1
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Alotaibi F, Alshammari K, Alotaibi BA, Alsaab H. Destabilizing the genome as a therapeutic strategy to enhance response to immune checkpoint blockade: a systematic review of clinical trials evidence from solid and hematological tumors. Front Pharmacol 2024; 14:1280591. [PMID: 38264532 PMCID: PMC10803447 DOI: 10.3389/fphar.2023.1280591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Genomic instability is increased alterations in the genome during cell division and is common among most cancer cells. Genome instability enhances the risk of initial carcinogenic transformation, generating new clones of tumor cells, and increases tumor heterogeneity. Although genome instability contributes to malignancy, it is also an "Achilles' heel" that constitutes a therapeutically-exploitable weakness-when sufficiently advanced, it can intrinsically reduce tumor cell survival by creating DNA damage and mutation events that overwhelm the capacity of cancer cells to repair those lesions. Furthermore, it can contribute to extrinsic survival-reducing events by generating mutations that encode new immunogenic antigens capable of being recognized by the immune system, particularly when anti-tumor immunity is boosted by immunotherapy drugs. Here, we describe how genome-destabilization can induce immune activation in cancer patients and systematically review the induction of genome instability exploited clinically, in combination with immune checkpoint blockade. Methods: We performed a systematic review of clinical trials that exploited the combination approach to successfully treat cancers patients. We systematically searched PubMed, Cochrane Central Register of Controlled Trials, Clinicaltrials.gov, and publication from the reference list of related articles. The most relevant inclusion criteria were peer-reviewed clinical trials published in English. Results: We identified 1,490 studies, among those 164 were clinical trials. A total of 37 clinical trials satisfied the inclusion criteria and were included in the study. The main outcome measurements were overall survival and progression-free survival. The majority of the clinical trials (30 out of 37) showed a significant improvement in patient outcome. Conclusion: The majority of the included clinical trials reported the efficacy of the concept of targeting DNA repair pathway, in combination with immune checkpoint inhibitors, to create a "ring of synergy" to treat cancer with rational combinations.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Kanaan Alshammari
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Oncology Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Badi A. Alotaibi
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hashem Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Kashefizadeh A, Kazemizadeh H. Immunogenic cell death (ICD)-inducers in non-small-cell lung carcinoma (NSCLC): current knowledge and future perspective. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:316-322. [PMID: 36180811 DOI: 10.1007/s12094-022-02949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023]
Abstract
The prevalence of non-small-cell lung cancer (NSCLC) is rising every year all around the world. The interaction between cancer cells and the tumor microenvironment (TME) is a crucial factor in determining the development of human neoplasms. Organellar and cellular stress are induced during immunogenic cell death (ICD), a particularly functional response pattern. ICD is a separate but poorly characterized entity caused by various cancer treatments. The induction of ICD has the potential to change TME and the recruitment of tumor-infiltrating lymphocytes (TILs), and the coupling of ICD-inducers and other therapeutic approaches can have a synergistic role in boosting anticancer impacts. The purpose of this study is to review the studies in the field of NSCLC using ICD-inducers as a treatment strategy or as a combination therapy. This review provide for researches a better view of what has been done so far and the challenges they face in the future.
Collapse
Affiliation(s)
- Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sadagopan A, Michelakos T, Boyiadzis G, Ferrone C, Ferrone S. Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint Inhibitors: A Review. JAMA Oncol 2022; 8:462-473. [PMID: 34940799 PMCID: PMC8930447 DOI: 10.1001/jamaoncol.2021.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Although typically impressive, objective responses to immune checkpoint inhibitors (ICIs) occur in only 12.5% of patients with advanced cancer. The majority of patients do not respond due to cell-intrinsic resistance mechanisms, including human leukocyte antigen (HLA) class I antigen-processing machinery (APM) defects. The APM defects, which have a negative effect on neoantigen presentation to cytotoxic T lymphocytes (CTLs), are present in the majority of malignant tumors. These defects are caused by gene variations in less than 25% of cases and by dysregulated signaling and/or epigenetic changes in most of the remaining cases, making them frequently correctable. This narrative review summarizes the growing clinical evidence that chemotherapy, targeted therapies, and, to a lesser extent, radiotherapy can correct HLA class I APM defects in cancer cells and improve responses to ICIs. OBSERVATIONS Most chemotherapeutics enhance HLA class I APM component expression and function in cancer cells, tumor CTL infiltration, and responses to ICIs in preclinical and clinical models. Despite preclinical evidence, radiotherapy does not appear to upregulate HLA class I expression in patients and does not enhance the efficacy of ICIs in clinical settings. The latter findings underscore the need to optimize the dose and schedule of radiation and timing of ICI administration to maximize their immunogenic synergy. By increasing DNA and chromatin accessibility, epigenetic agents (histone deacetylase inhibitors, DNA methyltransferase inhibitors, and EZH2 inhibitors) enhance HLA class I APM component expression and function in many cancer types, a crucial contributor to their synergy with ICIs in patients. Furthermore, epidermal growth factor receptor (EGFR) inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors are effective at upregulating HLA class I expression in EGFR- and BRAF-variant tumors, respectively; these changes may contribute to the clinical responses induced by these inhibitors in combination with ICIs. CONCLUSIONS AND RELEVANCE This narrative review summarizes evidence indicating that chemotherapy and targeted therapies are effective at enhancing HLA class I APM component expression and function in cancer cells. The resulting increased immunogenicity and recognition and elimination of cancer cells by cognate CTLs contributes to the antitumor activity of these therapies as well as to their synergy with ICIs.
Collapse
Affiliation(s)
- Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriella Boyiadzis
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
6
|
Fu L, Zhou X, He C. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100075. [PMID: 33885225 DOI: 10.1002/mabi.202100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy has pointed out a scientific and promising direction for cancer treatment through the rouse of immunosurveillance and the decrease of possible side effects in recent years. In immunotherapy, immunogenic cancer cell death (ICD) plays a critical role in regulating anti-cancer immune system in vivo via the release of damage-associated molecular patterns. ICD can not only induce in situ cancer cells apoptosis, but also arouse the immune response against metastatic tumors, which is of great clinical significance to eradicate tumors. In cancer immunotherapy, polymer nanoparticles have drawn increasing attention as an important component of ICD-based immunotherapy attributing to their controllable size, excellent biocompatibility, promising ability of protecting cargo from surrounding environment, which delivers the antigens or immune inducers to antigen-presenting cells, and further triggers sinnvoll T cell response. In this review, the recent advances in the development of polymeric material-based nanosystems for ICD-mediated cancer immunotherapy are summarized. The mechanism of ICD and some current restrictions inhibiting the efficiency of immunotherapy and future prospects are also discussed.
Collapse
Affiliation(s)
- Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
8
|
Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020; 17:725-741. [PMID: 32760014 DOI: 10.1038/s41571-020-0413-z] [Citation(s) in RCA: 823] [Impact Index Per Article: 164.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Conventional chemotherapeutics have been developed into clinically useful agents based on their ability to preferentially kill malignant cells, generally owing to their elevated proliferation rate. Nonetheless, the clinical activity of various chemotherapies is now known to involve the stimulation of anticancer immunity either by initiating the release of immunostimulatory molecules from dying cancer cells or by mediating off-target effects on immune cell populations. Understanding the precise immunological mechanisms that underlie the efficacy of chemotherapy has the potential not only to enable the identification of superior biomarkers of response but also to accelerate the development of synergistic combination regimens that enhance the clinical effectiveness of immune checkpoint inhibitors (ICIs) relative to their effectiveness as monotherapies. Indeed, accumulating evidence supports the clinical value of combining appropriately dosed chemotherapies with ICIs. In this Review, we discuss preclinical and clinical data on the immunostimulatory effects of conventional chemotherapeutics in the context of ICI-based immunotherapy.
Collapse
|
9
|
Abstract
Apoptosis was initially seen as a kind of silent cell death with non-induction of the immune response 1. However, in the recent past, it has been seen that death induced by either infections or actions of certain agents can elicit a specific immune response, namely immunogenic cell death (ICD)2. This ICD activates the immune system against antigens associated with deceased cells with the concomitant exposure and releasing of the so-called damage-associated molecular patterns (DAMPs) by dying cells3. Four principal DAMPs related to ICD have been identified (but not limited to): the endoplasmic reticulum (ER) chaperone calreticulin (CRT), heat shock proteins (HSPs), adenosine triphosphate (ATP) and high mobility group box-1 (HMGB-1)4.
Collapse
Affiliation(s)
- Daylen Aguilar-Noriega
- Center for Genetic Engineering and Biotechnology, Ave 31, 158 and 190, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Silvio Perea
- Center for Genetic Engineering and Biotechnology, Ave 31, 158 and 190, Playa, P.O. Box 6162, Havana 10600, Cuba
| |
Collapse
|
10
|
Diederich M. Natural compound inducers of immunogenic cell death. Arch Pharm Res 2019; 42:629-645. [PMID: 30955159 DOI: 10.1007/s12272-019-01150-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Accumulating evidence shows that the anti-cancer potential of the immune response that can be activated by modulation of the immunogenicity of dying cancer cells. This regulated cell death process is called immunogenic cell death (ICD) and constitutes a new innovating anti-cancer strategy with immune-modulatory potential thanks to the release of damage-associated molecular patterns (DAMPs). Some conventional clinically-used chemotherapeutic drugs, as well as preclinically-investigated compounds of natural origins such as anthracyclines, microtubule-destabilizing agents, cardiac glycosides or hypericin derivatives, possess such an immune-stimulatory function by triggering ICD. Here, we discuss the effects of ICD inducers on the release of DAMPs and the activation of corresponding signaling pathways triggering immune recognition. We will discuss potential strategies allowing to overcome resistance mechanisms associated with this treatment approach as well as co-treatment strategies to overcome the immunosuppressive microenvironment. We will highlight the potential role of metronomic immune modulation as well as targeted delivery of ICD-inducing compounds with nanoparticles or liposomal formulations to improving the immunogenicity of ICD inducers aiming at long-term clinical benefits.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Building 29 Room 223, 1 Gwanak-ro, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Luo M, Fu L. The effect of chemotherapy on programmed cell death 1/programmed cell death 1 ligand axis: some chemotherapeutical drugs may finally work through immune response. Oncotarget 2018; 7:29794-803. [PMID: 26919108 PMCID: PMC5045434 DOI: 10.18632/oncotarget.7631] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Most tumors are immunogenic which would trigger some immune response. Chemotherapy also has immune potentiating mechanisms of action. But it is unknown whether the immune response is associated with the efficacy of chemotherapy and the development of chemoresistance. Recently, there is a growing interest in immunotherapy, among which the co-inhibitory molecules, programmed cell death 1/programmed cell death 1 ligand (PD-1/PD-L1) leads to immune evasion. Since some reports showed that conventional chemotherapeutics can induce the expression of PD-L1, we try to summarize the effect of chemotherapy on PD-1/PD-L1 axis and some potential molecules relevant to PD-1/PD-L1 in chemoresistance in this review.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Immunogénicité de la chimiothérapie. ONCOLOGIE 2015. [DOI: 10.1007/s10269-015-2543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 2015; 6:187. [PMID: 25964783 PMCID: PMC4408862 DOI: 10.3389/fimmu.2015.00187] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/06/2015] [Indexed: 12/12/2022] Open
Abstract
The term "immunogenic cell death" (ICD) is commonly employed to indicate a peculiar instance of regulated cell death (RCD) that engages the adaptive arm of the immune system. The inoculation of cancer cells undergoing ICD into immunocompetent animals elicits a specific immune response associated with the establishment of immunological memory. Only a few agents are intrinsically endowed with the ability to trigger ICD. These include a few chemotherapeutics that are routinely employed in the clinic, like doxorubicin, mitoxantrone, oxaliplatin, and cyclophosphamide, as well as some agents that have not yet been approved for use in humans. Accumulating clinical data indicate that the activation of adaptive immune responses against dying cancer cells is associated with improved disease outcome in patients affected by various neoplasms. Thus, novel therapeutic regimens that trigger ICD are urgently awaited. Here, we discuss current combinatorial approaches to convert otherwise non-immunogenic instances of RCD into bona fide ICD.
Collapse
Affiliation(s)
- Lucillia Bezu
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Faculté de Medecine, Université Paris-Sud , Le Kremlin-Bicêtre , France
| | - Ligia C Gomes-de-Silva
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Department of Chemistry, University of Coimbra , Coimbra , Portugal
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University , Ghent , Belgium ; Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - Jitka Fucikova
- Sotio a.c. , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Radek Spisek
- Sotio a.c. , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Gustave Roussy Campus Cancer , Villejuif , France ; Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic ; Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP , Paris , France
| |
Collapse
|
15
|
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866. [PMID: 26137404 DOI: 10.1080/2162402x.2015.1008866] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Collapse
Key Words
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- CML, chronic myeloid leukemia
- DAMP, damage-associated molecular pattern
- EGFR, epidermal growth factor receptor
- EOX, epirubicin plus oxaliplatin plus capecitabine
- ER, endoplasmic reticulum
- FDA, Food and Drug Administration
- FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin
- FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin
- GEMOX, gemcitabine plus oxaliplatin
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- ICD, immunogenic cell death
- MM, multiple myeloma
- NHL, non-Hodgkin's lymphoma
- NSCLC, non-small cell lung carcinoma
- TACE, transcatheter arterial chemoembolization
- XELOX, capecitabine plus oxaliplatin
- antigen-presenting cell
- autophagy
- damage-associated molecular pattern
- dendritic cell
- endoplasmic reticulum stress
- mAb, monoclonal antibody
- type I interferon
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM , U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
16
|
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691. [PMID: 25941621 PMCID: PMC4292729 DOI: 10.4161/21624011.2014.955691] [Citation(s) in RCA: 640] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Collapse
Key Words
- APC, antigen-presenting cell
- ATF6, activating transcription factor 6
- ATP release
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2 protein
- CALR, calreticulin
- CTL, cytotoxic T lymphocyte
- DAMP, damage-associated molecular pattern
- DAPI, 4′,6-diamidino-2-phenylindole
- DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide
- EIF2A, eukaryotic translation initiation factor 2A
- ER, endoplasmic reticulum
- FLT3LG, fms-related tyrosine kinase 3 ligand
- G3BP1, GTPase activating protein (SH3 domain) binding protein 1
- GFP, green fluorescent protein
- H2B, histone 2B
- HMGB1
- HMGB1, high mobility group box 1
- HSP, heat shock protein
- HSV-1, herpes simplex virus type I
- ICD, immunogenic cell death
- IFN, interferon
- IL, interleukin
- MOMP, mitochondrial outer membrane permeabilization
- PDIA3, protein disulfide isomerase family A
- PI, propidium iodide
- RFP, red fluorescent protein
- TLR, Toll-like receptor
- XBP1, X-box binding protein 1
- autophagy
- calreticulin
- endoplasmic reticulum stress
- immunotherapy
- member 3
- Δψm, mitochondrial transmembrane potential
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Senovilla
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Erika Vacchelli
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Molecular Cell Biology Laboratory; Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo, Brazil
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - Lionel Apetoh
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Fernando Aranda
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Vincenzo Barnaba
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Bracci
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy (LMCT); Department of Biomedical Sciences Medical School of the Free University of Brussels (VUB); Jette, Belgium
| | - David Brough
- Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Aitziber Buqué
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Maria G. Castro
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Mara Cirone
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Maria I. Colombo
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | - Isabelle Cremer
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
| | - Sandra Demaria
- Department of Pathology; New York University School of Medicine; New York, NY USA
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (DiSTeBA); University of Salento; Lecce, Italy
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory; Division of Basic Sciences; University of Crete Medical School; Heraklion, Greece
- Institute of Molecular Biology and Biotechnology; Foundation of Research and Technology - Hellas; Heraklion, Greece
| | - Alberto Faggioni
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology; NewYork University School of Medicine and Langone Medical Center; New York, NY USA
| | - Jitka Fučíková
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - Lucia Gabriele
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Udo S. Gaipl
- Department of Radiation Oncology; University Hospital Erlangen; University of Erlangen-Nürnberg; Erlangen, Germany
| | - Jérôme Galon
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - François Ghiringhelli
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Nathalia A. Giese
- European Pancreas Center; Department of Surgery; University Hospital Heidelberg; Heidelberg, Germany
| | - Zong Sheng Guo
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group; Transplantation laboratory; Haartman Institute; University of Helsinki; Helsinki, Finland
| | - Martin Herrmann
- Department of Internal Medicine 3; University of Erlangen-Nuremberg; Erlangen, Germany
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda, MD USA
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn, Germany
| | - Jamie Honeychurch
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Hong-Min Hu
- Cancer Research and Biotherapy Center; Second Affiliated Hospital of Southeast University; Nanjing, China
- Laboratory of Cancer Immunobiology; Earle A. Chiles Research Institute; Providence Portland Medical Center; Portland, OR USA
| | - Xing Huang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Tim M. Illidge
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Koji Kono
- Department of Surgery; National University of Singapore; Singapore, Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore, Singapore
| | | | - Dmitri V. Krysko
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Sherene Loi
- Division of Cancer Medicine and Division of Research; Peter MacCallum Cancer Center; East Melbourne; Victoria, Australia
| | - Pedro R. Lowenstein
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Yuting Ma
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Angelo A. Manfredi
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Isabelle Martins
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1030; Villejuif, France
- Faculté de Médecine; Université Paris-Sud/Paris XI; Kremlin-Bicêtre, France
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Laurie Menger
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Cancer Immunology Unit, Research Department of Haematology; University College London (UCL) Cancer Institute; London, UK
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Michael Michaud
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Gregoire Mignot
- Cellular and Molecular Immunology and Endocrinology, Oniris; Nantes, France
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Gabriele Multhoff
- Department of Radiation Oncology; Klinikum rechts der Isar; Technical University of Munich; Munich, Germany
| | - Rudolf Oehler
- Comprehensive Cancer Center; Medical University of Vienna; Vienna, Austria
| | - Fabio Palombo
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | | | - Jonathan Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Enrico Proietti
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Jean-Ehrland Ricci
- INSERM; U1065; Nice, France
- Equipe “Contrôle Métabolique des Morts Cellulaires,” Center Méditerranéen de Médecine Moléculaire (C3M); Nice, France
- Faculté de Médecine; Université de Nice Sophia Antipolis; Nice, France
- Centre Hospitalier Universitaire de Nice; Nice, France
| | - Chiara Riganti
- Department of Oncology and Subalpine Center for Research and Experimental Medicine (CeRMS); University of Turin; Turin, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Anna Rubartelli
- Cell Biology Unit; Azienda Ospedaliera Universitaria San Martino; Istituto Nazionale per la Ricerca sul Cancro; Genova, Italy
| | | | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute; Herston, Australia
- School of Medicine, University of Queensland; Herston, Australia
| | - Juergen Sonnemann
- Department of Pediatric Haematology and Oncology; Jena University Hospital, Children's Clinic; Jena, Germany
| | - Radek Spisek
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Center Hospitalier de l’Université de Montréal; Faculté de Pharmacie, Université de Montréal; Montréal, Canada
| | - Abdul Qader Sukkurwala
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Department of Pathology, Dow International Medical College; Dow University of Health Sciences; Karachi, Pakistan
| | - Eric Tartour
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Peter Vandenabeele
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
- Methusalem Program; Ghent University; Ghent, Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Samuel T. Workenhe
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Haining Yang
- University of Hawaii Cancer Center; Honolulu, HI USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | - Laurence Zitvogel
- INSERM; U1015; Villejuif, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Centre d’Investigation Clinique Biothérapie 507 (CICBT507); Gustave Roussy Cancer Campus; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
17
|
Ogden A, Rida PCG, Reid MD, Aneja R. Interphase microtubules: chief casualties in the war on cancer? Drug Discov Today 2013; 19:824-9. [PMID: 24201225 DOI: 10.1016/j.drudis.2013.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-targeting agents (MTAs) profoundly affect interphase cells, such as by disrupting axonal transport, transcription, translation, mitochondrial permeability, immune cell function, directional migration and centrosome clustering. This finding is antithetical to the conventionally held notion that MTAs act on mitosis to trigger arrest-mediated apoptotic cell death. Furthermore, the paucity of mitotic cells in patient tumors and lack of correlation of MTA efficacy with tumor proliferation rate provide strong impetus to re-examine the mechanistic basis of action of MTAs, with an eye toward interphase activities. Whereas targeted antimitotics have unequivocally failed their promise across clinical studies, MTAs constitute a mainstay of chemotherapy. This paradox necessitates the conclusion that MTAs exert mitosis-independent effects, spurring a dramatic paradigm shift in our understanding of the mode of action of MTAs.
Collapse
Affiliation(s)
- Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | - Michelle D Reid
- Department of Pathology, Emory University Hospital, Atlanta, GA 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Rogalska A, Szula E, Gajek A, Marczak A, Jóźwiak Z. Activation of apoptotic pathway in normal, cancer ovarian cells by epothilone B. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:600-610. [PMID: 23838010 DOI: 10.1016/j.etap.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
The epothilones, a new class of microtubule-targeting agents, seem to be a very promising alternative to the current strategy of cancer treatment. We have analyzed the aspects of epothilone B (Epo B) on cellular metabolism of tumor (OV-90) and normal (MM 14) ovarian cells. The observed effects were compared with those of paclitaxel (PTX), which is now a standard for the treatment of ovarian cancer. The results provide direct evidence that Epo B is considerably more cytotoxic to human OV-90 ovarian cancer cells than PTX. We have found, that antitumor efficacy of this new drug is related to its apoptosis-inducing ability, which was confirmed during measurements typical markers of the process. Epo B induced changes in morphology of cells, mitochondrial membrane potential and cytochrome c release. Also a slight increase of the intracellular calcium level was observed. Moreover, we have found that ROS production, stimulated by Epo B, is directly involved in the induction of apoptosis via mitochondrial pathway.
Collapse
Affiliation(s)
- Aneta Rogalska
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Ewa Szula
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Arkadiusz Gajek
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Zofia Jóźwiak
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|