1
|
Tamir A, Jag U, Sarojini S, Schindewolf C, Tanaka T, Gharbaran R, Patel H, Sood A, Hu W, Patwa R, Blake P, Chirina P, Oh Jeong J, Lim H, Goy A, Pecora A, Suh KS. Kallikrein family proteases KLK6 and KLK7 are potential early detection and diagnostic biomarkers for serous and papillary serous ovarian cancer subtypes. J Ovarian Res 2014; 7:109. [PMID: 25477184 PMCID: PMC4271347 DOI: 10.1186/s13048-014-0109-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022] Open
Abstract
Background Early detection of ovarian cancer remains a challenge due to widespread metastases and a lack of biomarkers for early-stage disease. This study was conducted to identify relevant biomarkers for both laparoscopic and serum diagnostics in ovarian cancer. Methods Bioinformatics analysis and expression screening in ovarian cancer cell lines were employed. Selected biomarkers were further validated in bio-specimens of diverse cancer types and ovarian cancer subtypes. For non-invasive detection, biomarker proteins were evaluated in serum samples from ovarian cancer patients. Results Two kallikrein (KLK) serine protease family members (KLK6 and KLK7) were found to be significantly overexpressed relative to normal controls in most of the ovarian cancer cell lines examined. Overexpression of KLK6 and KLK7 mRNA was specific to ovarian cancer, in particular to serous and papillary serous subtypes. In situ hybridization and histopathology further confirmed significantly elevated levels of KLK6 and KLK7 mRNA and proteins in tissue epithelium and a lack of expression in neighboring stroma. Lastly, KLK6 and KLK7 protein levels were significantly elevated in serum samples from serous and papillary serous subtypes in the early stages of ovarian cancer, and therefore could potentially decrease the high “false negative” rates found in the same patients with the common ovarian cancer biomarkers human epididymis protein 4 (HE4) and cancer antigen 125 (CA-125). Conclusion KLK6 and KLK7 mRNA and protein overexpression is directly associated with early-stage ovarian tumors and can be measured in patient tissue and serum samples. Assays based on KLK6 and KLK7 expression may provide specific and sensitive information for early detection of ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13048-014-0109-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayala Tamir
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Ushma Jag
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Sreeja Sarojini
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Craig Schindewolf
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Takemi Tanaka
- Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Rajendra Gharbaran
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Hiren Patel
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Anil Sood
- Departments of Gynecologic Oncology and Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Wei Hu
- Departments of Gynecologic Oncology and Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Ruzeen Patwa
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Patrick Blake
- Sophic Systems Alliance, Inc, Rockville, MD, 20850, USA.
| | - Polina Chirina
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Jin Oh Jeong
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Heejin Lim
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Andre Goy
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - Andrew Pecora
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| |
Collapse
|
2
|
Chiang YC, Cheng WF, Chang MC, Lu TP, Kuo KT, Lin HP, Hsieh CY, Chen CA. Establishment of a New Ovarian Cancer Cell Line CA5171. Reprod Sci 2014; 22:725-34. [PMID: 25394645 DOI: 10.1177/1933719114557893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new cell line, CA5171, derived from a chemotherapy-naive, high-grade undifferentiated ovarian carcinoma was established and characterized. The CA5171 cells presented with cobblestone morphology and a doubling time of 24 hours. Gene mutation analysis showed that the cells belonged to the type II ovarian cancer pathway with mutations of PIK3CA, PTEN, and TP53. Single-nucleotide polymorphism array analysis showed no homozygous gene deletion; however, several loci of gene copy number gains were noted in chromosome 1, 2, 5, 9, 10, 12, 15, 16, 20, and X. The in vitro and in vivo experiments showed that the cells were sensitive to paclitaxel and doxorubicin, but resistant to cisplatin. The cells also presented epithelial-mesenchymal transition properties that may have been related to their invasion and migration potential. The CA5171 cells show the potential as a new cell line for studies on epithelial ovarian carcinoma.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Shape
- Cisplatin/pharmacology
- Class I Phosphatidylinositol 3-Kinases
- DNA Copy Number Variations
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Humans
- Middle Aged
- Mutation
- Neoplasm Invasiveness
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Paclitaxel/pharmacology
- Phenotype
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Polymorphism, Single Nucleotide
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ting Kuo
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Ping Lin
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Yao Hsieh
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Hillig T, Thode J, Breinholt MF, Franzmann MB, Pedersen C, Lund F, Mygind H, Sölétormos G, Rudnicki M. Assessing HER2 amplification by IHC, FISH, and real-time polymerase chain reaction analysis (real-time PCR) following LCM in formalin-fixed paraffin embedded tissue from 40 women with ovarian cancer. APMIS 2012; 120:1000-7. [PMID: 23030524 PMCID: PMC3533780 DOI: 10.1111/j.1600-0463.2012.02929.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
We compare HER2 receptor amplification analysis by immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and real-time polymerase chain reaction (real-time PCR) DNA copy-number assay following laser capture microdissection (LCM) in formalin-fixed paraffin embedded tissue from 40 women with verified ovarian cancer. We speculate that LCM should result in a more accurate assessment of HER2 amplification in our real-time PCR assay compared with IHC and FISH. HER2 overexpression measured by IHC, FISH, or real-time PCR was found in 5.0%, 5.0%, and 22.5%, respectively. HER2 negative results measured by IHC, FISH, or real-time PCR were found in 95%, 92.5%, and 60.0%, respectively. Analysis failed for IHC, FISH, or real-time PCR in 0%, 2.5%, or 17.5% of cases. Concordance between IHC and FISH, IHC and real-time PCR, or FISH and real-time PCR were 89.7%, 72.7%, or 78.1%, respectively. Only few ovarian cancer patients were HER2 overexpressed measured by IHC or FISH and thus could be eligible for antibody-based therapy with trastuzumab (Herceptin). Interestingly, we find an increased number of HER2 positive patients by real-time PCR analysis on microdissected cancer cells, suggesting a number of HER2 positive patients not detected by current methods. Thus, the concept of quantitative measurement of HER2 on microdissected cancer cells should be explored further.
Collapse
Affiliation(s)
- Thore Hillig
- Department of Clinical Biochemistry, Hillerød Hospital University of Copenhagen, 3400 Hillerød, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wilken JA, Badri T, Cross S, Raji R, Santin AD, Schwartz P, Branscum AJ, Baron AT, Sakhitab AI, Maihle NJ. EGFR/HER-targeted therapeutics in ovarian cancer. Future Med Chem 2012; 4:447-69. [PMID: 22416774 PMCID: PMC4620931 DOI: 10.4155/fmc.12.11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite decades of research and evolving treatment modalities, survival among patients with epithelial ovarian cancer has improved only incrementally. During this same period, the development of biologically targeted therapeutics has improved survival for patients with diverse malignancies. Many of these new drugs target the human epidermal growth factor receptor (EGFR/HER/ErbB) family of tyrosine kinases, which play a major role in the etiology and progression of many carcinomas, including epithelial ovarian cancer. While several HER-targeted therapeutics are US FDA approved for the treatment of various malignancies, none have gained approval for the treatment of ovarian cancer. Here, we review the published literature on HER-targeted therapeutics for the treatment of ovarian cancer, including novel HER-targeted therapeutics in various stages of clinical development, as well as the challenges that have limited the use of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jason A Wilken
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Tayf Badri
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Sarah Cross
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Rhoda Raji
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Alessandro D Santin
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Peter Schwartz
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Adam J Branscum
- Oregon State University, School of Biological & Population Health Sciences
| | - Andre T Baron
- University of Kentucky, Departments of Epidemiology, & Obstetrics & Gynecology
| | - Adam I Sakhitab
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
| | - Nita J Maihle
- Yale University, Department of Obstetrics, Gynecology & Reproductive Sciences
- Yale University, Departments of Pathology & Pharmacology
- PO Box 208063, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Liver X receptor agonist inhibits proliferation of ovarian carcinoma cells stimulated by oxidized low density lipoprotein. Gynecol Oncol 2010; 116:109-16. [DOI: 10.1016/j.ygyno.2009.09.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/17/2009] [Accepted: 09/27/2009] [Indexed: 11/30/2022]
|
6
|
Genomic and proteomic characterization of YDOV-157, a newly established human epithelial ovarian cancer cell line. Mol Cell Biochem 2008; 319:189-201. [PMID: 18682896 DOI: 10.1007/s11010-008-9892-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
The existence of several model systems with which to investigate a particular disease is advantageous for researchers. This is especially true for ovarian cancer, which, due to its complex and heterogeneous nature, inherently requires a large number of model systems. Here, we report a new ovarian serous adenocarcinoma cell line, designated YDOV-157, and characterized via post genomics and post proteomics. In this study, primary culture of tumor cells from ascites was performed and the cells were immortalized up to at least 60 passages in vitro. We studied the morphologies, cell proliferation, BRCA1/2 mutations, tumorigenesis capacity, and chemosensitivity of YDOV-157. Using a cDNA microarray, differentially expressed genes were identified and some of them were validated. Using proteomic analysis, we identified proteins that were differentially expressed in YDOV-157. The newly derived cell line, designated YDOV-157, grew as a monolayer and the doubling time was 102 h. When transplanted into nude mice, it initiated the formation of tumor masses with microscopic findings identical to those of the primary tumor. Chemosensitivity test showed that paclitaxel induced the highest chemosensitivity index. In microarray analysis, 2,520 probes were differently expressed, compared to human ovarian surface epithelial cells (HOSEs). In SYBR Green real-time PCR, the expression of E2F2 (P = 0.040) and CRABP2 genes (P = 0.030) was significantly higher in the ovarian cancer cell lines than in HOSEs. Furthermore, proteomic analysis showed that expression of 28 spots was significantly altered between YDOV-157 and HOSE. In conclusion, the newly derived YDOV-157 cell line may be an important research resource for studying cancer cell biology and should also be very useful for developing new strategies that inhibit cancer cell growth and progression.
Collapse
|
7
|
Ouellet V, Zietarska M, Portelance L, Lafontaine J, Madore J, Puiffe ML, Arcand SL, Shen Z, Hébert J, Tonin PN, Provencher DM, Mes-Masson AM. Characterization of three new serous epithelial ovarian cancer cell lines. BMC Cancer 2008; 8:152. [PMID: 18507860 PMCID: PMC2467432 DOI: 10.1186/1471-2407-8-152] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 05/28/2008] [Indexed: 12/03/2022] Open
Abstract
Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient.
Collapse
Affiliation(s)
- Véronique Ouellet
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li AJ, Scoles DR, Armstrong KUM, Karlan BY. Androgen receptor cytosine-adenine-guanine repeat polymorphisms modulate EGFR signaling in epithelial ovarian carcinomas. Gynecol Oncol 2008; 109:220-5. [PMID: 18374401 DOI: 10.1016/j.ygyno.2008.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/31/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Length of a polymorphic cytosine-adenine-guanine (CAG) repeat in the androgen receptor (AR) may inversely correlate with AR activity. We have identified an association between short AR allelotypes and decreased survival in women with epithelial ovarian cancer. We hypothesize short AR allelotypes promote aggressive ovarian cancer phenotype through modulation of epidermal growth factor receptor (EGFR) signaling. METHODS SKOV-3 cells were transfected with AR plasmids containing variable CAG repeat lengths, and AR activity was assessed through co-transfection with a luciferase plasmid. EGFR signaling was studied with Western blot analysis of EGFR, EGFR-p (phosphorylated), MAPK, and MAPK-p, and cellular proliferation examined by MTT assays. Data were analyzed using analysis of variance, Tukey-Kramer multiple comparison test, and Student's t test. RESULTS We confirmed AR allelotype length inversely correlates with AR activity in epithelial ovarian cells; a 2.5% decrease in luciferase-fold activation was seen with each CAG unit increase (p=0.0002). We observed inhibition of EGFR-p abundance with increasing abundance of transfected AR cDNA (89.2% and 39.9% for 3.0 and 6.0 mug, compared to 1.5 microg, p=0.03). After transfection with short (CAG=14), median (CAG=21), and long (CAG=24) AR allelotypes, an inverse correlation was identified between abundance of MAPK-p and CAG repeat length (p=0.002). Decrease in cellular abundance was also seen in cultures transfected with ARs of increasing CAG repeat length (p<0.0001). CONCLUSIONS These data identify an inhibitory action of AR on EGFR signaling, and support research investigating AR/EGFR antagonism in the treatment of ovarian cancers.
Collapse
Affiliation(s)
- Andrew J Li
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|
9
|
Lafky JM, Wilken JA, Baron AT, Maihle NJ. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim Biophys Acta Rev Cancer 2008; 1785:232-65. [PMID: 18291115 DOI: 10.1016/j.bbcan.2008.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 01/28/2023]
Abstract
The ERBB or EGF receptor (EGFR) proto-oncogene family, which consists of four structurally-related transmembrane receptors (i.e., EGFR, ErbB2, ErbB3, and ErbB4), plays an etiological role in the molecular pathogenesis of cancer and is a key therapeutic target in many types of cancer, including ovarian cancer. These ErbB/EGF receptor tyrosine kinases play important physiologic roles in cell proliferation, survival, adhesion, motility, invasion, and angiogenesis. It is, therefore, not surprising that gene amplification, genetic mutation, and altered transcription/translation result in aberrant ErbB/EGF receptor expression and/or signal transduction, contributing to the development of malignant transformation. Clinically, the diagnostic, prognostic, and theragnostic significance of any single ErbB receptor and/or ErbB ligand is controversial, but generally, ErbB receptor overexpression has been correlated with poor prognosis and decreased therapeutic responsiveness in ovarian cancer patients. Thus, anticancer agents targeting ErbB/EGF receptors hold great promise for personalized cancer treatment. Yet, challenges remain in designing prospective clinical trials to assess the clinical utility of ErbB receptors and their ligands to diagnose cancer; to predict progression-free and overall survival, therapeutic responsiveness, and disease recurrence; and to monitor treatment responsiveness. Here, we review the tissue expression and serum biomarker studies that have evaluated the diagnostic, prognostic, and theragnostic utility of ErbB/EGF receptors, their circulating soluble isoforms (sEGFR/sErbBs), and their cognate ligands in ovarian cancer patients.
Collapse
Affiliation(s)
- Jacqueline M Lafky
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|