enhance our comprehension of the species' evolutionary ecology and history, particularly its remarkable adaptations that enable it to thrive in diverse and constantly changing inland aquatic environments. RESULTS A hybrid assembly approach was employed, integrating PacBio long-read sequencing with Illumina short-read data. In addition to the assembly, an extensive functional annotation of the genome is provided by using AUGUSTUS, and two different approaches (InterProScan and Sma3s). The genome size (1.15 Gb) is consistent with that of the most closely related species, and its quality and completeness, as assessed with various methods, exceeded the suggested minimum thresholds, thus confirming the robustness of the assembly. When conducting an orthology analysis, it was observed that nearly all genes were grouped in orthogroups that included genes of genetically similar species. GO Term annotation revealed, among others, categories related with salinity regulation processes (ion transport, transmembrane transport, membrane related terms or calcium ion binding). CONCLUSIONS The integration of genomic data with predicted genes presents future research opportunities across multiple disciplines, such as physiology, reproduction, disease, and opens up new avenues for future studies in comparative genomic studies. Of particular interest is the investigation of genes potentially associated with salinity adaptation, as identified in this study. Overall, this study contributes to the growing database of Reference Genomes, provides valuable information that enhances the knowledge within the order Cyprinodontiformes, and aids in improving the conservation status of threatened species by facilitating a better understanding of their behavior in nature and optimizing resource allocation towards their preservation.
Collapse
Affiliation(s)
- Alfonso López-Solano
- Museo Nacional de Ciencias Naturales, C/ José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| | - Ignacio Doadrio
- Museo Nacional de Ciencias Naturales, C/ José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Tessa Lynn Nester
- Museo Nacional de Ciencias Naturales, C/ José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Silvia Perea
- Museo Nacional de Ciencias Naturales, C/ José Gutiérrez Abascal, 2, 28006, Madrid, Spain
- Tragsatec. Grupo Tragsa, C/ Julián Camarillo 6B, Madrid, 28037, Spain
| |
Collapse
|
2
|
Du H, Zhou L, Liu Z, Zhuo Y, Zhang M, Huang Q, Lu S, Xing K, Jiang L, Liu JF. The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs. Nat Commun 2024; 15:10137. [PMID: 39578420 PMCID: PMC11584710 DOI: 10.1038/s41467-024-54471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Pigs play a central role in human livelihoods in China, but a lack of systematic large-scale whole-genome sequencing of Chinese domestic pigs has hindered genetic studies. Here, we present the 1000 Chinese Indigenous Pig Genomes Project sequencing dataset, comprising 1011 indigenous individuals from 50 pig populations covering approximately two-thirds of China's administrative divisions. Based on the deep sequencing (~25.95×) of these pigs, we identify 63.62 million genomic variants, and provide a population-specific reference panel to improve the imputation performance of Chinese domestic pig populations. Using a combination of methods, we detect an ancient admixture event related to a human immigration climax in the 13th century, which may have contributed to the formation of southeast-central Chinese pig populations. Analyzing the haplotypes of the Y chromosome shows that the indigenous populations residing around the Taihu Lake Basin exhibit a unique haplotype. Furthermore, we find a 13 kb region in the THSD7A gene that may relate to high-altitude adaptation, and a 0.47 Mb region on chromosome 7 that is significantly associated with body size traits. These results highlight the value of our genomic resource in facilitating genomic architecture and complex traits studies in pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meilin Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Huang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Xing
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Morales P, Gajardo F, Valdivieso C, Valladares MA, Di Genova A, Orellana A, Gutiérrez RA, González M, Montecino M, Maass A, Méndez MA, Allende ML. Genomes of the Orestias pupfish from the Andean Altiplano shed light on their evolutionary history and phylogenetic relationships within Cyprinodontiformes. BMC Genomics 2024; 25:614. [PMID: 38890559 PMCID: PMC11184842 DOI: 10.1186/s12864-024-10416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the Orestias genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of Orestias within the Cyprinodontiformes order. RESULTS We sequenced the genome of three Orestias species from the Andean Altiplano. Our analysis revealed that the small genome size in this genus (~ 0.7 Gb) was caused by a contraction in transposable element (TE) content, particularly in DNA elements and short interspersed nuclear elements (SINEs). Using predicted gene sequences, we generated a phylogenetic tree of Cyprinodontiformes using 902 orthologs extracted from all 32 available genomes as well as three outgroup species. We complemented this analysis with a phylogenetic reconstruction and time calibration considering 12 molecular markers (eight nuclear and four mitochondrial genes) and a stratified taxon sampling to consider 198 species of nearly all families and genera of this order. Overall, our results show that phylogenetic closeness is directly related to geographical distance. Importantly, we found that Orestias is not part of the Cyprinodontidae family, and that it is more closely related to the South American fish fauna, being the Fluviphylacidae the closest sister group. CONCLUSIONS The evolutionary history of the Orestias genus is linked to the South American ichthyofauna and it should no longer be considered a member of the Cyprinodontidae family. Instead, we submit that Orestias belongs to the Orestiidae family, as suggested by Freyhof et al. (2017), and that it is the sister group of the Fluviphylacidae family, distributed in the Amazonian and Orinoco basins. These two groups likely diverged during the Late Eocene concomitant with hydrogeological changes in the South American landscape.
Collapse
Affiliation(s)
- Pamela Morales
- Millennium Institute Center for Genome Regulation, Santiago, Chile.
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Felipe Gajardo
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Valdivieso
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Moisés A Valladares
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Grupo de Biodiversidad y Cambio Global (GBCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Alex Di Genova
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- DiGenoma-Lab, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Centro de Modelamiento Matemático UMI-CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Ariel Orellana
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- ANID Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
- Institute of Ecology and Biodiversity (IEB), Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Martin Montecino
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, 837001, Chile
| | - Alejandro Maass
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Centro de Modelamiento Matemático IRL 2807 CNRS, Universidad de Chile, Santiago, Chile
- Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile
| | - Marco A Méndez
- Institute of Ecology and Biodiversity (IEB), Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Ecología Aplicada y Sustentabilidad (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Veloso M, Waldisperg A, Arros P, Berríos-Pastén C, Acosta J, Colque H, Varas MA, Allende ML, Orellana LH, Marcoleta AE. Diversity, Taxonomic Novelty, and Encoded Functions of Salar de Ascotán Microbiota, as Revealed by Metagenome-Assembled Genomes. Microorganisms 2023; 11:2819. [PMID: 38004830 PMCID: PMC10673233 DOI: 10.3390/microorganisms11112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Salar de Ascotán is a high-altitude arsenic-rich salt flat exposed to high ultraviolet radiation in the Atacama Desert, Chile. It hosts unique endemic flora and fauna and is an essential habitat for migratory birds, making it an important site for conservation and protection. However, there is limited information on the resident microbiota's diversity, genomic features, metabolic potential, and molecular mechanisms that enable it to thrive in this extreme environment. We used long- and short-read metagenomics to investigate the microbial communities in Ascotán's water, sediment, and soil. Bacteria predominated, mainly Pseudomonadota, Acidobacteriota, and Bacteroidota, with a remarkable diversity of archaea in the soil. Following hybrid assembly, we recovered high-quality bacterial (101) and archaeal (6) metagenome-assembled genomes (MAGs), including representatives of two putative novel families of Patescibacteria and Pseudomonadota and two novel orders from the archaeal classes Halobacteriota and Thermoplasmata. We found different metabolic capabilities across distinct lineages and a widespread presence of genes related to stress response, DNA repair, and resistance to arsenic and other metals. These results highlight the remarkable diversity and taxonomic novelty of the Salar de Ascotán microbiota and its rich functional repertoire, making it able to resist different harsh conditions. The highly complete MAGs described here could serve future studies and bioprospection efforts focused on salt flat extremophiles, and contribute to enriching databases with microbial genome data from underrepresented regions of our planet.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Angie Waldisperg
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Joaquín Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Hazajem Colque
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Macarena A. Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
- Millenium Institute Center for Genome Regulation, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Miguel L. Allende
- Millenium Institute Center for Genome Regulation, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Luis H. Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany;
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| |
Collapse
|
5
|
Zhou C, Wang X, Hu Z, Chen Q, Du C, Liu Y, Song Z. Comparative analyses reveal potential genetic mechanisms for high-altitude adaptation of Schizopygopsis fishes based on chromosome-level genomes. J Hered 2023; 114:654-668. [PMID: 37646645 DOI: 10.1093/jhered/esad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
The schizothoracine fishes, widely distributed in the Qinghai-Tibetan Plateau and its adjacent areas, are considered as ideal models for investigation of high-altitude adaptation. Schizophygopsis are one group of the highly specialized schizothoracine fishes, and the genetic basis for their high-altitude adaptation is poorly understood. In this study, we performed comparative genomics analyses to investigate the potential genetic mechanisms for high-altitude adaptation of Schizopygopsis malacanthus and Schizopygopsis pylzovi based on the chromosome-level genomes. Functional enrichment analysis revealed that many expanded gene families in Schizopygopsis were associated with immune response while many contracted gene families were functionally associated with olfaction. Among the 123 positively selected genes (PSGs), angpt2a was detected in HIF-1 signaling pathway and possibly related to the hypoxia adaptation of Schizopygopsis. Furthermore, two PSGs cox15 and ndufb10 were distributed in thermogenesis, and there was a Schizopygopsis-specific missense mutation in cox15 (Gln115Glu), which possibly contributed to the cold temperature adaptation of the Schizopygopsis. Kyoto Encyclopedia of Genes and Genomes enrichment of the PSGs revealed three significant pathways including metabolic pathways, cell cycle, and homologous recombination and Gene Ontology enrichment analysis of the PSGs revealed several categories associated with DNA repair, cellular response to DNA damage stimulus, and metabolic process. Chromosome-scale characterization of olfactory receptor (OR) repertoires indicated that Schizopygopsis had the least number of OR genes, and the OR gene contraction was possibly caused by the limited food variety and the environmental factors such as lower air pressure, lower humidity, and lower temperature. Our study will help expand our understanding of the potential adaptive mechanism of Schizopygopsis to cope with the high-altitude conditions.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengrui Hu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chao Du
- Baotou Teachers College, Baotou, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
García G, Gutiérrez V, Ríos N. Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model. Front Genet 2022; 13:903683. [PMID: 35795213 PMCID: PMC9251178 DOI: 10.3389/fgene.2022.903683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
The term Annual killifish describes a short-lived and amazing group of vertebrates inhabiting temporary ponds exposed to an extremely variable environment during its short lifespan in South America and Africa, leading to the death of the entire adult population during the dry season. Austrolebias is a specious genus of the family Rivulidae, with ∼58 currently recognized species, extensively distributed in the temperate Neotropical region. Herein, we reviewed different aspects of the evolutionary biology with emphasis on the genome dynamic linked to the burst speciation process in this genus. Austrolebias constitutes an excellent model to study the genomic evolutionary processes underlying speciation events, since all the species of this genus analyzed so far share an unusually large genome size, with an average DNA content of 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). The drastic nuclear DNA–increasing would be associated with a considerable proportion of transposable elements (TEs) found in the Austrolebias genomes. The genomic proportion of the moderately repetitive DNA in the A. charrua genome represents approximately twice (45%) the amount of the repetitive components of the highly related sympatric and syntopic rivulinae taxon Cynopoecilus melanotaenia (25%), as well as from other rivulids and actinopterygian fish. These events could explain the great genome instability, the high genetic diversity, chromosome variability, as well as the morphological diversity in species of Austrolebias. Thus, species of this genus represent new model systems linking different evolutionary processes: drastic genome increase, massive TEs genomic representation, high chromosome instability, occurrence of natural hybridization between sister species, and burst speciation events.
Collapse
Affiliation(s)
| | | | - Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|