1
|
McAdam AD, Batchelor LK, Romano-deGea J, Vasilyev D, Dyson PJ. Thermoresponsive carboplatin-releasing prodrugs. J Inorg Biochem 2024; 254:112505. [PMID: 38377623 DOI: 10.1016/j.jinorgbio.2024.112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Platinum-based anticancer drugs, while potent, are associated with numerous and severe side effects. Hyperthermia therapy is an effective adjuvant in anticancer treatment, however, clinically used platinum drugs have not been optimised for combination with hyperthermia. The derivatisation of existing anticancer drugs with appropriately chosen thermoresponsive moieties results in drugs being activated only at the heated site. Perfluorinated chains of varying lengths were installed on carboplatin, a clinically approved drug, leading to the successful synthesis of a series of mono- and di- substituted platinum(IV) carboplatin prodrugs. Some of these complexes display relevant thermosensitivity on ovarian cancer cell lines, i.e., being inactive at 37 °C while having comparable activity to carboplatin under mild hyperthermia (42 °C). Nuclear magnetic resonance spectroscopy and mass spectrometry indicated that carboplatin is likely the active platinum(II) anticancer agent upon reduction and cyclic voltammetry revealed that the length of the fluorinated alkyl chain has a strong influence on the rate of carboplatin formation, regulating the subsequent cytotoxicity.
Collapse
Affiliation(s)
- Aemilia D McAdam
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucinda K Batchelor
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jan Romano-deGea
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dmitry Vasilyev
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Liebl CM, Kutschan S, Dörfler J, Käsmann L, Hübner J. Systematic review about complementary medical hyperthermia in oncology. Clin Exp Med 2022; 22:519-565. [PMID: 35767077 PMCID: PMC9244386 DOI: 10.1007/s10238-022-00846-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Hyperthermia is a generic term for different techniques using heat in cancer therapies. Temperatures of about 42° Celsius in combination with chemo- or radiotherapy may improve the effectiveness of those treatments. Clinical benefit is shown in "standard hyperthermia" with tumour temperatures assessed during treatment. This systematic review thoroughly assesses the state of evidence concerning the benefits and side effects of electro hyperthermia or whole-body hyperthermia ("alternative hyperthermia") in oncology. From 26 April 2021 to 09 May 2021, a systematic search was conducted searching five electronic databases (Embase, Cochrane, PsycINFO, CINAHL and Medline) to find studies concerning the use, effectiveness and potential harm of alternative medical hyperthermia therapy on cancer patients. From all 47,388 search results, 53 publications concerning 53 studies with 2006 patients were included in this systematic review. The patients were diagnosed with different types of cancer. The hyperthermic methods included whole-body hyperthermia (WBH) with different methods and electro hyperthermia (EH). The majority of the included studies were single-arm studies, counting in total 32 studies. Six studies were randomized controlled trials (RCT). In addition, one systematic review (SR) was found. The most critical endpoints were tumour response, survival data, pain relief, myelosuppression and toxicities. Outcome was heterogeneous, and considering the methodological limitations, clinical evidence for the benefit of alternative hyperthermia in cancer patients is lacking. Neither for whole-body hyperthermia nor for electro hyperthermia there is any evidence with respect to improvement of survival or quality of life in cancer patients.
Collapse
Affiliation(s)
- Christina Maria Liebl
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Sabine Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jennifer Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Lukas Käsmann
- Klinik und Poliklinik für Strahlentherapie, LMU Klinikum, Munich, Germany
| | - Jutta Hübner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
4
|
Zheng N, Xu A, Lin X, Mo Z, Xie X, Huang Z, Liang Y, Cai Z, Tan J, Shao X. Whole-body hyperthermia combined with chemotherapy and intensity-modulated radiotherapy for treatment of advanced nasopharyngeal carcinoma: a retrospective study with propensity score matching. Int J Hyperthermia 2021; 38:1304-1312. [PMID: 34468276 DOI: 10.1080/02656736.2021.1971778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Several studies have reported the combination of intracavity or cervical lymph node hyperthermia with chemoradiotherapy (CRT) to improve clinical outcomes in nasopharyngeal carcinoma (NPC), but the combination with whole-body hyperthermia (WBH) for treating NPC is unexplored. We aimed to assess the efficacy of the combination of radiotherapy, chemotherapy and WBH in patients with locoregionally advanced NPC. METHODS Between July 2008 and November 2012, 239 newly diagnosed NPC patients were enrolled in a pre-propensity score-matched cohort, including 193 patients who received CRT (CRT group) and 46 who underwent CRT with WBH (HCRT group). The feasibility and clinical outcomes of both groups were evaluated and toxicities assessed. Survival rates were assessed using the Kaplan-Meier method, log-rank test and Cox regression. RESULTS Following propensity score matching, 46 patients from each group were included. The 5-year overall survival (OS) rates were 65.2% in the CRT group and 80.3% in the HCRT group (p=.027). In contrast, the other survival outcomes at 5 years were similar between the groups: locoregional recurrence-free survival (LRRFS), 74.7% vs. 87.6% (p=.152); distant metastasis-free survival (DMFS), 67.4% vs. 77.9% (p=.125); and progression-free survival (PFS), 53.1% vs. 69.2% (p=.115). In the multivariate analyses, the only two independent predictors of OS were clinical stage and HCRT. CONCLUSIONS These results suggest that WBH, when combined with CRT, can improve the OS of patients with advanced NPC.
Collapse
Affiliation(s)
- Naiying Zheng
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Anan Xu
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiantao Lin
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Zhiwen Mo
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiaoxue Xie
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, PR China
| | - Zhong Huang
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Ying Liang
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Zhihua Cai
- Department of Chemotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Jianming Tan
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xunfan Shao
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
5
|
Carneiro MW, Brancato L, Wylleman B, van Zwol E, Conings L, Vueghs P, Gorbaslieva I, Van den Bossche J, Rudenko O, Janicot M, Bogers JP. Safety evaluation of long-term temperature controlled whole-body thermal treatment in female Aachen minipig. Int J Hyperthermia 2021; 38:165-175. [PMID: 33576280 DOI: 10.1080/02656736.2021.1876256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: Thermal treatment (TT), defined as treatment using supra-physiological body temperatures (39-45 C), somewhat resembles fever in terms of temperature range, one of the first natural barriers for the body to fight exposure to external pathogens. Methods: Whole-body thermal treatment (WBTT) consists of heating up the complete body to a temperature range of 39 to 45 C. Despite the recognized therapeutic potential of hyperthermia, the broad clinical use of WBTT has been limited by safety issues related to medical devices and procedures used to achieve WBTT, in particular adequate control of the body temperature. To circumvent this, a sophisticated medical device was developed, allowing long-term temperature controlled WBTT (41.5 C for up to 8 h). Technical feasibility and tolerability of the WBTT procedure (including complete anesthesia) were tested using female Aachen minipig. Optical fiber temperature sensors inserted in multiple organs were used and demonstrated consistent monitoring and control of different organs temperature over an extended period of time. Results: Clinical evaluation of the animals before, during and after treatment revealed minor clinical parameter changes, but all of them were clinically acceptable. These changes were limited and reversible, and the animals remained healthy throughout the whole procedure and follow-up. In addition, histopathological analysis of selected key organs showed no thermal treatment-related changes. Conclusion: It was concluded that WBTT (41.5 C for up to 8 h) was well tolerated and safe in female Aachen minipigs. Altogether, data supports the safe clinical use of the WBTT medical device and protocol, enabling its implementation into human patients suffering from life-threatening diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John-Paul Bogers
- ElmediX NV, Mechelen, Belgium.,Laboratory for Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Minareci Y, Tosun OA, Sozen H, Topuz S, Salihoglu MY. A Retrospective Clinical Analysis of Hyperthermic Intraperitoneal Chemotherapy in Gynecological Cancers: Technical Details, Tolerability, and Efficacy. Medeni Med J 2020; 35:202-211. [PMID: 33110672 PMCID: PMC7584260 DOI: 10.5222/mmj.2020.31855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Objective The aim of this study was to reveal the results of hyperthermic intraperitoneal chemotherapy (HIPEC procedure) performed during cytoreductive surgery (CRS) in patients with endometrial cancer and epithelial ovarian cancer which included mainly platinum-resistant patients. Method Patients who underwent CRS+HIPEC between May 2015 and January 2020 were evaluated retrospectively. Surgical complications were graded according to the Clavien-Dindo classification. Results A total of 33 CRS+HIPEC procedures were performed in 32 patients, two of whom had recurrent endometrial cancer. Of the 30 patients with epithelial ovarian cancer (EOC), five underwent interval CRS+HIPEC, and remaining 25 patients underwent secondary CRS+HIPEC treatment due to relapsed disease. Eighteen of the patients with relapsed disease were platinum-resistant. The overall operative mortality and severe morbidity rates were %3 and 12%, respectively. For 30 patients with EOC, during a median follow-up period of 15 months, Kaplan-Meier survival analysis revealed a 1-year OS and PFS rates of 69.7% and 30.3%, respectively. Moreover, in the subgroup analysis of the platinum-resistant cohort, median OS and PFS were 14 and five months, respectively. Conclusion CRS+HIPEC procedures had acceptable severe morbidity and mortality rates. In addition, patients with recurrent EOC and without a visible residual disease at the end of cytoreductive surgery had, though not statistically significant, longer OS . HIPEC administration during CRS was not associated with adverse outcomes in the platinum-resistant EOC cohort. The short-term results of the current study are promising.
Collapse
Affiliation(s)
- Yagmur Minareci
- Istanbul University, Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul, Turkey
| | - Ozgur Aydın Tosun
- Istanbul University, Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, İstanbul, Turkey
| | - Hamdullah Sozen
- Istanbul University, Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul, Turkey
| | - Samet Topuz
- Istanbul University, Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul, Turkey
| | - Mehmet Yavuz Salihoglu
- Istanbul University, Faculty of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Istanbul, Turkey
| |
Collapse
|
7
|
Sánchez-Ramírez DR, Domínguez-Ríos R, Juárez J, Valdés M, Hassan N, Quintero-Ramos A, Del Toro-Arreola A, Barbosa S, Taboada P, Topete A, Daneri-Navarro A. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111196. [PMID: 32806317 DOI: 10.1016/j.msec.2020.111196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
Ovarian cancer (OC) is the deadliest gynecological cancer. Standard treatment of OC is based on cytoreductive surgery followed by chemotherapy with platinum drugs and taxanes; however, innate and acquired drug-resistance is frequently observed followed by a relapse after treatment, thus, more efficient therapeutic approaches are required. Combination therapies involving phototherapies and chemotherapy (the so-called chemophototherapy) may have enhanced efficacy against cancer, by attacking cancer cells through different mechanisms, including DNA-damage and thermally driven cell membrane and cytoskeleton damage. We have designed and synthesized poly(lactic-co-glycolic) nanoparticles (PLGA NPs) containing the chemo-drug carboplatin (CP), and the near infrared (NIR) photosensitizer indocyanine green (ICG). We have evaluated the drug release profile, the photodynamic ROS generation and photothermal capacities of the NPs. Also, the antitumoral efficiency of the NPs was evaluated using the SKOV-3 cell line as an in vitro OC model, observing an enhanced cytotoxic effect when irradiating cells with an 800 nm laser. Evidence here shown supports the potential application of the biodegradable photoresponsive NPs in the clinical stage due to the biocompatibility of the materials used, the spatiotemporal control of the therapy and, also, the less likely development of resistance against the combinatorial therapy.
Collapse
Affiliation(s)
- Dante R Sánchez-Ramírez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Rossina Domínguez-Ríos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora 83000, Mexico
| | - Miguel Valdés
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora 83000, Mexico
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, San Joaquín 2409, Chile
| | - Antonio Quintero-Ramos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Silvia Barbosa
- Departamento de Física de Partículas, Instituto de Investigaciones Sanitarias (IDIS) y Agrupación Estratégica de Materiales, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de Partículas, Instituto de Investigaciones Sanitarias (IDIS) y Agrupación Estratégica de Materiales, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico.
| | - Adrián Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico.
| |
Collapse
|
8
|
Lassche G, Crezee J, Van Herpen CML. Whole-body hyperthermia in combination with systemic therapy in advanced solid malignancies. Crit Rev Oncol Hematol 2019; 139:67-74. [PMID: 31112883 DOI: 10.1016/j.critrevonc.2019.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 01/20/2023] Open
Abstract
Whole-body hyperthermia (WBH) might be beneficial for patients with metastasized solid malignancies when combined with systemic therapy. This review identified and summarized the phase I/II studies (n = 13/14) conducted using this combination of therapies. Most of the phase II studies used radiant heating methods in a thermal dose of 41.8 °C (1 h). All studies used classic chemotherapy. Great inter-study heterogeneity was observed regarding treatment regimes, included patients and reported response rates (12-89%). Ovarian cancer, colorectal adenocarcinoma, lung cancer and sarcoma have been studied most. Most reported toxicity (grade 3/4) was myelosuppression. Treatment related mortality was present (4 patients) in three out 14 phase II studies (350 evaluable patients, over 966 cycles of WBH with chemotherapy). Absence of phase III trials makes the additive value of WBH highly speculative. As modern oncology offers many less invasive treatments options, it is unlikely WBH will ever find its way in routine clinical care.
Collapse
Affiliation(s)
- G Lassche
- Department of medical oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Crezee
- Department of radiation oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - C M L Van Herpen
- Department of medical oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Peeken JC, Vaupel P, Combs SE. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front Oncol 2017; 7:132. [PMID: 28713771 PMCID: PMC5492395 DOI: 10.3389/fonc.2017.00132] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hyperthermia (HT) is one of the hot topics that have been discussed over decades. However, it never made its way into primetime. The basic biological rationale of heat to enhance the effect of radiation, chemotherapeutic agents, and immunotherapy is evident. Preclinical work has confirmed this effect. HT may trigger changes in perfusion and oxygenation as well as inhibition of DNA repair mechanisms. Moreover, there is evidence for immune stimulation and the induction of systemic immune responses. Despite the increasing number of solid clinical studies, only few centers have included this adjuvant treatment into their repertoire. Over the years, abundant prospective and randomized clinical data have emerged demonstrating a clear benefit of combined HT and radiotherapy for multiple entities such as superficial breast cancer recurrences, cervix carcinoma, or cancers of the head and neck. Regarding less investigated indications, the existing data are promising and more clinical trials are currently recruiting patients. How do we proceed from here? Preclinical evidence is present. Multiple indications benefit from additional HT in the clinical setting. This article summarizes the present evidence and develops ideas for future research.
Collapse
Affiliation(s)
- Jan C Peeken
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany.,Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
10
|
Li Y, Deng Y, Tian X, Ke H, Guo M, Zhu A, Yang T, Guo Z, Ge Z, Yang X, Chen H. Multipronged Design of Light-Triggered Nanoparticles To Overcome Cisplatin Resistance for Efficient Ablation of Resistant Tumor. ACS NANO 2015; 9:9626-37. [PMID: 26365698 DOI: 10.1021/acsnano.5b05097] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemotherapeutic drugs frequently encounter multiple drug resistance in the field of cancer therapy. The strategy has been explored with limited success for the ablation of drug-resistant tumor via intravenous administration. In this work, the rationally designed light-triggered nanoparticles with multipronged physicochemical and biological features are developed to overcome cisplatin resistance via the assembly of Pt(IV) prodrug and cyanine dye (Cypate) within the copolymer for efficient ablation of cisplatin-resistant tumor. The micelles exhibit good photostability, sustained release, preferable tumor accumulation, and enhanced cellular uptake with reduced efflux on both A549 cells and resistant A549R cells. Moreover, near-infrared light not only triggers the photothermal effect of the micelles for remarkable photothermal cytotoxicity, but also leads to the intracellular translocation of the micelles and reduction-activable Pt(IV) prodrug into cytoplasm through the lysosomal disruption, as well as the remarkable inhibition on the expression of a drug-efflux transporter, multidrug resistance-associated protein 1 (MRP1) for further reversal of drug resistance of A549R cells. Consequently, the multipronged effects of light-triggered micelles cause synergistic cytotoxicity against both A549 cells and A549R cells, and thus efficient ablation of cisplatin-resistant tumor without regrowth. The multipronged features of light-triggered micelles represent a versatile synergistic approach for the ablation of resistant tumor in the field of cancer therapy.
Collapse
Affiliation(s)
- Yanli Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xin Tian
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Miao Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Aijun Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhengqing Guo
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, and College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One 2013; 8:e75044. [PMID: 24023970 PMCID: PMC3762754 DOI: 10.1371/journal.pone.0075044] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
A combination of hyperthermia with radiotherapy and chemotherapy for various solid tumors has been practiced clinically. However, hyperthermic therapy has side effects, such as thrombocytopenia. Up to now, the pathogenesis of hyperthermia-induced thrombocytopenia remains unclear. Previous studies have shown that hyperthermia induces platelet apoptosis. However, the signaling pathways and molecular mechanisms involved in hyperthermia-induced platelet apoptosis have not been determined. Here we show that hyperthermia induced intracellular reactive oxygen species (ROS) production and mitochondrial ROS generation in a time-dependent manner in platelets. The mitochondria-targeted ROS scavenger Mito-TEMPO blocked intracellular ROS and mitochondrial ROS generation. By contrast, inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nitric oxide synthase, cyclooxygenase and lipoxygenase did not. Furthermore, Mito-TEMPO inhibited hyperthermia-induced malonyldialdehyde production and cardiolipin peroxidation. We also showed that hyperthermia-triggered platelet apoptosis was inhibited by Mito-TEMPO. Furthermore, Mito-TEMPO ameliorated hyperthermia-impaired platelet aggregation and adhesion function. Lastly, hyperthermia decreased platelet manganese superoxide dismutase (MnSOD) protein levels and enzyme activity. These data indicate that mitochondrial ROS play a pivotal role in hyperthermia-induced platelet apoptosis, and decreased of MnSOD activity might, at least partially account for the enhanced ROS levels in hyperthermia-treated platelets. Therefore, determining the role of mitochondrial ROS as contributory factors in platelet apoptosis, is critical in providing a rational design of novel drugs aimed at targeting mitochondrial ROS. Such therapeutic approaches would have potential clinical utility in platelet-associated disorders involving oxidative damage.
Collapse
|
12
|
Abstract
Through 5,000 years of practice, physicians, surgeons, clergy, or lay people have used thermal therapy to treat mass lesions now known as cancer. The methods have changed dramatically over this time span and certainly the techniques have improved the efficacy and safety. Hyperthermia used in combination with chemotherapy or ionizing radiation continues to improve outcomes. The authors briefly describe the historical role of hyperthermia in cancer care as well as modern expectations based on technological advancements. In particular, the article focuses on the role of hyperthermia for cancers that do not have other, more effective treatments.
Collapse
Affiliation(s)
- Evan S Glazer
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 444, Office FC12.3058, 1400 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
13
|
Jia D, Liu J. Current devices for high-performance whole-body hyperthermia therapy. Expert Rev Med Devices 2010; 7:407-23. [PMID: 20420562 DOI: 10.1586/erd.10.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For late-stage cancer, whole-body hyperthermia (WBH) is highly regarded by physicians as a promising alternative to conventional therapies. Although WBH is still under scrutiny due to potential toxicity, its benefits are incomparable, as diversified devices and very promising treatment protocols in this area are advanced into Phase II and III clinical trials. Following the introduction of the WBH principle, this paper comprehensively reviews the state-of-art high-performance WBH devices based on the heat induction mechanisms - radiation, convection and conduction. Through analyzing each category's physical principle and heat-induction property, the advantages and disadvantages of the devices are evaluated. Technical strategies and critical scientific issues are summarized. For future developments, research directions worth pursuing are presented in this article.
Collapse
Affiliation(s)
- Dewei Jia
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | | |
Collapse
|
14
|
Fotopoulou C, Cho CH, Kraetschell R, Gellermann J, Wust P, Lichtenegger W, Sehouli J. Regional abdominal hyperthermia combined with systemic chemotherapy for the treatment of patients with ovarian cancer relapse: Results of a pilot study. Int J Hyperthermia 2010; 26:118-26. [DOI: 10.3109/02656730903369200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Current World Literature. Curr Opin Obstet Gynecol 2010; 22:87-93. [DOI: 10.1097/gco.0b013e328335462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|