1
|
Sharma A, Vijay N. The genomic structure of complex chromosomal rearrangement at the Fm locus in black-bone Silkie chicken. Commun Biol 2025; 8:537. [PMID: 40169711 PMCID: PMC11961755 DOI: 10.1038/s42003-025-07825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Affiliation(s)
- Ashutosh Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
2
|
Qi S, Wu T, Wu H, Liang Y, Zhao W, Zhang Y, Xu Q, Chen G. Whole-genome resequencing reveals the population structure and domestication processes of endemic endangered goose breeds (Anser cygnoides). Poult Sci 2025; 104:105004. [PMID: 40088535 PMCID: PMC11957519 DOI: 10.1016/j.psj.2025.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
In recent years, the dwindling population of these endangered geese has hindered our understanding of their phenotypic variations and the genes associated with important traits. To investigate the population structure and genetic diversity of this breed, the whole-genome data of 90 individuals from a conservation farm were obtained using the Illumina 6000 paired-end platform. The research results indicate that each locally endangered goose variety has formed a monophyletic population. The Baizi (BZ), Lingxian White (LX), and Xupu (XP) geese exhibiting higher genetic diversity than the other goose breeds. Tree-Mix analysis revealed the presence of five gene flows events between goose populations, with Yangjiang (YJ) geese consistently exhibiting significant genetic distance from the other breeds. Under strong pressures from the natural environment and artificial selection, whole-genome selective scanning revealed 394 overlapping genes. Gene Ontology (GO) enrichment analysis of the putative candidate genes (PCGs) revealed significant enrichment of 20 terms (P < 0.05). Similarly, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant enrichment of PCGs in 23 terms (P < 0.05). Examination of overlapping genes identified through at least two selection methods revealed a set of genes associated with key traits, including growth and development (CCND1, DES, CCNO, SMC5, and NUBP1), immunity (ABCA2, ABCC8, UHRF2, and ABCA1), and body aging (KAT6B). Our findings provide insights into the genetic basis of endangered geese at the whole-genome level, laying the foundation for future molecular research on genetic variation and phenotypic changes. In summary, our results provide invaluable resources for delineating the uniqueness of endangered goose breeds.
Collapse
Affiliation(s)
- Shangzong Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Teng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Hao Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Yu Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Wenming Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China.
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China
| |
Collapse
|
3
|
Dias BDC, Lamarca AP, Machado DT, Kloh VP, de Carvalho FM, Vasconcelos ATR. Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim Microbiome 2025; 7:20. [PMID: 40033444 PMCID: PMC11874851 DOI: 10.1186/s42523-025-00379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Dynamic interspecific interactions and environmental factors deeply impact the composition of microbiotic communities in the gut. These factors intertwined with the host's genetic background and social habits cooperate synergistically as a hidden force modulating the host's physiological and health determinants, with certain bacterial species being maintained from generation to generation. Firmicutes, one of the dominant bacterial phyla present across vertebrate classes, exhibits a wide range of functional capabilities and colonization strategies. While ecological scenarios involving microbial specialization and metabolic functions have been hypothesized, the specific mechanisms that sustain the persistence of its microbial taxa in a high diversity of hosts remain elusive. This study fills this gap by investigating the Firmicutes metabolic mechanisms contributing to their prevalence and heritability in the host gut on metagenomes-assembled bacterial genomes collected from 351 vertebrate samples, covering 18 food-producing animals and humans, specific breeds and closely-related species. We observed that taxa belonging to Acetivibrionaceae, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, and the not well understood CAG-74 family were evolutionarily shared across all hosts. These prevalent taxa exhibit metabolic pathways significantly correlated with extra-host survival mechanisms, cell adhesion, colonization and host transmission, highlighted by sporulation, glycan biosynthesis, bile acid metabolism, and short-chain fatty acid encoded genes. Our findings provide a deeper understanding of the ecological foundations governing distinct transmission modes, effective colonization establishment, and maintenance of Firmicutes, offering new perspectives on both well-known and poorly characterized species.
Collapse
Affiliation(s)
- Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Alessandra Pavan Lamarca
- Laboratório de Bioinformática e Evolução Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Vinicius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | |
Collapse
|
4
|
Zhang R, Wang W, Zhang Z, Wang D, Ding H, Liu H, Zang S, Zhou R. Genome-wide re-sequencing reveals selection signatures for important economic traits in Taihang chickens. Poult Sci 2024; 103:104240. [PMID: 39217661 PMCID: PMC11402622 DOI: 10.1016/j.psj.2024.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Taihang chickens is precious genetic resource with excellent adaptability and disease resistance, as well as high-quality eggs and meat. However, the genetic mechanism underlying important economic traits remain largely unknown. To address this gap, we conducted whole-genome resequencing of 66 Taihang and 15 White Plymouth rock chicken (Baiyu). The population structure analysis revealed that Taihang chickens and Baiyu are 2 independent populations. The genomic regions with strong selection signals and some candidate genes related to economic and appearance traits were identified. Additionally, we found a continuously selected 1.2 Mb region on chromosome 2 that is closely related to disease resistance. Therefore, our findings were helpful in further understanding the genetic architecture of the Taihang chickens and provided a worthy theoretical basis and technological support to improve high-quality Taihang chickens.
Collapse
Affiliation(s)
- Ran Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Wenjun Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Hong Ding
- Hebei Institute of Animal Science and Veterinary Medicine, Baoding, Hebei Province, 071000, P.R. China
| | - Huage Liu
- Hebei Institute of Animal Science and Veterinary Medicine, Baoding, Hebei Province, 071000, P.R. China
| | - Sumin Zang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China.
| |
Collapse
|
5
|
Cho Y, Kim JY, Kim SK, Kim SY, Kim N, Lee J, Park JL. Whole-genome sequencing analysis of soybean diversity across different countries and selection signature of Korean soybean accession. G3 (BETHESDA, MD.) 2024; 14:jkae118. [PMID: 38833595 PMCID: PMC11304964 DOI: 10.1093/g3journal/jkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5,000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America, and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.
Collapse
Affiliation(s)
- Youngbeom Cho
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Kyu Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Kong S, Cai B, Li X, Zhou Z, Fang X, Yang X, Cai D, Luo X, Guo S, Nie Q. Assessment of selective breeding effects and selection signatures in Qingyuan partridge chicken and its strains. Poult Sci 2024; 103:103626. [PMID: 38513549 PMCID: PMC10966089 DOI: 10.1016/j.psj.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Qingyuan partridge chicken (QYM) is a highly regarded native breed in China, highly esteemed for its exceptional breeding characteristics. However, the investigation into the selection signatures and its strains remains largely unexplored. In this study, blood sampling, DNA extracting, and high-depth resequencing were performed in 27 QYMs. Integrating the genomic data of 14 chicken (70 individuals) breeds from other researches, to analyze the genetic structure, selection signatures, and effects of selective breeding within QYM and its 3 strains (QYMA, QYMB, and QYMC). Population structure analysis revealed an independent QYM cluster, which exhibited distinct from other breeds, with each of its 3 strains displaying distinct clustering patterns. Linkage disequilibrium analysis highlighted QYMB's notably slower decay rate, potentially influenced by selection pressure from various production indicators. Examination of selection signatures uncovered genes and genetic mechanisms associated with genomic changes resulting from extensive selective breeding within the QYM and its strains. Intriguingly, diacylglycerol kinase beta (DGKB) and catenin alpha 2 (CTNNA2) were identified as commonly selected genes across the 3 QYM strains, linked to energy metabolism, muscle development, and fat metabolism. Our research validates the substantial impact of selective breeding on QYM and its strains, concurrently identifying genomic regions and signaling pathways associated with their distinctive characters. This research also establishes a fundamental framework for advancing yellow-feathered broiler breeding strategies.
Collapse
Affiliation(s)
- Shaofen Kong
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaojing Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiang Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danfeng Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xuehui Luo
- Qingyuan Chicken Research Institute, Qingcheng District, Qingyuan City, China
| | - Suyin Guo
- Animal Epidemic Prevention Center, Qingcheng District, Qingyuan City, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
7
|
Cha J, Jin D, Kim JH, Kim SC, Lim JA, Chai HH, Jung SA, Lee JH, Lee SH. Genome-wide association study revealed the genomic regions associated with skin pigmentation in an Ogye x White Leghorn F2 chicken population. Poult Sci 2023; 102:102720. [PMID: 37327746 PMCID: PMC10404675 DOI: 10.1016/j.psj.2023.102720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 06/18/2023] Open
Abstract
Skin color in chickens is an economically important trait that determines the first impression of a consumer toward a broiler and can ultimately affect consumer choice in the market. Therefore, identification of genomic regions associated with skin color is crucial for increasing the sales value of chickens. Although previous studies have attempted to reveal the genetic markers associated with the skin coloration in chickens, most were limited to investigations of candidate genes, such as melanin-related genes, and focused on case/control studies based on a single or small population. In this study, we performed a genome-wide association study (GWAS) on 770 F2 intercrosses produced by an experimental population of 2 chicken breeds, namely Ogye and White Leghorns, with different skin colors. The GWAS demonstrated that the L* value among the 3 skin color traits is highly heritable, and the genomic regions located on 2 chromosomes (20 and Z) were detected to harbor SNPs significantly associated with the skin color trait, accounting for most of the total genetic variance. Particular genomic regions spanning a ∼2.94 Mb region on GGA Z and a ∼3.58 Mb region on GGA 20 were significantly associated with skin color traits, and in these regions, certain candidate genes, including MTAP, FEM1C, GNAS, and EDN3, were found. Our findings could help elucidate the genetic mechanisms underlying chicken skin pigmentation. Furthermore, the candidate genes can be used to provide a valuable breeding strategy for the selection of specific chicken breeds with ideal skin coloration.
Collapse
Affiliation(s)
- Jihye Cha
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Daehyeok Jin
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang 50000, South Korea
| | - Jae-Hwan Kim
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Seung-Chang Kim
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang 50000, South Korea
| | - Jin A Lim
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Han-Ha Chai
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Seul A Jung
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, South Korea
| | - Jun-Heon Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Seung-Hwan Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
8
|
Shinde SS, Sharma A, Vijay N. Decoding the fibromelanosis locus complex chromosomal rearrangement of black-bone chicken: genetic differentiation, selective sweeps and protein-coding changes in Kadaknath chicken. Front Genet 2023; 14:1180658. [PMID: 37424723 PMCID: PMC10325862 DOI: 10.3389/fgene.2023.1180658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Black-bone chicken (BBC) meat is popular for its distinctive taste and texture. A complex chromosomal rearrangement at the fibromelanosis (Fm) locus on the 20th chromosome results in increased endothelin-3 (EDN3) gene expression and is responsible for melanin hyperpigmentation in BBC. We use public long-read sequencing data of the Silkie breed to resolve high-confidence haplotypes at the Fm locus spanning both Dup1 and Dup2 regions and establish that the Fm_2 scenario is correct of the three possible scenarios of the complex chromosomal rearrangement. The relationship between Chinese and Korean BBC breeds with Kadaknath native to India is underexplored. Our data from whole-genome re-sequencing establish that all BBC breeds, including Kadaknath, share the complex chromosomal rearrangement junctions at the fibromelanosis (Fm) locus. We also identify two Fm locus proximal regions (∼70 Kb and ∼300 Kb) with signatures of selection unique to Kadaknath. These regions harbor several genes with protein-coding changes, with the bactericidal/permeability-increasing-protein-like gene having two Kadaknath-specific changes within protein domains. Our results indicate that protein-coding changes in the bactericidal/permeability-increasing-protein-like gene hitchhiked with the Fm locus in Kadaknath due to close physical linkage. Identifying this Fm locus proximal selective sweep sheds light on the genetic distinctiveness of Kadaknath compared to other BBC.
Collapse
Affiliation(s)
| | | | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
9
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|