1
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
2
|
Liu Y, Liu H, Zhang J, Zhang Y. Temporin-GHaK Exhibits Antineoplastic Activity against Human Lung Adenocarcinoma by Inhibiting the Wnt Signaling Pathway through miRNA-4516. Molecules 2024; 29:2797. [PMID: 38930863 PMCID: PMC11206823 DOI: 10.3390/molecules29122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: GHaK is derived from the antimicrobial peptide temporin-GHa by substituting the amino acid H with K to enhance its bactericidal activity. The present research aims to broaden the pharmacological potential of GHaK by exploring its antineoplastic activity against human lung adenocarcinoma. (2) Methods: The cell viability, migration, invasion, apoptosis, and cell cycle of A549 and PC-9 cells were tested after GHaK treatment. miRNA sequencing, RT-PCR, Western blotting, and luciferase reporter gene assay were further performed to reveal the potential mechanism. (3) Results: GHaK significantly suppressed cell viability, migration, and invasion; induced apoptosis; and caused cell cycle arrest in the G2/M and S phase in PC-9 and A549 cells, respectively. The miRNA sequencing results show a total of 161 up-regulated and 115 down-regulated miRNAs. Furthermore, the study identified six up-regulated miRNAs (miR-4516, miR-4284, miR-204-5p, miR-12136, miR-4463, and miR-1296-3p) and their inhibitory effects on the expressions of target genes (Wnt 8B, FZD2, DVL3, and FOSL1) caused by miR-4516 directly interacting with Wnt 8B. Western blotting revealed the down-regulation of p-GSK-3β, along with a decreased expressions of cyclin A1 and CDK2 in A549 cells and cyclin B1 and CDK1 in PC-9 cells. (4) Conclusions: Temporin-GHaK exhibits antineoplastic activity against human lung adenocarcinoma by inhibiting the Wnt signaling pathway through miRNA-4516.
Collapse
Affiliation(s)
- Yueli Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China;
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (H.L.); (J.Z.)
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Hui Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (H.L.); (J.Z.)
| | - Jiaxin Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China; (H.L.); (J.Z.)
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China;
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
Wu Z, Han Y, Li X, Zhang Q, Deng R, Ren H, He W, Wu X, Guo H, Zhu D. Design, synthesis and anticancer evaluation of polymethoxy aurones as potential cell cycle inhibitors. Heliyon 2023; 9:e21054. [PMID: 37886750 PMCID: PMC10597867 DOI: 10.1016/j.heliyon.2023.e21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cancer is the most fatal disease in humans and the aberrant activity of various cell cycle proteins results in uncontrolled tumor cell proliferation, thus, regulating the cell cycle is an attractive target in cancer therapy. Objectives Aurone is a naturally occurring active compound with a wide range of biological activities, of which 3, 4, 5-trimethoxyphenyl (TMP) is an important microtubule targeting pharmacophore. Based on the pharmacophore combination principle, we incorporate the TMP pharmacophore into the aurone structure and design a novel polymethoxy derivative that is expected to inhibit tumor cell proliferation through regulating the cell cycle. Methods By introducing different substituents on C-4' and C-3', a series of new 4, 5, 6-trimethoxy aurone derivatives have been designed and synthesized. DU145, MCF-7 and H1299 cell lines were selected to evaluate their anticancer activity. The compound with the best cytotoxicity was then selected and the anticancer mechanisms were investigated by network pharmacology, flow cytometry, Western blot, and cell heat transfer assay. ADMET prediction evaluated the draggability of aurone derivatives. Results Aurones 1b and 1c have selective anti-proliferative activity against DU145 cells. Among them, the compound 1c have better cytotoxicity against DU145. Compound 1c could bind the active cavity of CyclinB1/CDK1/CKS complex protein and induced G2/M phase arrest of DU145 cells by regulating the expression of CyclinB1 and p21. Compound 1c satisfies the Lipinski rule, is suitable for the absorption and metabolism index, and has a lower risk of cardiac toxicity. Conclusions Polymethoxy aurones 1c might function as a CyclinB1/CDK1 inhibitor that deserved to be further developed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zheng Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Renjin Deng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Hong Ren
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Wenjing He
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xinduo Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|