1
|
Tedeschini T, Campara B, Grigoletto A, Zanotto I, Cannella L, Gabbia D, Matsuno Y, Suzuki A, Yoshioka H, Armirotti A, De Martin S, Pasut G. Optimization of a pendant-shaped PEGylated linker for antibody-drug conjugates. J Control Release 2024; 375:74-89. [PMID: 39216599 DOI: 10.1016/j.jconrel.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, we conceived and developed antibody-drug conjugates (ADCs) that could efficiently release the drug after enzymatic cleavage of the linker moiety by tumoral proteases. The antibody-drug linkers we used are the result of a rational optimization of a previously reported PEGylated linker, PUREBRIGHT® MA-P12-PS, which showed excellent drug loading capacities but lacked an inbuilt drug discharge mechanism, thus limiting the potency of the resulting ADCs. To address this limitation, we chose to incorporate a protease-sensitive trigger into the linker to favor the release of a "PEGless" drug inside the tumor cells and, therefore, obtain potent ADCs. Currently, most marketed ADCs are based on the Val-Cit dipeptide followed by a self-immolative spacer for releasing the drug in its unmodified form. Here, we selected two untraditional peptide sequences, a Phe-Gly dipeptide and a Val-Ala-Gly tripeptide and placed one or the other in between the drug on one side (N-terminus) and the rest of the linker, including the PEG moiety, on the other side (C-terminus), without a self-immolative group. We found that both linkers responded to cathepsin B, a reference lysosomal enzyme, and liberated a PEG-free drug catabolite, as desired. We then used the two linkers to generate ADCs based on trastuzumab (a HER2-targeting antibody) and DM1 (a microtubule-targeted cytotoxic agent) with an average drug-to-antibody ratio (DAR) of 4 or 8. The ADCs showed restored cytotoxicity in vitro, which was proportional to the DM1 loading and generally higher for the ADCs bearing Val-Ala-Gly in their structure. In an ovarian cancer mouse model, the DAR 8 ADC based on Val-Ala-Gly behaved better than Kadcyla® (an approved ADC of DAR 3.5 used as control throughout this study), leading to a higher tumor volume reduction and more prolonged median survival. Taken together, our results depict a successful linker optimization process and encourage the application of the Val-Ala-Gly tripeptide as an alternative to other existing protease-sensitive triggers for ADCs.
Collapse
Affiliation(s)
- T Tedeschini
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| | - B Campara
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - A Grigoletto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - I Zanotto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - L Cannella
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - D Gabbia
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - Y Matsuno
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Suzuki
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - H Yoshioka
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - S De Martin
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - G Pasut
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
2
|
Li W, Zhang K, Wang W, Liu Y, Huang J, Zheng M, Li L, Zhang X, Xu M, Chen G, Wang L, Zhang S. Combined inhibition of HER2 and VEGFR synergistically improves therapeutic efficacy via PI3K-AKT pathway in advanced ovarian cancer. J Exp Clin Cancer Res 2024; 43:56. [PMID: 38403634 PMCID: PMC10895844 DOI: 10.1186/s13046-024-02981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/11/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a prevalent malignancy in the female reproductive system, and developing effective targeted therapies for this disease remains challenging. The aim of this study was to use clinically-relevant OC models to evaluate the therapeutic effectiveness of RC48, an antibody-drug conjugate (ADC) targeting HER2, either alone or in combination with the VEGFR inhibitor Cediranib Maleate (CM), for the treatment of advanced OC. METHODS OC tumor specimens and cell lines were analyzed to determine HER2 and VEGFR expression by Western blot, immunocytochemistry and immunofluorescence. Moreover, the OC cell lines, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models were treated with RC48 and/or CM and then subjected to cell proliferation, viability, apoptosis, and tumor growth analyses to evaluate the feasibility of combination therapy for OC both in vitro and in vivo. Additionally, RNA-Seq was performed to investigate the critical mechanism underlying the combination therapy of RC48 and CM. RESULTS Our results demonstrated that RC48 alone effectively targeted and inhibited the growth of HER2-positive OC tumors in both cell lines and PDX models. Furthermore, the combination of RC48 and CM synergistically induced tumor regression in human OC cell lines, as well as CDX and PDX models. Mechanistically, we observed that the combination treatment inhibited the growth of OC cells involved inducing apoptosis and suppressing cell motility. RNA-seq analysis provided further mechanistic insights and revealed that co-administration of RC48 and CM downregulated multiple cancer-related pathways, including the AKT/mTOR pathway, cell cycle, and cell proliferation. Notably, our data further confirmed that the PI3K-AKT pathway played a key role in the inhibition of proliferation triggered by combinational treatment of RC48 and CM in OC cells. CONCLUSIONS These findings provide a preclinical framework supporting the potential of dual targeting HER2 and VEGFR as a promising therapeutic strategy to improve outcomes in patients with OC.
Collapse
Affiliation(s)
- Weisong Li
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Kai Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjun Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Liu
- Department of Gynaecology and Obstetrics, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Nanchang University), Ganzhou, 341000, China
| | - Jianming Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Meihong Zheng
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Ling Li
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Xinyu Zhang
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China
| | - Minjuan Xu
- Department of Gynaecology and Obstetrics, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Nanchang University), Ganzhou, 341000, China.
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, 200092, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, 1 Hexie Road, Rongjiang New District, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Zhu K, Yang X, Tai H, Zhong X, Luo T, Zheng H. HER2-targeted therapies in cancer: a systematic review. Biomark Res 2024; 12:16. [PMID: 38308374 PMCID: PMC10835834 DOI: 10.1186/s40364-024-00565-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Abnormal alterations in human epidermal growth factor receptor 2 (HER2, neu, and erbB2) are associated with the development of many tumors. It is currently a crucial treatment for multiple cancers. Advanced in molecular biology and further exploration of the HER2-mediated pathway have promoted the development of medicine design and combination drug regimens. An increasing number of HER2-targeted drugs including specific monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and antibody-drug conjugates (ADCs) have been approved by the U.S. Food and Drug Administration. The emergence of ADCs, has significantly transformed the treatment landscape for various tumors, such as breast, gastric, and bladder cancer. Classic monoclonal antibodies and novel TKIs have not only demonstrated remarkable efficacy, but also expanded their indications, with ADCs in particular exhibiting profound clinical applications. Moreover the concept of low HER2 expression signifies a breakthrough in HER2-targeted therapy, indicating that an increasing number of tumors and patients will benefit from this approach. This article, provides a comprehensive review of the underlying mechanism of action, representative drugs, corresponding clinical trials, recent advancements, and future research directions pertaining to HER2-targeted therapy.
Collapse
Affiliation(s)
- Kunrui Zhu
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Hebei Tai
- College of Clinical Medical, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Xiaorong Zhong
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Zheng
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Wilkins R, Lin LH, Xia R, Shiomi T, Zamuco RD, Shukla PS. Clinical Outcome and Morphology-Based Analysis of p53 Aberrant and Mismatch Repair Protein-Deficient Ovarian Clear Cell Carcinoma and Their Association With p16, HER2, and PD-L1 Expression. Am J Clin Pathol 2023; 160:466-476. [PMID: 37415414 DOI: 10.1093/ajcp/aqad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVES We studied the prevalence and prognostic significance of mismatch repair deficient (MMRD) and p53 aberrant ovarian clear cell carcinoma (CCO) and their association with other prognostic and theranostic biomarkers (p16, HER2, PD-L1). We also aimed to identify morphologic features to serve as screening tools for immunohistochemical testing for these biomarkers. METHODS Tissue microarrays with 3-mm cores from 71 pure CCOs were immunostained with PMS2, MSH6, p53, p16, HER2, and PD-L1. Expression status was correlated with tumor recurrence/disease progression and survival. It was also correlated with morphologic features (tumor size, nuclear grade, tumor architecture, mitotic activity, presence of endometriosis, tumor budding, and tumor inflammation). RESULTS p53 aberrant tumors were associated with shorter overall and recurrence-free survivals (P = .002 and P = .01, respectively). In multivariate analysis, p53 aberrant status and tumor stage were independently associated with recurrence/disease progression (hazard ratio [HR] = 3.31, P = .037 and HR = 1.465, P = .004, respectively). p53 aberrant status was associated with tumor budding (P = .037). MMRD, p16, HER2, and PD-L1 expression had no prognostic significance. HER2 and PD-L1 were expressed in 56% and 35% of tumors, respectively. MMRD was associated with tumor expression of PD-L1 (P > .05) but not with tumor inflammation. CONCLUSIONS Aberrant p53 in CCO is infrequent but associated with poor prognosis independent of stage. Presence of tumor budding could be a screening tool for p53 testing. High prevalence of HER2 and PD-L1 expression indicates the eligibility of patients with CCO for ongoing clinical trials using these therapeutic targets.
Collapse
Affiliation(s)
- Reid Wilkins
- Department of Pathology, NYU Langone Health, New York, NY, US
| | | | - Rong Xia
- Department of Pathology, NYU Langone Health, New York, NY, US
| | - Tomoe Shiomi
- Office of Science and Research, NYU Grossman School of Medicine, New York, NY, US
| | | | | |
Collapse
|
5
|
Zheng Y, Zou J, Sun C, Peng F, Peng C. Ado-tratuzumab emtansine beyond breast cancer: therapeutic role of targeting other HER2-positive cancers. Front Mol Biosci 2023; 10:1165781. [PMID: 37251081 PMCID: PMC10210145 DOI: 10.3389/fmolb.2023.1165781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate approved by the FDA in 2013 for advanced HER2-positive breast cancer treatment exhibiting promising clinical benefits. However, HER2 overexpression and gene amplification have also been reported in other cancers like gastric cancer, non-small cell lung cancer (NSCLC), and colorectal cancer. Numerous preclinical studies have also revealed the significant antitumor effect of T-DM1 on HER2-positive tumors. With the advancement in research, several clinical trials have been conducted to investigate the antitumor effect of T-DM1. In this review, we briefly introduced the pharmacological effects of T-DM1. We reviewed its preclinical and clinical studies, especially on other HER2-positive cancers, establishing what has been encountered between its preclinical and clinical studies. In clinical studies, we found that T-DM1 has a therapeutic value on other cancers. An insignificant effect was observed on gastric cancer and NSCLC, inconsistent with the preclinical studies.
Collapse
Affiliation(s)
- Yang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiayu Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Sichuan University, Chengdu, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Han C, McNamara B, Bellone S, Harold J, Manara P, Hartwich TMP, Mutlu L, Yang-Hartwich Y, Zipponi M, Demirkiran C, Verzosa SM, Altwerger G, Ratner E, Huang GS, Clark M, Andikyan V, Azodi M, Dottino PR, Schwartz PE, Santin AD. The Poly (ADP-ribose) polymerase inhibitor olaparib and pan-ErbB inhibitor neratinib are highly synergistic in HER2 overexpressing epithelial ovarian carcinoma in vitro and in vivo. Gynecol Oncol 2023; 170:172-178. [PMID: 36706643 PMCID: PMC10023457 DOI: 10.1016/j.ygyno.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is associated with the highest gynecologic cancer mortality. The development of novel, effective combinations of targeted therapeutics remains an unmet medical need. We evaluated the preclinical efficacy of the Poly (ADP-ribose) polymerase (PARP) inhibitor (olaparib) and the pan-ErbB inhibitor (neratinib) as single agents and in combination in ovarian cancer cell lines and xenografts with variable HER2 expression. METHODS In vitro cell viability with olaparib, neratinib, and their combination was assessed using flow-cytometry based assays against a panel of OC primary cell lines with variable HER2 expression. Immunoblotting experiments were performed to elucidate the mechanism of activity and synergism. The in vivo antitumor activity of the olaparib/neratinib combination versus single agents was tested in HER2 positive xenograft OC models. RESULTS HER2 + OC cell lines demonstrated higher sensitivity to olaparib and neratinib when compared to HER2 negative tumors (i.e., IC50: 2.06 ± 0.33 μM vs. 39.28 ± 30.51 μM, p = 0.0035 for olaparib and 19.42 ± 2.63 nM vs. 235.0 ± 165.0 nM, p = 0.0035 for neratinib). The combination of olaparib with neratinib was more potent when compared to single-agent olaparib or neratinib both in vitro and in vivo, and demonstrated synergy in all primary HER2 + OC models. Western blot experiments showed neratinib decreased pHER2/neu while increased Poly(ADP-ribose) (PAR) enzymatic activity; olaparib increased pHER2/Neu expression and blocked PAR activatio. Olaparib/neratinib in combination decreased both pHER2/Neu as well as PAR activation. CONCLUSION The combination of olaparib and neratinib is synergistic and endowed with remarkable preclinical activity against HER2+ ovarian cancers. This combination may represent a novel therapeutic option for ovarian cancer patients with HER2+, homologous recombination-proficient tumors resistant to chemotherapy.
Collapse
Affiliation(s)
- Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Justin Harold
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Paola Manara
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Margherita Zipponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Skylar Miguel Verzosa
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Gloria S. Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Mitchell Clark
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Peter R. Dottino
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Peter E. Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale University School of Medicine, CT 06520, USA
| |
Collapse
|
7
|
The role of HER2 as a therapeutic biomarker in gynaecological malignancy: potential for use beyond uterine serous carcinoma. Pathology 2023; 55:8-18. [PMID: 36503635 DOI: 10.1016/j.pathol.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a prognostic biomarker and therapeutic target in carcinomas of the breast, stomach and colon. In 2018, clinical trial data confirmed the prognostic and predictive role of HER2 in uterine serous carcinoma, with a demonstrated survival benefit from combined chemotherapy and anti-HER2 targeted therapy in patients with advanced or recurrent disease. Approximately one-third of uterine serous carcinomas demonstrate HER2 protein overexpression and/or gene amplification and HER2 immunohistochemistry, supplemented by in situ hybridisation in equivocal cases, is fast becoming a reflex ancillary test at time of diagnosis. The potential role of HER2 in gynaecological tumours other than uterine serous carcinoma is yet to be firmly established. With the advent of personalised medicine, routine tumour sequencing and pursuit of targeted therapies, this is a field currently under active investigation. Emerging data suggest triaging endometrial carcinomas for HER2 analysis based on molecular classification may be superior to histotype-based testing, with copy-number high/p53 mutant tumours enriched for HER2 overexpression or amplification. Accordingly, many carcinosarcomas and a subset of clear cell and high-grade endometrioid carcinomas may be eligible for HER2 targeted therapy, although any clinical benefit in this context is currently undefined. For ovarian carcinomas, combined data support the role of HER2 as a prognostic biomarker, however its use as a therapeutic target is yet to be elucidated through clinical trials. In the cervix, reported rates of HER2 overexpression vary and are generally low, and currently there is insufficient evidence to justify routine HER2 testing in this context. Limited data suggest HER2 holds promise as a prognostic and predictive biomarker in vulvar Paget disease. Future clinical trials, with pathologist input to develop and refine site-specific scoring criteria, are required to establish what role HER2 might play more broadly in gynaecological cancer care.
Collapse
|
8
|
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol 2022; 13:1083462. [PMID: 36601109 PMCID: PMC9806173 DOI: 10.3389/fimmu.2022.1083462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a high metastatic potential. Monoclonal antibodies (mAbs) that target HER2, such as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for HER2-positive breast cancer. A growing body of preclinical and clinical evidence points to the importance of innate immunity mediated by antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of mAbs on the resulting anti-tumor response. In this review, we provide an overview of the role of natural killer (NK) cells and ADCC in targeted therapy of HER2-positive breast cancer, including the biological functions of NK cells and the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss regulatory mechanisms and recent strategies to leverage our knowledge of NK cells and ADCC as an immunotherapy approach for HER2-positive breast cancer.
Collapse
|
9
|
Targeted Therapies in the Treatment of Uterine Serous Carcinoma. Curr Treat Options Oncol 2022; 23:1804-1817. [PMID: 36447064 DOI: 10.1007/s11864-022-01030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
OPINION STATEMENT Despite the dismal prognosis of uterine serous carcinoma (USC), recent advances in molecular classification and targeted treatments have demonstrated improvements in survival outcomes for patients both in the upfront and recurrent treatment settings. After appropriate surgical staging and surgical cytoreduction as indicated, correct pathologic and molecular classification of USC is important to provide the most appropriate systemic adjuvant treatment. HER2-targeted agents are one of the most important advances in the treatment of USC in decades. Thus, for HER2-positive tumors, the addition of trastuzumab to conventional chemotherapy is indicated in those with advanced stage and/or recurrent disease. Treatment with pembrolizumab and lenvatinib suggests a 50% response rate in women with recurrent disease which serves as a promising targeted treatment strategy. Overall, emerging targeted therapeutic options with antibody-drug conjugates (i.e. targeting HER2, folic acid receptor alpha, or Trop-2), combinations of immunotherapies and tyrosine kinase inhibitors, PARP inhibitors, WEE1 inhibitors, and AKT inhibitors shed further promise in advancements of effective disease-modifying treatments for this unmet medical need for patients with USC. Several trials evaluating these targeted agents are ongoing, and those results are eagerly awaited. As such, enrollment of patients in clinical trials is highly recommended as it will provide patients with a higher level of personalized cancer care.
Collapse
|
10
|
A HER2 Tri-Specific NK Cell Engager Mediates Efficient Targeting of Human Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13163994. [PMID: 34439149 PMCID: PMC8394622 DOI: 10.3390/cancers13163994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary HER2 is a marker known to be over-expressed on breast cancer, rendering it one of the most useful solid tumor targets for antibody-based therapies. Despite expression on ovarian cancer, results targeting HER2 in this setting have been disappointing, thus requiring more aggressive approaches. Natural killer (NK) cells are known as principal mediators of cancer cell killing, but cancer cells find ways to deter them. We devised a tri-specific biological drug containing antibody fragments that simultaneously binds NK cells and cancer cells and at the same time delivers a natural cytokine signal that triggers robust NK cell expansion. In vitro studies show the drug augments NK cell killing of a number of HER2-positive human cell lines, while enhancing NK cell activation and proliferation. Studies in mice engrafted with human ovarian cancer showed the drug has anti-tumor efficacy, clearly demonstrating its ability to bolster NK cells in their ability to contain tumor cell growth. Abstract Clinical studies validated antibodies directed against HER2, trastuzumab, and pertuzumab, as useful methodology to target breast cancer cases where HER2 is expressed. The hope was that HER2 targeting using these antibodies in ovarian cancer patients would prove useful as well, but clinical studies have shown lackluster results in this setting, indicating a need for a more comprehensive approach. Immunotherapy approaches stimulating the innate immune system show great promise, although enhancing natural killer (NK) function is not an established mainstream immunotherapy. This study focused on a new nanobody platform technology in which the bispecific antibody was altered to incorporate a cytokine. Herein we describe bioengineered CAM1615HER2 consisting of a camelid VHH antibody fragment recognizing CD16 and a single chain variable fragment (scFv) recognizing HER2 cross-linked by the human interleukin-15 (IL-15) cytokine. This tri-specific killer engager (TriKETM) showed in vitro prowess in its ability to kill ovarian cancer human cell lines. In addition, we demonstrated its efficacy in inducing potent anti-cancer effects in an in vivo xenograft model of human ovarian cancer engrafting both cancer cells and human NK cells. While previous approaches with trastuzumab and pertuzumab faltered in ovarian cancer, the hope is incorporating targeting and cytokine priming within the same molecule will enhance efficacy in this setting.
Collapse
|
11
|
Lin WW, Cheng YA, Li CC, Ho KW, Chen HJ, Chen IJU, Huang BC, Liu HJ, Lu YC, Cheng CM, Huang MY, Lai HW, Cheng TL. Enhancement of tumor tropism of mPEGylated nanoparticles by anti-mPEG bispecific antibody for ovarian cancer therapy. Sci Rep 2021; 11:7598. [PMID: 33828191 PMCID: PMC8027450 DOI: 10.1038/s41598-021-87271-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is highly metastatic, with a high frequency of relapse, and is the most fatal gynecologic malignancy in women worldwide. It is important to elevate the drug susceptibility and cytotoxicity of ovarian cancer cells, thereby eliminating resident cancer cells for more effective therapeutic efficacy. Here, we developed a bispecific antibody (BsAb; mPEG × HER2) that can easily provide HER2+ tumor tropism to mPEGylated liposomal doxorubicin (PLD) and further increase the drug accumulation in cancer cells via receptor-mediated endocytosis, and improve the cytotoxicity and therapeutic efficacy of HER2+ ovarian tumors. The mPEG × HER2 can simultaneously bind to mPEG molecules on the surface of PLD and HER2 antigen on the surface of ovarian cancer cells. Simply mixing the mPEG × HER2 with PLD was able to confer HER2 specificity of PLD to HER2+ ovarian cancer cells and efficiently trigger endocytosis and enhance cytotoxicity by 5.4-fold as compared to non-targeted PLD. mPEG × HER2-modified PLD was able to significantly increase the targeting and accumulation of HER2+ ovarian tumor by 220% as compared with non-targeted PLD. It could also significantly improve the anti-tumor activity of PLD (P < 0.05) with minimal obvious toxicity in a tumor-bearing mouse model. We believe that the mPEG × HER2 can significantly improve the therapeutic efficacy, potentially reduce the relapse freqency and thereby achieve good prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Post Baccalaureat Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chia-Ching Li
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-J U Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Wen Lai
- Endoscopic and Oncoplastic Breast Surgery Center, Comprehensive Breast Cancer Center, Changhua Christian Hospital, 135 Nanxiao Street, Changhua, 500, Taiwan. .,Division of General Surgery, Changhua Christian Hospital, Changhua, Taiwan. .,Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan. .,Minimal Invasive Surgery Research Center, Changhua Christian Hospital, Changhua, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
12
|
Tymon-Rosario J, Zeybek B, Santin AD. Novel antibody-drug conjugates: current and future roles in gynecologic oncology. Curr Opin Obstet Gynecol 2021; 33:26-33. [PMID: 32618744 PMCID: PMC8253558 DOI: 10.1097/gco.0000000000000642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) represent a new class of drugs that combine a surface receptor-targeting antibody linked to a cytotoxic molecule. This review summarizes the current literature demonstrating their tremendous promise as therapeutic agents in the treatment of aggressive gynecologic malignancies. RECENT FINDINGS Several antigens have proven to be differentially overexpressed in a variety of gynecologic tumors when compared with normal surrounding tissue and serve as novel targets for ADC therapy. In the last few years HER2/neu, folic acid-alpha (FRα) and Trop-2 overexpression have been exploited as excellent targets by novel ADCs such as Trastuzumab emtansine (T-DM1), SYD985, IMGN853 (Mirvetuximab soravtansine) and Sacituzumab govitecan (SG, IMMU-132) in multiple tumors including ovarian, endometrial and cervical cancers. Although the selectivity of ADCs with noncleavable linkers (i.e. T-DM1) has shown negligible effect on surrounding antigen negative cells, those ADCs with cleavable linkers (i.e. SYD985, IMGN853 and SG) may kill both antigen-positive target cells and surrounding antigen-negative cells via the bystander effect. SUMMARY Preclinical data strongly supports these ADCs and ongoing clinical trials will shed further light into the potential of making these drugs part of current standard practice and providing our patients with a higher level of personalized cancer care.
Collapse
Affiliation(s)
- Joan Tymon-Rosario
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
13
|
Uterine serous carcinoma: Molecular features, clinical management, and new and future therapies. Gynecol Oncol 2020; 160:322-332. [PMID: 33160694 DOI: 10.1016/j.ygyno.2020.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer. Multimodality treatment with surgery, radiotherapy, and chemotherapy is commonly used, given its propensity for extrauterine spread, distant recurrences, and poor prognosis. However, the use of molecularly-based therapy is expanding. Here, we review key molecular features of USC, discuss current management, and assess the landscape of novel therapies and combinations.
Collapse
|
14
|
Abstract
BACKGROUND Though accounts for 2.5% of all cancers in female, the death rate of ovarian cancer is high, which is the fifth leading cause of cancer death (5% of all cancer death) in female. The 5-year survival rate of ovarian cancer is less than 50%. The oncogenic molecular signaling of ovarian cancer are complicated and remain unclear, and there is a lack of effective targeted therapies for ovarian cancer treatment. METHODS In this study, we propose to investigate activated signaling pathways of individual ovarian cancer patients and sub-groups; and identify potential targets and drugs that are able to disrupt the activated signaling pathways. Specifically, we first identify the up-regulated genes of individual cancer patients using Markov chain Monte Carlo (MCMC), and then identify the potential activated transcription factors. After dividing ovarian cancer patients into several sub-groups sharing common transcription factors using K-modes method, we uncover the up-stream signaling pathways of activated transcription factors in each sub-group. Finally, we mapped all FDA approved drugs targeting on the upstream signaling. RESULTS The 427 ovarian cancer samples were divided into 3 sub-groups (with 100, 172, 155 samples respectively) based on the activated TFs (with 14, 25, 26 activated TFs respectively). Multiple up-stream signaling pathways, e.g., MYC, WNT, PDGFRA (RTK), PI3K, AKT TP53, and MTOR, are uncovered to activate the discovered TFs. In addition, 66 FDA approved drugs were identified targeting on the uncovered core signaling pathways. Forty-four drugs had been reported in ovarian cancer related reports. The signaling diversity and heterogeneity can be potential therapeutic targets for drug combination discovery. CONCLUSIONS The proposed integrative network analysis could uncover potential core signaling pathways, targets and drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Dalian University of Technology, Dalian, 116024, China
| | - Liwei Zhang
- Dalian University of Technology, Dalian, 116024, China
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
15
|
Wang S, Wen H, Fei W, Zhao Y, Feng Y, Kuang L, Wang M, Wu M. Two engineered site-specific antibody-drug conjugates, HLmD4 and HLvM4, have potent therapeutic activity in two DLL4-positive tumour xenograft models. Am J Cancer Res 2020; 10:2387-2408. [PMID: 32905508 PMCID: PMC7471348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023] Open
Abstract
The humanized Delta-like 4 (DLL4) monoclonal antibody H3L2 with a quite high affinity for hrDLL4 inhibits the DLL4-mediated human umbilical vein endothelial cell (HUVEC) phenotype, inducing dysfunctional angiogenesis and tumour cell apoptosis, which effectively arrests breast cancer cell growth in vivo. To develop a more effective therapy, an engineered cysteine residue at alanine 121 (Kabat numbering) on each H3L2 heavy chain or at valine 207 (Kabat numbering) on each H3L2 light chain was established by site-directed mutagenesis. Three engineered antibodies, THL4, TH2 and TL2, were identified, and the specific-site antibody-drug conjugates (ADCs) THL4-mpeoDM1 (named HLmD4), TH2-mpeoDM1 (named HmD2), TL2-mpeoDM1 (named LmD2) and THL4-vcMMAE (named HLvM4), were produced, which exhibit much more potent antitumour activity than the naked antibody. The engineered ADCs can be directed against DLL4 and effectively internalized, followed by the release of small molecule cytotoxic agents, e.g., DM1 or MMAE, into the cytosol, which inhibit the synthesis of microtubules and induce G2/M phase growth arrest and cell death through the induction of apoptosis. ADC-conjugated DM1 was highly potent against DLL4-expressing cells in vitro. We systematically compared the in vitro potency and the in vivo preclinical efficacy and safety profiles of the heterogeneous conventional ADC, H3L2-mpeoDM1 (named JmD4) with that of the homogeneous engineered conjugate HLmD4. The engineered anti-DLL4 ADCs, particularly HLmD4, showed more potent antitumour activity than Docetaxel and superior safety compared with JmD4 in two xenograft tumour models. Our findings indicate that engineered ADCs have promising potential as effective preclinical therapies for cancers.
Collapse
Affiliation(s)
- Shijing Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Hui Wen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Wenyi Fei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Yuhong Zhao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Yuqi Feng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Lu Kuang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| | - Min Wu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009, China
| |
Collapse
|
16
|
Domínguez-Ríos R, Sánchez-Ramírez DR, Ruiz-Saray K, Oceguera-Basurto PE, Almada M, Juárez J, Zepeda-Moreno A, Del Toro-Arreola A, Topete A, Daneri-Navarro A. Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy. Colloids Surf B Biointerfaces 2019; 178:199-207. [PMID: 30856589 DOI: 10.1016/j.colsurfb.2019.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 01/15/2023]
Abstract
The conventional treatment (cytoreduction combined with cisplatin/carboplatin and taxane drugs) of ovarian cancer has a high rate of failure and recurrence despite a favorable initial response. This lack of success is usually attributed to the development of multidrug resistance mechanisms by cancer cells and avoidance of the anti-growth effects of monoclonal targeted therapeutic antibodies. The disease, like other cancers, is characterized by the overexpression of molecular markers, including HER2 receptors. Preclinical and clinical studies with trastuzumab, a HER2-targeted therapeutic antibody, reveal a low improvement of the outcomes of HER2 positive ovarian cancer patients. Therefore, here, we propose a cisplatin-loaded, HER2 targeted poly(lactic-co-glycolic) nanoplatform, a system capable to escape the drug-efflux effect and to take advantage of the overexpressed HER2 receptors, using them as docks for targeted chemotherapy. The NP/trastuzumab ratio was determined after fluorescein labeling of antibodies and quantification of fluorescence in NPs. The system was also characterized in terms of size, zeta potential, drug release kinetics, cytotoxicity and cellular internalization in the epithelial ovarian cancer cell line SKOV-3, and compared with the HER2 negative breast cancer cell line HCC70. Our results show an increased cytotoxicity of NPs as compared to free cisplatin, and moreover, an enhanced internalization and cytotoxicity due to the bionfunctionalization of NPs with the monoclonal antibody.
Collapse
Affiliation(s)
- Rossina Domínguez-Ríos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Dante R Sánchez-Ramírez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Kassandra Ruiz-Saray
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Paola E Oceguera-Basurto
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, Sonora C.P. 85880, Mexico
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora, 83000, Mexico
| | - Abraham Zepeda-Moreno
- Instituto de Investigación en Cáncer de la Infancia y la Adolescencia (INICIA), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico.
| | - Adrián Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| |
Collapse
|
17
|
Bonello M, Sims AH, Langdon SP. Human epidermal growth factor receptor targeted inhibitors for the treatment of ovarian cancer. Cancer Biol Med 2018; 15:375-388. [PMID: 30766749 PMCID: PMC6372909 DOI: 10.20892/j.issn.2095-3941.2018.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.
Collapse
Affiliation(s)
- Maria Bonello
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Harvey Sims
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Peter Langdon
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
18
|
Bonazzoli E, Predolini F, Cocco E, Bellone S, Altwerger G, Menderes G, Zammataro L, Bianchi A, Pettinella F, Riccio F, Han C, Yadav G, Lopez S, Manzano A, Manara P, Buza N, Hui P, Wong S, Litkouhi B, Ratner E, Silasi DA, Huang GS, Azodi M, Schwartz PE, Schlessinger J, Santin AD. Inhibition of BET Bromodomain Proteins with GS-5829 and GS-626510 in Uterine Serous Carcinoma, a Biologically Aggressive Variant of Endometrial Cancer. Clin Cancer Res 2018; 24:4845-4853. [PMID: 29941483 PMCID: PMC6168417 DOI: 10.1158/1078-0432.ccr-18-0864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Uterine serous carcinoma (USC) is a rare and aggressive variant of endometrial cancer. Whole-exome sequencing (WES) studies have recently reported c-Myc gene amplification in a large number of USCs, suggesting c-Myc as a potential therapeutic target. We investigated the activity of novel BET bromodomain inhibitors (GS-5829 and GS-626510, Gilead Sciences Inc.) and JQ1 against primary USC cultures and USC xenografts.Experimental Design: We evaluated c-Myc expression by qRT-PCR in a total of 45 USCs including fresh-frozen tumor tissues and primary USC cell lines. We also performed IHC and Western blot experiments in 8 USC tumors. USC cultures were evaluated for sensitivity to GS-5829, GS-626510, and JQ1 in vitro using proliferation, viability, and apoptosis assays. Finally, the in vivo activity of GS-5829, GS-626510, and JQ1 was studied in USC-ARK1 and USC-ARK2 mouse xenografts.Results: Fresh-frozen USC and primary USC cell lines overexpressed c-Myc when compared with normal tissues (P = 0.0009 and 0.0083, respectively). High c-Myc expression was found in 7 of 8 of primary USC cell lines tested by qRT-PCR and 5 of 8 tested by IHC. In vitro experiments demonstrated high sensitivity of USC cell lines to the exposure to GS-5829, GS-626510, and JQ1 with BET inhibitors causing a dose-dependent decrease in the phosphorylated levels of c-Myc and a dose-dependent increase in caspase activation (apoptosis). In comparative in vivo experiments, GS-5829 and/or GS-626510 were found more effective than JQ1 at the concentrations/doses used in decreasing tumor growth in both USC-ARK1 and USC-ARK2 mouse xenograft models.Conclusions: GS-5829 and GS-626510 may represent novel, highly effective therapeutics agents against recurrent/chemotherapy-resistant USC-overexpressing c-Myc. Clinical studies with GS-5829 in patients with USC harboring chemotherapy-resistant disease are warranted. Clin Cancer Res; 24(19); 4845-53. ©2018 AACR.
Collapse
Affiliation(s)
- Elena Bonazzoli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | | | - Emiliano Cocco
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Gulden Menderes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Bianchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Francesca Pettinella
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Francesco Riccio
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Ghanshyam Yadav
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Salvatore Lopez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Aranzazu Manzano
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Paola Manara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Serena Wong
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Babak Litkouhi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Gloria S Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|