1
|
Zuo C, Zhang Y, Zhang X, Liu J, Lyu L, Ma T, Chen L, Yu W, Li Y, Wen H, Qi X. Using transcriptome analysis to investigate the induction of vitellogenesis in female Japanese eels (Anguilla japonica). Gen Comp Endocrinol 2025; 367:114729. [PMID: 40228647 DOI: 10.1016/j.ygcen.2025.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Oogenesis, encompassing folliculogenesis, development, and maturation, is a complex physiological process that is not solely regulated by gonadotropins but is also actively influenced by multiple growth factors produced by the oocyte and its surrounding follicular cells. The Japanese eel (Anguilla japonica) has a complex life history, resulting in many uncertainties regarding its growth, development, and reproduction. Under artificial culture conditions, oocyte development in the Japanese eel is arrested and can only progress to the vitellogenic stage through artificial induction. In the present study, we observed that, despite receiving the same hormone treatment as normally developing individuals, a small proportion of female eels exhibited oocytes arrested at the perinucleolar stage. Transcriptome analysis revealed that differentially expressed genes are involved in multiple reproductive-related physiological processes and functional pathways, such as tachykinin system, MAPK signaling pathway, steroid-related pathways, oocyte meiosis, Wnt signaling pathway and GnRH signaling pathway. The abnormal expression of the two follicle-stimulating hormone (FSH) subunit genes may be a key factor contributing to this phenomenon. This study reveals the underlying causes of ovarian developmental arrest in hormonally induced female Japanese eels from the perspective of the brain-pituitary-gonad (BPG) axis, providing a research foundation for the artificial reproduction of Japanese eels.
Collapse
Affiliation(s)
- Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| | - Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| | - Xuanhan Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Jiaqi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Teng Ma
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Lingming Chen
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Weimin Yu
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| |
Collapse
|
2
|
Hu S, Li X, Qing E, Wang J, Chen Q, Song Y, Chen J, Hu J, Li L, Wang J. Molecular mechanisms underlying age-dependent effects of rearing system on the goose testicular development and semen quality. Poult Sci 2025; 104:104589. [PMID: 39615325 PMCID: PMC11647238 DOI: 10.1016/j.psj.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 01/25/2025] Open
Abstract
As an important non-genetic factor, the rearing system has significant effects on male poultry reproductive system development. However, compared with other poultry such as chickens and ducks, less is known about the effects and mechanisms of rearing system on the gander reproductive organ development and semen quality. In the present study, the testicular morphological, histological, and transcriptomic responses of three goose breeds to the two dryland rearing systems (i.e., cage rearing system, CRS and net-floor mixed rearing system, MRS) were systematically analyzed and compared. Results from histomorphological analysis demonstrated that the effects of rearing system on the gander testicular development were age-dependent, and moreover, the CRS may be more conducive than MRS to the testicular development and semen quality during the period from post-hatch week 10 to week 43. At week 30, compared to Sichuan White goose (SW), the rearing system showed more pronounced effects on the testicular size, weight, and organ index of Gang goose (GE) and Landes goose (LD). However, such effects were mitigated in LD and even reversed in GE at week 43. Meanwhile, most testicular histological parameters of three goose breeds were higher under MRS than under CRS at week 30, while the converse was seen in some histological parameters of either GE or LD at week 43. Moreover, the semen quality was generally better under CRS than under MRS at week 43. Through comparative transcriptomics analysis, the Wnt signaling pathway together with several involved hub genes were identified to have important roles in mediating the effects of rearing system on the goose testicular development. Moreover, the metabolism-related, cell cycle, and Wnt signaling pathways could be partially responsible for differences in the goose breed-related testicular development and semen quality under CRS, where a number of genes involved in meiosis could have crucial roles. These results would not only provide novel insights into the effects and mechanisms of rearing system on male poultry reproductive performance, but they would also be helpful for the optimization and selection of dryland rearing systems in male geese.
Collapse
Affiliation(s)
- Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Enhua Qing
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Junqi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qingliang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yang Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
3
|
Tong X, Li X, Wang Y, Xie F, Li R, Ren M, Hu Q, Li S. Comprehensive analysis of mRNA and miRNA differential expression profiles in the hypothalamus-pituitary-gonadal axis in laying and broodiness period of Wanxi white geese. Poult Sci 2025; 104:104510. [PMID: 39549391 PMCID: PMC11609687 DOI: 10.1016/j.psj.2024.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
The hypothalamus-pituitary-gonadal (HPG) axis is an important neuroendocrine regulatory center involved in egg-laying process in poultry. However, its mechanism of regulating broodiness behavior and laying performance in geese remains unclear. This study explored the molecular mechanism by which the HPG axis regulates brooding behavior in Wanxi white geese (WWG). The hypothalamus, pituitary, and ovarian tissues of Wanxi white geese were collected at laying and brooding periods for transcriptome sequencing analysis. A total of 240 (BH vs. LH), 319 (BP vs. LP), and 445 (BO vs. LO) differentially expressed genes, and 56 (BH vs. LH), 82 (BP vs. LP), and 48 (BO vs. LO) differentially expressed miRNAs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis showed that differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were significantly enriched in hormone level regulation, cell communication, calcium signaling pathway, GnRH signaling pathway, MAPK signaling pathway, Wnt signaling pathway, and other processes. Six DEGs and four DEMs were randomly selected for real-time fluorescence quantitative reverse transcription PCR (RT-qPCR). The results showed that the transcriptome sequencing data were accurate and reliable. In addition, 22 potential hub miRNAs were screened. Dual luciferase reporter assays confirmed the targeting relationship between miR-144-y and DIO3. The results showed that the miRNAs mainly regulated the laying performance and brooding behavior of WWG by mediating the expression of target genes. In this study, we systematically elucidated the mechanisms by which the HPG axis regulates the broodiness behavior and laying performance of WWG at the post-transcriptional level. Several miRNAs and mRNAs associated with the reproductive performance of WWG were identified, providing a crucial reference for the subsequent use of gene editing technologies to breed new varieties and advance the development of WWG breeding industry.
Collapse
Affiliation(s)
- Xinwei Tong
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yuhua Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Fei Xie
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Ruidong Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China.
| |
Collapse
|
4
|
Lisieska-Żołnierczyk S, Gajęcka M, Zielonka Ł, Dąbrowski M, Gajęcki MT. Blood levels of zearalenone, thyroid-stimulating hormone, and thyroid hormones in patients with colorectal cancer. Toxicon 2024; 251:108125. [PMID: 39395743 DOI: 10.1016/j.toxicon.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are secondary metabolites produced by various species of mold fungi commonly found in plant materials. Zearalenone (ZEN) adversely affects the endocrine system. This study aimed to determine whether thyroid-stimulating hormone (TSH), procalcitonin (PCT), free triiodothyronine (fT3), and free thyroxine (fT4) levels are altered during natural zearalenone mycotoxicosis in patients diagnosed with sigmoid colon cancer (SCC) or colorectal cancer (CRC). A study was conducted on women and men diagnosed with SCC or CRC accompanied by the presence or absence (Patients Without ZEN - PWZ group) of ZEN in the blood. The PWZ group consisted of 17 patients with symptoms of SCC and CRC in whom ZEN and its metabolites were not detected in peripheral blood. The experimental (empirical) groups included a total of 16 SCC and CRC patients who tested positive for ZEN, but not its metabolites. TSH values in both sexes were within the upper limit of the reference range (0.27-4.2 μIU/mL) adopted by the hospital laboratory and corresponded to the upper second tertile and the lower third tertile. PCT values demonstrated that SCC and CRC were accompanied by a systemic or local bacterial infection. All mean values of fT3 were in the middle of the reference range, and the mean values of fT4 were within the upper reference limit. The fT3/fT4 prognostic marker was somewhat above the cut-off point of 0.22. These results indicate that in postmenopausal women and andropausal men who were diagnosed with SCC and CRC and were exposed to food-borne ZEN, higher values of the prognostic marker (fT3/fT4) were associated with an unfavorable prognosis. The study also revealed that the more distal the neoplastic lesions in the colon, the higher the percentage of both thyroid hormones, regardless of the patient's sex. The presence of ZEN in the diet alters thyroid activity in patients diagnosed with SCC and CRC.
Collapse
Affiliation(s)
- Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Center of the Ministry of the Interior and Administration and the Warmia and Mazury Oncology Center in Olsztyn, Wojska Polskiego 37, 10-228, Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| |
Collapse
|
5
|
Li Y, Zhai B, Song H, Zhang X, Tian Y, Li D, Gong Y, Guo Y, Jiang R, Han R, Zhang J, Zhang Y, Tian Y. Pituitary whole transcriptome analysis reveals key genes regulating reproduction in Hy-Line Brown hens and the construction of their ceRNA molecular regulatory network. BMC Genomics 2024; 25:1100. [PMID: 39558278 PMCID: PMC11575065 DOI: 10.1186/s12864-024-11035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The development and egg-laying performance of hens are precisely regulated by hormones secreted by the pituitary. In this study, we performed comprehensive transcriptome sequencing of pituitary from Hy-Line Brown hens at 15, 20, 30 and 68 W of age. Through association analysis, we identified key genes and ceRNA regulatory networks related to pituitary development and egg production. RESULTS Based on the comprehensive transcriptome data, we identified 470 differentially expressed lncRNAs (DE-lncRNAs), 38 differentially expressed miRNAs (DE-miRNAs), and 2,449 differentially expressed mRNAs (DE-mRNAs). Time-series analysis pinpointed genes and signaling pathways that significantly influence pituitary hormone secretion at various stages. At 15 W, the high expression of GHRHR, NPY1R, and TSHR in the pituitary supports growth. At 20 and 30 W, elevated GNRHR expression sustains continuous egg production. In the late laying period, the expression of PRL may lead to a decline in egg production. Additionally, association analysis enabled the construction of a ceRNA regulatory network involving non-coding RNAs that regulate the development and reproduction of hens. CONCLUSION This study elucidated the comprehensive transcriptome expression profiles of the pituitary gland during the development and egg-laying processes in Hy-Line Brown hens and constructed the associated molecular regulatory networks. These findings lay the foundation for investigating the mechanisms by which non-coding RNAs regulate pituitary hormone secretion.
Collapse
Affiliation(s)
- Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
| | - Haijie Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
| | - Xin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Juan Zhang
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 45004, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Li R, Wang Y, Xie F, Tong X, Li X, Ren M, Hu Q, Li S. Construction and Analysis of miRNA-mRNA Interaction Network in Ovarian Tissue of Wanxi White Geese Across Different Breeding Stages. Animals (Basel) 2024; 14:3258. [PMID: 39595311 PMCID: PMC11591532 DOI: 10.3390/ani14223258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Ovarian development significantly influences the laying performance of geese. In this study, the transcriptome analysis was conducted on the ovarian tissues of Wanxi White Geese during the pre-laying (KL), laying (CL), and ceased-laying period (XL). Short Time-series Expression Miner (STEM) analysis and miRNA-mRNA regulatory network construction were performed to identify the key genes and miRNAs regulating laying traits. Comparative analysis of KL vs. CL, CL vs. XL, and XL vs. KL groups resulted in the identification of 337, 136, and 525 differentially expressed genes (DEGs), and 258, 1131, and 909 differentially expressed miRNAs (DEMs), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (p < 0.05) revealed that the main enrichment pathways of DEGs and DEMs at different breeding periods were Neuroactive ligand-receptor interaction, GnRH signaling pathway and Wnt signaling pathway, all associated with ovarian development. According to the three groups of common pathways, four DEGs were screened out, including INHBB, BMP5, PRL, and CGA, along with five DEMs, including let-7-x, miR-124-y, miR-1-y, and miR-10926-z, all of them may affect ovarian development. A miRNA-mRNA regulatory network was constructed through integrated analysis of DEGs and DEMs, revealing nine miRNAs highly associated with ovarian development: miR-101-y, let-7-x, miR-1-x, miR-17-y, miR-103-z, miR-204-x, miR-101-x, miR-301-y, and miR-151-x. The dual-luciferase reporter gene verified the target relationship between WIF1 and miR-204-x, suggesting that these miRNAs may influence ovarian development in Wanxi White Goose by regulating the expression levels of their target genes within ovarian tissue. This study provides a theoretical foundation for analyzing the mechanisms of ovarian development across different breeding periods and accelerating the cultivation of new breeds through post-transcriptional regulation levels.
Collapse
Affiliation(s)
- Ruidong Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yuhua Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Fei Xie
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Xinwei Tong
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
7
|
Zhang M, An X, Yuan C, Guo T, Xi B, Liu J, Lu Z. Integration analysis of transcriptome and metabolome revealed the potential mechanism of spermatogenesis in Tibetan sheep (Ovis aries) at extreme high altitude. Genomics 2024; 116:110949. [PMID: 39389270 DOI: 10.1016/j.ygeno.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Testis has an indispensable function in male reproduction of domestic animals. Numerous genes and metabolites were related to testicular development and spermatogenesis. However, little is known about the biological regulation pathways associated with fecundity in male Tibetan sheep. In this study, Testes were collected from Huoba Tibetan sheep (HB, 4614 m) and Gangba Tibetan sheep (GB, 4401 m) at extreme high altitude, and Alpine Merino sheep (AM, 2500 m, control group) at medium-high altitude, investigating the genes and metabolites levels of them. The histological analysis of testicular tissue using hematoxylin-eosin (HE) staining was performed for Tibetan sheep and Alpine Merino sheep, and the testes of them were analyzed by transcriptomics and metabolomics to explore the potential mechanism of testicular development and spermatogenesis. The statistical results showed that the cross-sectional area of testicular seminiferous tubules, diameter of seminiferous tubules, and spermatogenic epithelium thickness were significantly smaller in HB and GB than in AM (P < 0.05). Overall, 5648 differentially expressed genes (DEGs) and 336 differential metabolites (DMs) were identified in three sheep breeds, which were significantly enriched in spermatogenesis and other related pathways. According to integrated metabolomic and transcriptomic analysis, glycolysis/gluconeogenesis, AMPK signaling pathway, and TCA cycle, were predicted to have dramatic effects on the spermatogenesis of Tibetan sheep. Several genes (including Wnt2, Rab3a, Sox9, Hspa8, and Slc38a2) and metabolites (including L-histidinol, Glucose, Fumaric acid, Malic acid, and Galactose) were significantly enriched in pathways related to testicular development and spermatogenesis, and might affect the reproduction of Tibetan sheep by regulating the acrosome reaction, meiotic gene expression, and the production of sex hormones. Our results provide further understanding of the key genes and metabolites involved in testicular development and spermatogenesis in Tibetan sheep.
Collapse
Affiliation(s)
- Miaoshu Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Binpeng Xi
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
8
|
Piégu B, Lefort G, Douet C, Milhes M, Jacques A, Lareyre JJ, Monget P, Fouchécourt S. A first complete catalog of highly expressed genes in eight chicken tissues reveals uncharacterized gene families specific for the chicken testis. Physiol Genomics 2024; 56:445-456. [PMID: 38497118 DOI: 10.1152/physiolgenomics.00151.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Based on next-generation sequencing, we established a repertoire of differentially overexpressed genes (DoEGs) in eight adult chicken tissues: the testis, brain, lung, liver, kidney, muscle, heart, and intestine. With 4,499 DoEGs, the testis had the highest number and proportion of DoEGs compared with the seven somatic tissues. The testis DoEG set included the highest proportion of long noncoding RNAs (lncRNAs; 1,851, representing 32% of the lncRNA genes in the whole genome) and the highest proportion of protein-coding genes (2,648, representing 14.7% of the protein-coding genes in the whole genome). The main significantly enriched Gene Ontology terms related to the protein-coding genes were "reproductive process," "tubulin binding," and "microtubule cytoskeleton." Using real-time quantitative reverse transcription-polymerase chain reaction, we confirmed the overexpression of genes that encode proteins already described in chicken sperm [such as calcium binding tyrosine phosphorylation regulated (CABYR), spermatogenesis associated 18 (SPATA18), and CDK5 regulatory subunit associated protein (CDK5RAP2)] but whose testis origin had not been previously confirmed. Moreover, we demonstrated the overexpression of vertebrate orthologs of testis genes not yet described in the adult chicken testis [such as NIMA related kinase 2 (NEK2), adenylate kinase 7 (AK7), and CCNE2]. Using clustering according to primary sequence homology, we found that 1,737 of the 2,648 (67%) testis protein-coding genes were unique genes. This proportion was significantly higher than the somatic tissues except muscle. We clustered the other 911 testis protein-coding genes into 495 families, from which 47 had all paralogs overexpressed in the testis. Among these 47 testis-specific families, eight contained uncharacterized duplicated paralogs without orthologs in other metazoans except birds: these families are thus specific for chickens/birds.NEW & NOTEWORTHY Comparative next-generation sequencing analysis of eight chicken tissues showed that the testis has highest proportion of long noncoding RNA and protein-coding genes of the whole genome. We identified new genes in the chicken testis, including orthologs of known mammalian testicular genes. We also identified 47 gene families in which all the members were overexpressed, if not exclusive, in the testis. Eight families, organized in duplication clusters, were unknown, without orthologs in metazoans except birds, and are thus specific for chickens/birds.
Collapse
Affiliation(s)
- Benoît Piégu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Gaëlle Lefort
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Cécile Douet
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Marine Milhes
- US 1426, GeT-PlaGe, Genotoul, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castanet-Tolosan, France
| | - Aurore Jacques
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Jean-Jacques Lareyre
- UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Philippe Monget
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Sophie Fouchécourt
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
9
|
Pei S, Wang Z, Liu Y, Xu Y, Bai J, Li W, Li F, Yue X. Transcriptomic analysis of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with testicular size in Hu sheep. Theriogenology 2024; 216:168-176. [PMID: 38185016 DOI: 10.1016/j.theriogenology.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Testicular size is an excellent proxy for selecting high-fertility rams. The hypothalamus-pituitary-gonadal (HPG) axis plays an important role in regulating reproductive capacity in vertebrates, while key genes and regulatory pathways within the HPG axis associated with testicular size remain largely unknown in sheep. This study comprehensively compared the transcriptomic profiles in the hypothalamus, pituitary and testis of rams after sexual maturity between the large-testis group (LTG, testicular weight = 454.29 ± 54.24 g) and the small-testis group (STG, testicular weight = 77.29 ± 10.76 g). In total, 914, 795 and 10518 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary and testis between LTG and STG, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mainly involved in the biological processes of reproduction, biological regulation, and development process. Notably, the neuroactive ligand-receptor interaction and cAMP signaling pathways, commonly enriched by the DEGs in the hypothalamus and pituitary between two groups, were considered as two key signal pathways regulating testicular development through the HPGs axis. Weighted gene co-expression network analysis (WGCNA) identified two modules that were significantly associated with testicular size, and 97 key genes were selected with high module membership (MM) and gene significance (GS) in these two modules. Finally, a protein-protein interaction (PPI) network was constructed, and ten genes with the highest degree were represented as hub genes, including FOS, NPY, SST, F2, AGT, NTS, OXT, EDN1, VIP and TAC1. Taken together, these results provide new insights into the molecular mechanism underlying the HPG axis regulating testicular size of Hu sheep.
Collapse
Affiliation(s)
- Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yangkai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei, 733000, China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
10
|
Xu W, Mu R, Gegen T, Ran T, Wu Q, Wen D, Wang F, Chen Z. Transcriptome analysis of hypothalamus and pituitary tissues reveals genetic mechanisms associated with high egg production rates in Changshun green-shell laying hens. BMC Genomics 2023; 24:792. [PMID: 38124055 PMCID: PMC10734086 DOI: 10.1186/s12864-023-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Changshun green-shell laying hens are unique to the Guizhou Province, China, and have high egg quality but relatively low yield. Egg production traits are regulated by the hypothalamus-pituitary-ovary axis. However, the underlying mechanism remains unclear. Thus, we conducted RNA sequencing of hypothalamic and pituitary tissues from low- and high-yielding Changshun green-shell laying hens to identify critical pathways and candidate genes involved in controlling the egg production rate. RESULTS More than 39 million clean reads per sample were obtained, and more than 82% were mapped to the Gallus gallus genome. Further analysis identified 1,817 and 1,171 differentially expressed genes (DEGs) in the hypothalamus and pituitary, respectively. Nineteen DEGs were upregulated in both the hypothalamus and pituitary of high-yielding chickens. The functions of these DEGs were mainly associated with ion transport or signal transduction. Gene set enrichment analysis revealed that the pathways enriched in the hypothalamus were mainly associated with gonadotropin-releasing hormone (GnRH) secretion, neurotransmitter release, and circadian rhythms. The pathways enriched in the pituitary were mainly associated with GnRH secretion, energy metabolism, and signal transduction. Five and four DEGs in the hypothalamus and pituitary, respectively, were selected randomly for qRT-PCR analysis. The expression trends determined via qRT-PCR were consistent with the RNA-seq results. CONCLUSIONS The current study identified 19 DEGs upregulated in both the hypothalamus and pituitary gland, which could provide an important reference for further studies on the molecular mechanisms underlying egg production in Changshun green-shell laying hens. In addition, enrichment analysis showed that GnRH secretion and signal transduction, especially neurotransmitter release, play crucial roles in the regulation of egg production.
Collapse
Affiliation(s)
- Wenbin Xu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| | - Tuya Gegen
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- Library, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Tiantian Ran
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Qi Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| |
Collapse
|
11
|
Liu Z, Fu S, He X, Dai L, Liu X, Narisu, Shi C, Gu M, Wang Y, Manda, Guo L, Bao Y, Baiyinbatu, Chang C, Liu Y, Zhang W. Integrated Multi-Tissue Transcriptome Profiling Characterizes the Genetic Basis and Biomarkers Affecting Reproduction in Sheep ( Ovis aries). Genes (Basel) 2023; 14:1881. [PMID: 37895230 PMCID: PMC10606288 DOI: 10.3390/genes14101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heritability of litter size in sheep is low and controlled by multiple genes, but the research on its related genes is not sufficient. Here, to explore the expression pattern of multi-tissue genes in Chinese native sheep, we selected 10 tissues of the three adult ewes with the highest estimated breeding value in the early study of the prolific Xinggao sheep population. The global gene expression analysis showed that the ovary, uterus, and hypothalamus expressed the most genes. Using the Uniform Manifold Approximation and Projection (UMAP) cluster analysis, these samples were clustered into eight clusters. The functional enrichment analysis showed that the genes expressed in the spleen, uterus, and ovary were significantly enriched in the Ataxia Telangiectasia Mutated Protein (ATM) signaling pathway, and most genes in the liver, spleen, and ovary were enriched in the immune response pathway. Moreover, we focus on the expression genes of the hypothalamic-pituitary-ovarian axis (HPO) and found that 11,016 genes were co-expressed in the three tissues, and different tissues have different functions, but the oxytocin signaling pathway was widely enriched. To further explore the differences in the expression genes (DEGs) of HPO in different sheep breeds, we downloaded the transcriptome data in the public data, and the analysis of DEGs (Xinggao sheep vs. Sunite sheep in Hypothalamus, Xinggao sheep vs. Sunite sheep in Pituitary, and Xinggao sheep vs. Suffolk sheep in Ovary) revealed the neuroactive ligand-receptor interactions. In addition, the gene subsets of the transcription factors (TFs) of DEGs were identified. The results suggest that 51 TF genes and the homeobox TF may play an important role in transcriptional variation across the HPO. Altogether, our study provided the first fundamental resource to investigate the physiological functions and regulation mechanisms in sheep. This important data contributes to improving our understanding of the reproductive biology of sheep and isolating effecting molecular markers that can be used for genetic selection in sheep.
Collapse
Affiliation(s)
- Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Shaoyin Fu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Xiaolong He
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xuewen Liu
- Animal Husbandry and Bioengineering, College of Agronomy, Xing’an Vocational and Technical College, Ulanhot 137400, China;
| | - Narisu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Mingjuan Gu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Manda
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Yanchun Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Baiyinbatu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
12
|
Brady K, Liu HC, Hicks J, Long JA, Porter TE. Global gene expression analysis of the turkey hen hypothalamo-pituitary-gonadal axis during the preovulatory hormonal surge. Poult Sci 2023; 102:102547. [PMID: 36878099 PMCID: PMC10006860 DOI: 10.1016/j.psj.2023.102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The preovulatory hormonal surge (PS) consists of elevated circulating luteinizing hormone (LH) and progesterone levels and serves as the primary trigger for ovarian follicle ovulation. Increased LH and progesterone, produced by the pituitary and the granulosa layer of the largest ovarian follicle (F1), respectively, result from hypothalamic stimulation and steroid hormone feedback on the hypothalamo-pituitary-gonadal (HPG) axis. The hypothalamus, pituitary, F1 granulosa, and granulosa layer of the fifth largest follicle (F5) were isolated from converter turkey hens outside and during the PS and subjected to RNA sequencing (n = 6 per tissue). Differentially expressed genes were subjected to functional annotation using DAVID and IPA. A total of 12, 250, 1235, and 1938 DEGs were identified in the hypothalamus, pituitary, F1 granulosa, and F5 granulosa respectively (q<0.05, |fold change|>1.5, FPKM>1). Gene Ontology (GO) analysis revealed key roles for metabolic processes, steroid hormone feedback, and hypoxia induced gene expression changes. Upstream analysis identified a total of 4, 42, 126, and 393 potential regulators of downstream gene expression in the hypothalamus, pituitary, F1G, and F5G respectively, with a total of 63 potential regulators exhibiting differential expression between samples collected outside and during the PS (|z-score|>2). The results from this study serve to increase the current knowledge base surrounding the regulation of the PS in turkey hens. Through GO analysis, downstream processes and functions associated with the PS were linked to identified DEGs, and through upstream analysis, potential regulators of DEGs were identified for further analysis. Linking upstream regulators to the downstream PS and ovulation events could allow for genetic selection or manipulation of ovulation frequencies in turkey hens.
Collapse
Affiliation(s)
- Kristen Brady
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States.
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Julie Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
13
|
Okeke ES, Feng W, Mao G, Chen Y, Qian X, Luo M, Xu H, Qiu X, Wu X, Yang L. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109527. [PMID: 36442598 DOI: 10.1016/j.cbpc.2022.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17β-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria. https://twitter.com/Okeke
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China
| |
Collapse
|
14
|
Wang X, Guo X, He X, Di R, Zhang X, Zhang J, Chu M. Integrated Proteotranscriptomics of the Hypothalamus Reveals Altered Regulation Associated with the FecB Mutation in the BMPR1B Gene That Affects Prolificacy in Small Tail Han Sheep. BIOLOGY 2022; 12:biology12010072. [PMID: 36671764 PMCID: PMC9856028 DOI: 10.3390/biology12010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
The litter size and ovulation rate are different among ewes of different FecB genotypes in Small Tail Han sheep. These variants in reproductive phenotypes may be regulated by hormones released by the hypothalamic-pituitary-ovarian axis. However, there have been few reports on the hypothalamus regarding regulating an increase in ovulation in sheep with FecB mutation at different estrous stages. Thus, we examined the abundance of hypothalamus tissue protein profiles of six FecB mutant homozygous (BB) and six wild-type (WW) ewes at the luteal and follicular phases. We determined this abundance by tandem mass tag-based quantitative analysis and parallel reaction monitoring methods. Furthermore, an integrated proteotranscriptomic analysis was performed by the Data Integration Analysis for Biomarker discovery using the latent variable approaches for Omics studies (DIABLO) framework to examine biological processes and pathway alterations by the FecB mutant. The abundance of 154 proteins was different between the two estrous stages. Growth hormone and prolactin were particularly enriched in the neuroactive ligand-receptor interactions, the prolactin signaling pathway, and the PI3K-Akt signaling pathway which are related to hypothalamic function and reproduction. We combined proteome and transcriptome data from different estrous stages and genotypes. There is a high correlation (Pearson correlation coefficient = 0.99) between the two datasets in the first two components. We applied the traditional single-omic multivariate approach to obtain differentially abundant proteins and differentially expressed genes. The major fertility related biomarkers were selected using the two approaches mentioned above. Several key pathways (GABAergic synapse, neuroactive ligand-receptor interaction, estrogen and MAPK signaling pathways) were enriched, which are central to gonadotrophin-releasing hormone (GnRH) secretion and reproduction. A higher level of gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1) and gamma-aminobutyric acid type A receptor subunit beta2 (GABRB2) expression was observed in BB ewes as compared to WW ewes. This finding suggested that a greater production of GnRH during follicular development in BB ewes may explain the higher mature follicle number in mutant ewes. FKBP prolyl isomerase 1A (FKBP1A), which was a major feature factor in the proteome selected by DIABLO, was an important switch for activating the transforming growth factor beta (TGFβ) pathway, and its expression was higher in the WW ewes than in the BB ewes. We suggest that BB sheep maintain TGFβ pathway activity by reducing FKBP1A protein abundance. This innovative data integration in the hypothalamus may provide fresh insight into the mechanisms by which the FecB mutation affects sheep fertility, while providing novel biomarkers related to reproductive endocrinology in sheep breeding.
Collapse
Affiliation(s)
- Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaofei Guo
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62819850
| |
Collapse
|
15
|
Gajęcka M, Zielonka Ł, Babuchowski A, Gajęcki MT. Exposure to Low Zearalenone Doses and Changes in the Homeostasis and Concentrations of Endogenous Hormones in Selected Steroid-Sensitive Tissues in Pre-Pubertal Gilts. Toxins (Basel) 2022; 14:toxins14110790. [PMID: 36422963 PMCID: PMC9692984 DOI: 10.3390/toxins14110790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study was undertaken to analyze whether prolonged exposure to low-dose zearalenone (ZEN) mycotoxicosis affects the concentrations of ZEN, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL) in selected reproductive system tissues (ovaries, uterine horn-ovarian and uterine sections, and the middle part of the cervix), the hypothalamus, and pituitary gland, or the concentrations of selected steroid hormones in pre-pubertal gilts. For 42 days, gilts were administered per os different ZEN doses (MABEL dose [5 µg/kg BW], the highest NOAEL dose [10 µg/kg BW], and the lowest LOAEL dose [15 µg/kg BW]). Tissue samples were collected on days seven, twenty-one, and forty-two of exposure to ZEN (exposure days D1, D2, and D3, respectively). Blood for the analyses of estradiol and progesterone concentrations was collected in vivo on six dates at seven-day intervals (on analytical dates D1-D6). The analyses revealed that both ZEN and its metabolites were accumulated in the examined tissues. On successive analytical dates, the rate of mycotoxin accumulation in the studied tissues decreased gradually by 50% and proportionally to the administered ZEN dose. A hierarchical visualization revealed that values of the carry-over factor (CF) were highest on exposure day D2. In most groups and on most exposure days, the highest CF values were found in the middle part of the cervix, followed by the ovaries, both sections of the uterine horn, and the hypothalamus. These results suggest that ZEN, α-ZEL, and β-ZEL were deposited in all analyzed tissues despite exposure to very low ZEN doses. The presence of these undesirable compounds in the examined tissues can inhibit the somatic development of the reproductive system and compromise neuroendocrine coordination of reproductive competence in pre-pubertal gilts.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
- Correspondence:
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland
| | - Maciej Tadeusz Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
16
|
Wang C, Yang L, Xiao T, Li J, Liu Q, Xiong S. Identification and expression analysis of zebrafish gnaq in the hypothalamic–Pituitary–Gonadal axis. Front Genet 2022; 13:1015796. [DOI: 10.3389/fgene.2022.1015796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The G proteins have emerged as essential molecular switches in a wide variety of signal transduction pathways. Gαq, encoded by G protein subunit alpha q (gnaq), is a member of the G proteins and participates in regulating important biological activities in mammals; however, its function and regulatory mechanism in teleost remain largely unclear. In the current study, we cloned the cDNA of gnaq from zebrafish (Danio rerio) and investigated the expression characteristics of Gαq/gnaq in reproductive tissues. RT-PCR and WISH analyses showed that gnaq was widely expressed in zebrafish tissues, with high expression in the brain, olfactory brain, and hypothalamus. During the embryonic development stage, the gnaq was mainly distributed in the hypothalamus after 72 h post-fertilization. In addition, immunohistochemistry analysis revealed that the Gαq protein was highly expressed in the diffuse nucleus of the inferior hypothalamic lobe (DIL), ventral zone of the periventricular hypothalamus (Hv), and caudal zone of the periventricular hypothalamus (Hc) in adult zebrafish. Furthermore, in the gonads, the Gαq protein was found in oocytes of all stages, except spermatids. Lastly, the gnaq mRNA exhibited relatively low expression in gonads on Day 4 during the reproductive cycle, while increasing drastically in the hypothalamus and pituitary afterward. Altogether, our results suggest that gnaq/Gαq might be important in fish reproduction.
Collapse
|
17
|
Li X, Yuan L, Wang W, Zhang D, Zhao Y, Chen J, Xu D, Zhao L, Li F, Zhang X. Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Front Vet Sci 2022; 9:1034211. [PMID: 36330154 PMCID: PMC9623881 DOI: 10.3389/fvets.2022.1034211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 08/23/2023] Open
Abstract
The East Friesian sheep is one of the important high-yielding dairy sheep breeds, but still little is known about their genetic and genomic variation during domestication. Therefore, we analyzed the genomic data of 46 sheep with the aim of identifying candidate genes that are closely related to milk production traits. Our genomic data consisted of 20 East Friesian sheep and 26 Asian Mouflon wild sheep. Finally, a total of 32590241 SNPs were identified, of which 0.61% (198277) SNPs were located in exonic regions. After further screening, 122 shared genomic regions in the top 1% of F ST and top 1% of Nucleotide diversity ratio were obtained. After genome annotation, these 122 candidate genomic regions were found to contain a total of 184 candidate genes. Finally, the results of KEGG enrichment analysis showed four significantly enriched pathways (P < 0.05): beta-Alanine metabolism (SMOX, HIBCH), Pathways in cancer (GLI2, AR, TXNRD3, TRAF3, FGF16), Non-homologous end-joining (MRE11), Epstein-Barr virus infection (TRAF3, PSMD13, SIN3A). Finally, we identified four important KEGG enrichment pathways and 10 candidate genes that are closely related to milk production in East Friesian sheep. These results provide valuable candidate genes for the study of milk production traits in East Friesian sheep and lay an important foundation for the study of milk production traits.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiangbo Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|