1
|
Gama JM, Oliveira RC. CD44 and Its Role in Solid Cancers - A Review: From Tumor Progression to Prognosis and Targeted Therapy. FRONT BIOSCI-LANDMRK 2025; 30:24821. [PMID: 40152366 DOI: 10.31083/fbl24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 03/29/2025]
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane protein expressed in normal cells but overexpressed in several types of cancer. CD44 plays a major role in tumor progression, both locally and systemically, by direct interaction with the extracellular matrix, inducing tissue remodeling, activation of different cellular pathways, such as Akt or mechanistic target of rapamycin (mTOR), and stimulation of angiogenesis. As a prognostic marker, CD44 has been identified as a major player in cancer stem cells (CSCs). CSCs with a CD44 phenotype are associated with chemoresistance, alone or in combination with other CSC markers, such as CD24 or aldehyde dehydrogenase 1 (ALDH1), and may be used for patient stratification. In the therapy setting, CD44 has been explored as a viable target, directly or indirectly. It has revealed promising potential, paving the way for its future use in the clinical setting. Immunohistochemistry effectively detects CD44 overexpression, enabling patients to be accurately selected for surgery and targeted anti-CD44 therapies. In this review, we highlight the properties of CD44, its expression in normal and tumoral tissues through immunohistochemistry and potential treatment options. We also discuss the clinical significance of this marker and its added value in therapeutic decision-making.
Collapse
Affiliation(s)
- João Martins Gama
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Rui Caetano Oliveira
- Centro de Investigação em Meio Ambiente, Genética e Oncobiologia-CIMAGO, Faculdade de Medicina, Universidade de Coimbra, 3004-535 Coimbra, Portugal
- Centro de Anatomia Patológica Germano de Sousa, 3000-377 Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Huang W, Qiu Y, Huynh D, Wang TY, Chou TF. Proteomics analysis reveals the differential impact of the p97 inhibitor CB-5083 on protein levels in various cellular compartments of the HL-60 cell line. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001372. [PMID: 39677520 PMCID: PMC11638764 DOI: 10.17912/micropub.biology.001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Human p97/VCP is a vital AAA ATPase (ATPase associated with diverse cellular activity) that plays critical roles in protein homeostasis by regulating autophagy, endosomal trafficking, and the ubiquitin-proteasome system. Global proteomics analysis of p97/VCP inhibition with CB-5083 has been performed in HCT116 colon cells. Here, we examined the impact of CB-5083 treatment in another cancer model, the HL-60 acute myeloid leukemia cell line, employing subcellular fractionation combined with label-free proteomics to analyze changes in protein levels across cytoplasmic, nuclear, and insoluble membrane protein compartments. The results reveal distinct compartment-specific protein regulation, providing insight into p97/VCP's cellular mechanisms and its potential for targeted therapeutic applications.
Collapse
Affiliation(s)
- Wenxuan Huang
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Yanping Qiu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Diana Huynh
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, United States
| | - Tsui-Fen Chou
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| |
Collapse
|
3
|
Cao L, Lin G, Fan D, Weng K, Chen Y, Wang J, Li P, Zheng C, Huang C, Xie J. NUAK1 activates STAT5/GLI1/SOX2 signaling to enhance cancer cell expansion and drives chemoresistance in gastric cancer. Cell Rep 2024; 43:114446. [PMID: 38996065 DOI: 10.1016/j.celrep.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The gene encoding the NUAK family kinase 1 (NUAK1) is frequently amplified and its expression is upregulated, activating oncogenic signaling in various cancers. However, little is known about its role in gastric cancer (GC). We investigate the mechanistic links among NUAK1, Hedgehog signaling, and tumorigenesis in GC. NUAK1 overexpression is validated in local and public GC cohorts. Patient-derived xenograft and transgenic mouse models demonstrate that NUAK1 depletion or inhibition dramatically ameliorates gastric tumorigenesis. NUAK1 upregulates GLI1 expression by activating STAT5-mediated transcription and stabilizing GLI1 protein. NUAK1 depletion or inhibition impairs cancer cell expansion, tumor formation, and chemotherapy resistance in in vitro and in vivo models. Clinicopathological analysis confirms that upregulated NUAK1 expression correlates with poor prognosis and chemotherapy resistance in human GC. Our findings demonstrate that the signaling axis NUAK1/STAT5/GLI1 promotes cancer cell expansion and tumorigenesis and indicate that NUAK1 is an attractive therapeutic target and prognostic factor in GC.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Guangtan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Denghui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yujing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiabin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Zang Y, Tian Z, Wang D, Li Y, Zhang W, Ma C, Liao Z, Gao W, Qian L, Xu X, Jia J, Liu Z. METTL3-mediated N 6-methyladenosine modification of STAT5A promotes gastric cancer progression by regulating KLF4. Oncogene 2024; 43:2338-2354. [PMID: 38879589 PMCID: PMC11271408 DOI: 10.1038/s41388-024-03085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/21/2024]
Abstract
N6-methyladenosine (m6A) is the predominant post-transcriptional RNA modification in eukaryotes and plays a pivotal regulatory role in various aspects of RNA fate determination, such as mRNA stability, alternative splicing, and translation. Dysregulation of the critical m6A methyltransferase METTL3 is implicated in tumorigenesis and development. Here, this work showed that METTL3 is upregulated in gastric cancer tissues and is associated with poor prognosis. METTL3 methylates the A2318 site within the coding sequence (CDS) region of STAT5A. IGF2BP2 recognizes and binds METTL3-mediated m6A modification of STAT5A through its GXXG motif in the KH3 and KH4 domains, leading to increased stability of STAT5A mRNA. In addition, both METTL3 and IGF2BP2 are positively correlated with STAT5A in human gastric cancer tissue samples. Helicobacter pylori infection increased the expression level of METTL3 in gastric cancer cells, thereby leading to the upregulation of STAT5A. Functional studies indicated that STAT5A overexpression markedly enhances the proliferation and migration of GC cells, whereas STAT5A knockdown has inhibitory effects. Further nude mouse experiments showed that STAT5A knockdown effectively inhibits the growth and metastasis of gastric cancer in vivo. Moreover, as a transcription factor, STAT5A represses KLF4 transcription by binding to its promoter region. The overexpression of KLF4 can counteract the oncogenic impact of STAT5A. Overall, this study highlights the crucial role of m6A in gastric cancer and provides potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Yichen Zang
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuangfei Tian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhui Zhang
- School of Clinical Medicine, Qingdao University, Qingdao, China
| | - Cunying Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenzhi Liao
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenrong Gao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lilin Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Fan Z, Jiang X, Yan W, Li J, Yan M, Liu B, Yu B. PHD finger protein 10 promotes cell proliferation by regulating CD44 transcription in gastric cancer. Heliyon 2024; 10:e29109. [PMID: 38601625 PMCID: PMC11004891 DOI: 10.1016/j.heliyon.2024.e29109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
PHD finger protein 10 (PHF10) plays an important role in the tumorigenesis of gastric cancer (GC). However, clinical significance and underlying molecular mechanisms about PHF10 is unclear. In the article, it suggested that PHF10 involved in tumor progression and metastasis based on the analysis of datasets and 190 cases of tumor tissues in GC. And PHF10 provided the diagnostic value with areas under the receiver operating characteristics curve of 0.71 ± 0.069. Then we established GC cell lines MKN28 with PHF10 overexpression and SGC7901 with PHF10 knockdown. CCK8 assay and tumor xenograft experiment showed that upregulation of PHF10 could promote MKN28 cell proliferation, while PHF10 knockdown would inhibit the proliferation of SGC7901 in vitro and vivo. Nevertheless, PHF10 could upregulate CD44 mRNA expression by acting on its promoter at the level of transcription. This effect could be associated with BRG, BAF155 and SNF5, which were conserved subunits of switch/sucrose non-fermentable (SWI/SNF) complex. In conclusion, PHF10 targeting CD44 plays an essential part during the modulation of proliferation of GC cell and may offer a new therapeutic direction for GC.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiao Jiang
- Department of Pathology, Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Wenjing Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Gui J, Yang L, Liu J, Li Y, Zou M, Sun C, Huang L, Zhu X, Huang K. Identifying the prognosis implication, immunotherapy response prediction value, and potential targeted compound inhibitors of integrin subunit α3 (ITGA3) in human cancers. Heliyon 2024; 10:e24236. [PMID: 38293430 PMCID: PMC10825359 DOI: 10.1016/j.heliyon.2024.e24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The integrin subunit α3 (ITGA3) is a member of the integrin alpha chain protein family, which could promote progression, metastasis, and invasion in some cancers. Still, its function in the tumor microenvironment (TME), cancer prognosis, and immunotherapy remains unclear. A multifaceted analysis of ITGA3 in pan-cancer utilizing various databases and online web tools revealed ITGA3 was aberrantly expressed in tumor tissues and upregulated in most cancers, which may be related to ITGA3 genomic alterations and methylation modification. In addition, ITGA3 was significantly correlated with the poor or better prognosis of cancer patients, immune-related pathways in hallmark, immune infiltration, and immune checkpoints, revealing a biological function of ITGA3 in the tumor progression, tumor microenvironment, and tumor immunity. We also found that ITGA3 could predict the response to tumor immunotherapy based on cytokine-treated samples and immunotherapy cohorts. ITGA3 may participate in shaping and regulating the tumor microenvironment to affect the tumor immune response, which was a promising immunotherapy response predictive biomarker and potential therapeutic target to work synergistically with cancer immunotherapy to boost the response and efficacy. Finally, potential targeted compound inhibitors and sensitive drugs were screened using databases ConnectivityMap (CMap) and CellMiner, and AutoDock Tools was used for molecular docking.
Collapse
Affiliation(s)
- Jiawei Gui
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Lufei Yang
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Junzhe Liu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Yishuang Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mi Zou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Chengpeng Sun
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Le Huang
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xingen Zhu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| |
Collapse
|