1
|
Xing L, Wang Z, Feng Y, Luo H, Dai G, Sang L, Zhang C, Qian J. The biological roles of CD47 in ovarian cancer progression. Cancer Immunol Immunother 2024; 73:145. [PMID: 38832992 PMCID: PMC11150368 DOI: 10.1007/s00262-024-03708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhao Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Haixia Luo
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Guijiang Dai
- Department of Comprehensive Office, The Second Affiliated Hospital of MuDanjiang Medical University, Mudanjiang, 157009, People's Republic of China
| | - Lin Sang
- Department of Obstetrics and Gynecology, People's Hospital of Anji, Huzhou, 310022, People's Republic of China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
2
|
Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int 2024. [PMID: 38800962 DOI: 10.1002/cbin.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
Collapse
Affiliation(s)
- Xiangning Duan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Duong HQ, Hoang MC, Nguyen TH, Nguyen PT, Le VT, Dao TN, Ngo VL, Dang TH. Aldehyde Dehydrogenase-1A1 (ALDH1A1): The Novel Regulator of Chemoresistance in Pancreatic Cancer Cells. Cancer Control 2024; 31:10732748241305835. [PMID: 39611960 PMCID: PMC11607765 DOI: 10.1177/10732748241305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1), a member of a superfamily of 19 isozymes, exhibits various biological functions and is involved in several important physiological and pathological processes, including those associated with various diseases including cancers such as pancreatic cancer. Chemotherapy is one of the most important strategies for the treatment of pancreatic cancer; however, the chemoresistance exhibited by pancreatic cancer cells is a leading cause of chemotherapy failure. It has been reported that overexpression of ALDH1A1 significantly correlates with poor prognosis and tumor aggressiveness, and is clinically associated with chemoresistance. Additionally, ALDH1A1 may serve as a novel regulator for the diagnosis and prognosis of cancer resistance. In particular, ALDH1A1 can promote cancer progression by facilitating the manifestation of cancer stem cell properties. However, the molecular mechanism by which ALDH1A1 clinically regulates the development of chemoresistance, and its role in prognosis and cancer stem cells, including pancreatic cancer stem cells, remain unclear. Therefore, the current review aims to summarize the clinical functions of ALDH1A1 as a novel regulator of chemoresistance, prognosis, and cancer stem cell development in pancreatic cancer.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Minh-Cong Hoang
- Laboratory Department, Yenphong Medical Center, Bacninh, Vietnam
| | - Thi-Hue Nguyen
- Laboratory Department, Bacgiang General Hospital, Bacgiang, Vietnam
| | | | - Van-Thu Le
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Thi-Nguyet Dao
- Pathology Department, Ducgiang General Hospital, Hanoi, Vietnam
| | - Van-Lang Ngo
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, Vietnam
| | - The-Hung Dang
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
4
|
Li D, Cao Y, Luo CW, Zhang LP, Zou YB. The Clinical Significance and Prognostic Value of ALDH1 Expression in Non-small Cell Lung Cancer: A Systematic Review and Meta-analysis. Recent Pat Anticancer Drug Discov 2024; 19:599-609. [PMID: 37818578 DOI: 10.2174/0115748928265992230925053308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The results of the association between aldehyde dehydrogenase 1 (ALDH1) expression and prognosis of non-small cell lung cancer (NSCLC) are contradictory. We conducted this meta-analysis to investigate the clinical significance and prognostic value of ALDH1 in NSCLC. METHODS The databases PubMed, Web of Science, EMBASE, the Cochrane Library, Wanfang, and CNKI were systematically queried to identify eligible studies. The retrieval time was from database establishment to August 2023. We evaluated the correlation between ALDH1 expression and clinical features of NSCLC by employing odds ratios (ORs) and 95% confidence intervals (95% CIs). In addition, we used hazard ratios (HRs) and 95% CIs to evaluate the role of ALDH1 expression in the prognosis of NSCLC. RESULTS Our study included 21 literatures involving 2721 patients. The expression of ALDH1 in NSCLC was higher than that in normal tissues (OR = 6.04, 95% CI: 1.25-29.27, P = 0.026). The expression of ALDH1 was related to TNM stage (OR = 1.81, 95% CI: 1.06-3.09, P = 0.029), tumor grade (OR = 0.29, 95% CI: 0.17-0.48, P < 0.0001), lymph node metastasis (OR = 2.60, 95% CI: 1.52-4.45, P = 0001) and histological subtype (OR = 0.67, 95% CI: 0.52-0.86, P = 0.002). In patients with NSCLC, we found that the over-expression of ALDH1 was significantly associated with poor overall survival (OS) (HR = 1.44, 95% CI: 1.15-1.81, P = 0.002) and disease-free survival (DFS) (HR = 1.74, 95% CI: 1.45-2.10, P < 0.0001). CONCLUSION The expression of ALDH1 is closely associated with the clinicopathologic characteristics and prognosis of NSCLC. ALDH1 may serve as a valuable clinical assessment tool and prognostic predictor in NSCLC.
Collapse
Affiliation(s)
- Dong Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of CQMU (General Hospital), Chongqing, 401120, China
| | - Yu Cao
- Department of Thoracic Surgery, The Third Affiliated Hospital of CQMU (General Hospital), Chongqing, 401120, China
| | - Cheng-Wen Luo
- Department of Thoracic Surgery, The Third Affiliated Hospital of CQMU (General Hospital), Chongqing, 401120, China
| | - Li-Ping Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of CQMU (General Hospital), Chongqing, 401120, China
| | - Ying-Bo Zou
- Department of Thoracic Surgery, The Third Affiliated Hospital of CQMU (General Hospital), Chongqing, 401120, China
| |
Collapse
|
5
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Polak KL, Tamagno I, Parameswaran N, Smigiel J, Chan ER, Yuan X, Rios B, Jackson MW. Oncostatin-M and OSM-Receptor Feed-Forward Activation of MAPK Induces Separable Stem-like and Mesenchymal Programs. Mol Cancer Res 2023; 21:975-990. [PMID: 37310811 PMCID: PMC10527478 DOI: 10.1158/1541-7786.mcr-22-0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) frequently present with advanced metastatic disease and exhibit a poor response to therapy, resulting in poor outcomes. The tumor microenvironment cytokine Oncostatin-M (OSM) initiates PDAC plasticity, inducing the reprogramming to a stem-like/mesenchymal state, which enhances metastasis and therapy resistance. Using a panel of PDAC cells driven through epithelial-mesenchymal transition (EMT) by OSM or the transcription factors ZEB1 or SNAI1, we find that OSM uniquely induces tumor initiation and gemcitabine resistance independently of its ability to induce a CD44HI/mesenchymal phenotype. In contrast, while ZEB1 and SNAI1 induce a CD44HI/mesenchymal phenotype and migration comparable with OSM, they are unable to promote tumor initiation or robust gemcitabine resistance. Transcriptomic analysis identified that OSM-mediated stemness requires MAPK activation and sustained, feed-forward transcription of OSMR. MEK and ERK inhibitors prevented OSM-driven transcription of select target genes and stem-like/mesenchymal reprogramming, resulting in reduced tumor growth and resensitization to gemcitabine. We propose that the unique properties of OSMR, which hyperactivates MAPK signaling when compared with other IL6 family receptors, make it an attractive therapeutic target, and that disrupting the OSM-OSMR-MAPK feed-forward loop may be a novel way to therapeutically target the stem-like behaviors common to aggressive PDAC. IMPLICATIONS Small-molecule MAPK inhibitors may effectively target the OSM/OSMR-axis that leads to EMT and tumor initiating properties that promote aggressive PDAC.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Ilaria Tamagno
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Neetha Parameswaran
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jacob Smigiel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - E. Ricky Chan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xueer Yuan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Brenda Rios
- Cancer Biology Program, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Mark W. Jackson
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
7
|
Iżycka N, Zaborowski MP, Ciecierski Ł, Jaz K, Szubert S, Miedziarek C, Rezler M, Piątek-Bajan K, Synakiewicz A, Jankowska A, Figlerowicz M, Sterzyńska K, Nowak-Markwitz E. Cancer Stem Cell Markers-Clinical Relevance and Prognostic Value in High-Grade Serous Ovarian Cancer (HGSOC) Based on The Cancer Genome Atlas Analysis. Int J Mol Sci 2023; 24:12746. [PMID: 37628927 PMCID: PMC10454196 DOI: 10.3390/ijms241612746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer stem cells (CSCs) may contribute to an increased risk of recurrence in ovarian cancer (OC). Further research is needed to identify associations between CSC markers and OC patients' clinical outcomes with greater certainty. If they prove to be correct, in the future, the CSC markers can be used to help predict survival and indicate new therapeutic targets. This study aimed to determine the CSC markers at mRNA and protein levels and their association with clinical presentation, outcome, and risk of recurrence in HGSOC (High-Grade Serous Ovarian Cancer). TCGA (The Cancer Genome Atlas) database with 558 ovarian cancer tumor samples was used for the evaluation of 13 CSC markers (ALDH1A1, CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1, PROM1, PTTG1, ROR1, SOX9, and THY1). Data on mRNA and protein levels assessed by microarray and mass spectrometry were retrieved from TCGA. Models to predict chemotherapy response and survival were built using multiple variables, including epidemiological data, expression levels, and machine learning methodology. ALDH1A1 and LGR5 mRNA expressions indicated a higher platinum sensitivity (p = 3.50 × 10-3; p = 0.01, respectively). POU5F1 mRNA expression marked platinum-resistant tumors (p = 9.43 × 10-3). CD44 and EPCAM mRNA expression correlated with longer overall survival (OS) (p = 0.043; p = 0.039, respectively). THY1 mRNA and protein levels were associated with worse OS (p = 0.019; p = 0.015, respectively). Disease-free survival (DFS) was positively affected by EPCAM (p = 0.004), LGR5 (p = 0.018), and CD44 (p = 0.012). In the multivariate model based on CSC marker expression, the high-risk group had 9.1 months longer median overall survival than the low-risk group (p < 0.001). ALDH1A1, CD44, EPCAM, LGR5, POU5F1, and THY1 levels in OC may be used as prognostic factors for the primary outcome and help predict the treatment response.
Collapse
Affiliation(s)
- Natalia Iżycka
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Mikołaj Piotr Zaborowski
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Łukasz Ciecierski
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Kamila Jaz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Sebastian Szubert
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Cezary Miedziarek
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Marta Rezler
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Kinga Piątek-Bajan
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Aneta Synakiewicz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| | - Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D St., 60-806 Poznan, Poland;
| | - Marek Figlerowicz
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland (M.F.)
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 61-781 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznan, Poland (S.S.)
| |
Collapse
|
8
|
Chang YH, Wu KC, Harnod T, Ding DC. Comparison of the Cost and Effect of Combined Conditioned Medium and Conventional Medium for Fallopian Tube Organoid Cultures. Cell Transplant 2023; 32:9636897231160216. [PMID: 36919683 PMCID: PMC10021093 DOI: 10.1177/09636897231160216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Fallopian tube epithelial cells (FTEC) are thought to be the cell of origin of high-grade serous ovarian carcinoma. FTEC organoids can be used as research models for the disease. Nevertheless, culturing organoids requires a medium supplemented with several expensive growth factors. We proposed that a combined conditioned medium based on the composition of the fallopian tubes, including epithelial, stromal, and endothelial cells could enhance FTEC organoid formation. We derived two primary culture cell lines from the fimbria portion of the fallopian tubes. The organoids were split into conventional or combined medium groups based on what medium they were grown in and compared. The number and size of the organoids were evaluated. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were used to evaluate gene and protein expression (PAX8, FOXJ1, beta-catenin, and stemness genes). Enzyme-linked immunosorbent assay was used to measure Wnt3a and RSPO1 in both mediums. DKK1 and LiCl were added to the mediums to evaluate their influence on beta-catenin signaling. The growth factor in the combined medium was evaluated by the growth factor array. We found that the conventional medium was better for organoids regarding proliferation (number and size). In addition, WNT3A and RSPO1 concentrations were too low in the combined medium and needed to be added making the cost equivalent to the conventional medium. However, the organoid formation rate was 100% in both groups. Furthermore, the combined medium group had higher PAX8 and stemness gene expression (OLFM4, SSEA4, LGR5, B3GALT5) when compared with the conventional medium group. Wnt signaling was evident in the organoids grown in the conventional medium but not in the combined medium. PLGF, IGFBP6, VEGF, bFGF, and SCFR were found to be enriched in the combined medium. In conclusion, the combined medium could successfully culture organoids and enhance PAX8 and stemness gene expression. However, the conventional medium was a better medium for organoid proliferation. The expense of both mediums was comparable. The benefit of using a combined medium requires further exploration.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Tzu Chi University, Hualien.,Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Tomor Harnod
- Tzu Chi University, Hualien.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Dah-Ching Ding
- Tzu Chi University, Hualien.,Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien
| |
Collapse
|
9
|
Wang Y, Chen Y, Garcia-Milian R, Golla JP, Charkoftaki G, Lam TT, Thompson DC, Vasiliou V. Proteomic profiling reveals an association between ALDH and oxidative phosphorylation and DNA damage repair pathways in human colon adenocarcinoma stem cells. Chem Biol Interact 2022; 368:110175. [PMID: 36162455 PMCID: PMC9891852 DOI: 10.1016/j.cbi.2022.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Several members of the aldehyde dehydrogenase (ALDH) family, especially ALDH1 isoenzymes, have been identified as biomarkers of cancer stem cells (CSCs), a small subpopulation of oncogenic cells with self-renewal and multipotency capability. Consistent with this contention, cell populations with high ALDH enzymatic activity exhibit greater carcinogenic potential. It has been reported that ALDH1, especially ALDH1A1, serves as a valuable biomarker for colon CSCs. However, the functional roles of ALDHs in CSCs and solid tumors of the colon tissue is not fully understood. The aim of the present study was to identify molecular signature associated with high ALDH activity in human colorectal adenocarcinoma (COLO320DM) cells by proteomics profiling. Aldefluor™ assay was performed to sort COLO320DM cells exhibiting high (ALDHhigh) and low (ALDHlow) ALDH activity. Label-free quantitative proteomics analyses were conducted on these two cell populations. Proteomics profiling revealed a total of 229 differentially expressed proteins (DEPs) in ALDHhigh relative to ALDHlow cells, of which 182 were down-regulated and 47 were up-regulated. In agreement with previous studies, ALDH1A1 appeared to be the principal ALDH isozyme contributing to the Aldefluor™ assay activity in COLO320DM cells. Ingenuity pathway analysis of the proteomic datasets indicated that DEPs were associated with mitochondrial dysfunction, sirtuin signaling, oxidative phosphorylation and nucleotide excision repair. Our proteomics study predicts that high ALDH1A1 activity may be involved in these cellular pathways to promote a metabolic switch and cellular survival of CSCs.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
10
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
11
|
Rinne N, Christie EL, Ardasheva A, Kwok CH, Demchenko N, Low C, Tralau-Stewart C, Fotopoulou C, Cunnea P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:573-595. [PMID: 35582310 PMCID: PMC9019160 DOI: 10.20517/cdr.2021.05] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.
Collapse
Affiliation(s)
- Natasha Rinne
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | | | - Anastasia Ardasheva
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Chun Hei Kwok
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Nikita Demchenko
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Caroline Low
- Department of Metabolism Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Catherine Tralau-Stewart
- Takeda Academic Innovation, Center for External Innovation, Takeda California, San Diego, CA 92121, USA
| | - Christina Fotopoulou
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| |
Collapse
|
12
|
Cui Y, Liu Y, Mu L, Li Y, Wu G. Transcriptional Expressions of ALDH1A1/B1 as Independent Indicators for the Survival of Thyroid Cancer Patients. Front Oncol 2022; 12:821958. [PMID: 35280765 PMCID: PMC8905520 DOI: 10.3389/fonc.2022.821958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aldehyde dehydrogenase (ALDH) 1 is an important enzyme involved in the regulation of several cellular mechanisms via aldehyde detoxification. High ALDH1 levels were correlated with tumorigenesis and stemness maintenance in cancer. Methods We used UALCAN, Human Protein Atlas, Kaplan–Meier plotter, TISIDB, TIMER, and KOBAS databases to investigate the expression and role of ALDH1 in thyroid cancer progression. In addition, quantitative real-time polymerase chain reaction was performed to detect the expression of the target genes in thyroid cancer cell lines and cancer tissues. Results Expression of ALDH1A1/B1 was significantly decreased based on individual cancer stages and tumor histology, and high levels of ALDH1A1/B1 were associated with poor overall survival in thyroid cancer patients. Moreover, ALDH1A1/B1 expression was negatively correlated with immune-stimulating genes, major histocompatibility complex, chemokines, and receptors. Conclusions These results suggest that ALDH1A1/B1 might serve as potential prognostic biomarkers for thyroid cancer diagnosis.
Collapse
Affiliation(s)
- Ying Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yao Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lan Mu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
13
|
Mesothelin Expression Is Not Associated with the Presence of Cancer Stem Cell Markers SOX2 and ALDH1 in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms23031016. [PMID: 35162954 PMCID: PMC8834752 DOI: 10.3390/ijms23031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mesothelin (MSLN) overexpression (OE) is a frequent finding in ovarian carcinomas and increases cell survival and tumor aggressiveness. Since cancer stem cells (CSCs) contribute to pathogenesis, chemoresistance and malignant behavior in ovarian cancer (OC), we hypothesized that MSLN expression could be creating a favorable environment that nurtures CSCs. In this study, we analyzed the expression of MSLN and CSC markers SOX2 and ALDH1 by immunohistochemistry (IHC) in different model systems: primary high-grade serous carcinomas (HGSCs) and OC cell lines, including cell lines that were genetically engineered for MSLN expression by either CRISPR-Cas9-mediated knockout (Δ) or lentivirus-mediated OE. Cell lines, wild type and genetically engineered, were evaluated in 2D and 3D culture conditions and xenografted in nude mice. We observed that MSLN was widely expressed in HGSC, and restricted expression was observed in OC cell lines. In contrast, SOX2 and ALDH1 expression was limited in all tissue and cell models. Most importantly, the expression of CSC markers was independent of MSLN expression, and manipulation of MSLN expression did not affect CSC markers. In conclusion, MSLN expression is not involved in driving the CSC phenotype.
Collapse
|
14
|
Zhu R, Jiang H, Wang J, Bao C, Liu H, Li F, Lei L. Dynamic immune response characteristics of piglets infected with Actinobacillus pleuropneumoniae through omic. AMB Express 2021; 11:175. [PMID: 34952961 PMCID: PMC8709809 DOI: 10.1186/s13568-021-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine infectious pleuropneumonia is characterized by a high-rate of carriage and mixed infection with other pathogens. The host immune response induced by Actinobacillus pleuropneumoniae (APP) is the basis for elucidating pathogenesis and controlling disease. However, there is currently no comprehensive and dynamic data characterising the host immune response. In this study, piglets were infected with APP and differentially expressed proteins of bronchoalveolar lavage fluid (BALF) and peripheral serum were identified by iTRAQ-LC-MS/MS, and differentially expressed genes of peripheral blood mononuclear cells (PBMC) by RNA-seq. The results of the integrated analysis of serum, BALF and PBMC showed significant metabolism and local immune responses in BALF, the general immune response in PBMC mainly involves cytokines, while that in serum mainly involves biosynthesis, phagosome, and complement and coagulation cascades. Furthermore, immune responses in PBMCs and serum were rapid and maintained compared to the lung where metabolism and cell adhesion activities were enriched. Some innate immunity pathways of the cellular response to ROS, neutrophil mediated immunity, granulocyte activation and leukocyte cell-cell adhesion were identified as central points, connecting multiple signaling pathways to form an integrated large network. At 24 h post-infection, 14 molecules were up regulated in BALF, 10 of which were shared with PBMC, but at 120 h, 20 down-regulated molecules were identified in BALF, 11 of them still up- regulated in PBMC. We conclude that, the immune response in the lung is different from that in blood, but there is a similarity in response in PBMC and serum.
Collapse
|
15
|
Li J, Garavaglia S, Ye Z, Moretti A, Belyaeva OV, Beiser A, Ibrahim M, Wilk A, McClellan S, Klyuyeva AV, Goggans KR, Kedishvili NY, Salter EA, Wierzbicki A, Migaud ME, Mullett SJ, Yates NA, Camacho CJ, Rizzi M, Sobol RW. A specific inhibitor of ALDH1A3 regulates retinoic acid biosynthesis in glioma stem cells. Commun Biol 2021; 4:1420. [PMID: 34934174 PMCID: PMC8692581 DOI: 10.1038/s42003-021-02949-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/07/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Zhaofeng Ye
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Andrea Moretti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - E Alan Salter
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Andrzej Wierzbicki
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steven J Mullett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
16
|
Capilliposide from Lysimachia capillipes promotes terminal differentiations and reverses paclitaxel resistance in A2780T cells of human ovarian cancer by regulating Fos/Jun pathway. CHINESE HERBAL MEDICINES 2021; 14:111-116. [PMID: 36120123 PMCID: PMC9476669 DOI: 10.1016/j.chmed.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the potential effect of Lysimachia capillipes capilliposide (LCC) on the chemo sensitivity and the stemness of human ovarian cancer cells. Methods Cell Counting Kit-8 (CCK8) was used to measure the IC50 values. The apoptosis of cells was measured through flow cytometry. Evaluation of the stemness and differentiation markers was performed by the immunoblotting and the immunostaining assays. RNA-seq was performed through the Illumina HiSeq PE150 platform and differentially expressed genes (DEGs) were screened out through the bioinformation analysis. Overexpression or knockdown of Fos gene was achieved by shRNA transfection. Results Pre-exposure of A2780T cells with 10 μg/mL LCC sensitized them to paclitaxel, of which the IC50 value reduced from 8.644 μmol/L (95%CI: 7.315–10.082 μmol/L) to 2.5 μmol/L (95%CI: 2.233–2.7882 μmol/L). Exposure with LCC enhanced the paclitaxel-induced apoptosis and inhibited the colony formation of A2780T cells. LCC exposure reduced the expression of cancer stemness markers, ALDH1, Myd88 and CD44, while promoting that of terminal differentiation markers, NFATc1, Cathepsin K and MMP9. RNA-seq analysis revealed that the expressions of FOS and JUN were upregulated in LCC-treated A2780T cells. A2780T cells overexpressing Fos gene displayed increased paclitaxel-sensitivity and reduced cell stemness, and shared common phenotypes with LCC-treated A2780T cells. Conclusion These findings suggested that LCC promoted terminal differentiations of ovarian cancer cells and sensitized them to paclitaxel through activating the Fos/Jun pathway. LCC might become a novel therapy that targets at cancer stem cells and enhances the chemotherapeutic effect of ovarian cancer treatments.
Collapse
|
17
|
The Detection of Stem-Like Circulating Tumor Cells Could Increase the Clinical Applicability of Liquid Biopsy in Ovarian Cancer. Life (Basel) 2021; 11:life11080815. [PMID: 34440558 PMCID: PMC8401116 DOI: 10.3390/life11080815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Stem properties allow circulating tumor cells (CTCs) to survive in the bloodstream and initiate cancer progression. We aimed to assess the numbers of stem-like CTCs in patients with ovarian cancer (OC) before treatment and during first-line chemotherapy (CT). Flow cytometry was performed (Cytoflex S (Beckman Coulter, CA, USA)) using antibodies against CD45; epithelial markers EpCAM and cytokeratin (CK) 8,18; mesenchymal vimentin (vim); and stem-like CD44, CD133 and ALDH. This study included 38 stage I-IV OC patients (median age 66 (Q1-Q3 53-70)). The CK+vim- counts were higher (p = 0.012) and the CD133+ALDHhigh counts were lower (p = 0.010) before treatment in the neoadjuvant CT group than in the adjuvant group. The patients with ascites had more CK+vim- cells before treatment (p = 0.009) and less EpCAM-vim+ cells during treatment (p = 0.018) than the patients without ascites. All the CTC counts did not differ significantly in paired samples. Correlations were found between the CK-vim+ and CD133+ALDHhigh (r = 0.505, p = 0.027) and EpCAM-vim+ and ALDHhigh (r = 0.597, p = 0.004) cells before but not during treatment. Multivariate Cox regression analysis showed that progression-free survival was longer with the presence of surgical treatment (HR 0.06 95% CI 0.01-0.48, p = 0.009) and fewer CD133+ALDHveryhigh cells (HR 1.06 95% CI 1.02-1.12, p = 0.010). Thus, CD133+ALDH+ CTCs have the greatest prognostic potential in OC among the phenotypes studied.
Collapse
|
18
|
Li Y, Wang J, Wang F, Chen W, Gao C, Wang J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol Toxicol 2021; 38:809-824. [PMID: 33978933 DOI: 10.1007/s10565-021-09609-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Cancer stem cells (CSCs) are the main driving force of tumorigenesis, metastasis, recurrence, and drug resistance in epithelial ovarian cancer (EOC). The current study aimed to explore the regulatory effects of ring finger protein 144A (RNF144A), an E3 ubiquitin ligase, in the maintenance of CSC properties and tumor development in EOC. METHODS The expressions of RNF144A in EOC tissue samples and cells were examined. The knockdown or overexpression of a target gene was achieved by transfecting EOC cells with short hairpin RNA or adenoviral vectors. A mouse xenograft model was constructed by inoculating nude mice with EOC cells. Co-immunoprecipitation was used to determine the interaction between RNF144A and LIN28B. RESULTS Downregulated RNF144A expression was observed in ovarian tumor tissues and EOC cells. Low RNF144A expression was positively associated with poor survival of EOC patients. RNF144A knockdown significantly enhanced sphere formation and upregulated stem cell markers in EOC cells, while RNF144A overexpression prevented EOC cells from acquiring stem cell properties. Also, the upregulation of RNF144A inhibited ovarian tumor growth and aggressiveness in cell culture and mouse xenografts. Further analysis revealed that RNF144A induced LIN28B degradation through ubiquitination in EOC cells. LIN28B upregulation restored the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A. CONCLUSION Taken together, our findings highlight the therapeutic potential of restoring RNF144A expression and thereby suppressing LIN28B-associated oncogenic signaling for EOC treatment. • Ring finger protein 144A (RNF144A) is downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. • The overexpression of RNF144A prevents EOC cells from acquiring stem cell properties and inhibits ovarian tumor growth. • RNF144A induces LIN28B degradation through ubiquitination in EOC cells. • LIN28B upregulation restores the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wenyu Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Chengzhen Gao
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Jianhua Wang
- Department of Gastroenterology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 66, Renmin South Road, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
19
|
Muralikrishnan V, Hurley TD, Nephew KP. Targeting Aldehyde Dehydrogenases to Eliminate Cancer Stem Cells in Gynecologic Malignancies. Cancers (Basel) 2020; 12:E961. [PMID: 32295073 PMCID: PMC7225959 DOI: 10.3390/cancers12040961] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers cause over 600,000 deaths annually in women worldwide. The development of chemoresistance after initial rounds of chemotherapy contributes to tumor relapse and death due to gynecologic malignancies. In this regard, cancer stem cells (CSCs), a subpopulation of stem cells with the ability to undergo self-renewal and clonal evolution, play a key role in tumor progression and drug resistance. Aldehyde dehydrogenases (ALDH) are a group of enzymes shown to be robust CSC markers in gynecologic and other malignancies. These enzymes also play functional roles in CSCs, including detoxification of aldehydes, scavenging of reactive oxygen species (ROS), and retinoic acid (RA) signaling, making ALDH an attractive therapeutic target in various clinical scenarios. In this review, we discuss the critical roles of the ALDH in driving stemness in different gynecologic malignancies. We review inhibitors of ALDH, both general and isoform-specific, which have been used to target CSCs in gynecologic cancers. Many of these inhibitors have been shown to be effective in preclinical models of gynecologic malignancies, supporting further development in the clinic. Furthermore, ALDH inhibitors, including 673A and CM037, synergize with chemotherapy to reduce tumor growth. Thus, ALDH-targeted therapies hold promise for improving patient outcomes in gynecologic malignancies.
Collapse
Affiliation(s)
| | - Thomas D. Hurley
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive Medical Science, Indianapolis, IN 46202, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
- Department of Anatomy, Cell Biology and Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Sabini C, Sorbi F, Cunnea P, Fotopoulou C. Ovarian cancer stem cells: ready for prime time? Arch Gynecol Obstet 2020; 301:895-899. [PMID: 32200419 DOI: 10.1007/s00404-020-05510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic pathways of the disease, but also to develop novel strategies against its progression and platinum resistance. METHODS We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, their mechanisms, and the associated therapeutic targets. RESULTS Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intratumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, allowing them to survive and causing disease relapse functioning as a tumor seeds. CONCLUSIONS It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a preventative level through engineering mechanisms and prevention of EOC in its origin.
Collapse
Affiliation(s)
- Carlotta Sabini
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Flavia Sorbi
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Paula Cunnea
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK.,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Christina Fotopoulou
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK. .,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
21
|
Kaipio K, Chen P, Roering P, Huhtinen K, Mikkonen P, Östling P, Lehtinen L, Mansuri N, Korpela T, Potdar S, Hynninen J, Auranen A, Grénman S, Wennerberg K, Hautaniemi S, Carpén O. ALDH1A1-related stemness in high-grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTOR-PI3K/aurora kinase inhibitors. J Pathol 2019; 250:159-169. [PMID: 31595974 DOI: 10.1002/path.5356] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Poor chemotherapy response remains a major treatment challenge for high-grade serous ovarian cancer (HGSC). Cancer stem cells are the major contributors to relapse and treatment failure as they can survive conventional therapy. Our objectives were to characterise stemness features in primary patient-derived cell lines, correlate stemness markers with clinical outcome and test the response of our cells to both conventional and exploratory drugs. Tissue and ascites samples, treatment-naive and/or after neoadjuvant chemotherapy, were prospectively collected. Primary cancer cells, cultured under conditions favouring either adherent or spheroid growth, were tested for stemness markers; the same markers were analysed in tissue and correlated with chemotherapy response and survival. Drug sensitivity and resistance testing was performed with 306 oncology compounds. Spheroid growth condition HGSC cells showed increased stemness marker expression (including aldehyde dehydrogenase isoform I; ALDH1A1) as compared with adherent growth condition cells, and increased resistance to platinum and taxane. A set of eight stemness markers separated treatment-naive tumours into two clusters and identified a distinct subgroup of HGSC with enriched stemness features. Expression of ALDH1A1, but not most other stemness markers, was increased after neoadjuvant chemotherapy and its expression in treatment-naive tumours correlated with chemoresistance and reduced survival. In drug sensitivity and resistance testing, five compounds, including two PI3K-mTOR inhibitors, demonstrated significant activity in both cell culture conditions. Thirteen compounds, including EGFR, PI3K-mTOR and aurora kinase inhibitors, were more toxic to spheroid cells than adherent cells. Our results identify stemness markers in HGSC that are associated with a decreased response to conventional chemotherapy and reduced survival if expressed by treatment-naive tumours. EGFR, mTOR-PI3K and aurora kinase inhibitors are candidates for targeting this cell population. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katja Kaipio
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ping Chen
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pia Roering
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Piia Mikkonen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Östling
- Science for Life Laboratory Department of Oncology & Pathology, Karolinska Institutet, Huddinge, Sweden.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Laura Lehtinen
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Naziha Mansuri
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Taina Korpela
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, High Throughput Biomedicine Unit (HTB), University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Annika Auranen
- Department of Obstetrics and Gynaecology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Seija Grénman
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, High Throughput Biomedicine Unit (HTB), University of Helsinki, Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland.,Research Programs Unit, Genome-Scale Biology and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Chang YH, Ding DC, Chu TY. Estradiol and Progesterone Induced Differentiation and Increased Stemness Gene Expression of Human Fallopian Tube Epithelial Cells. J Cancer 2019; 10:3028-3036. [PMID: 31281480 PMCID: PMC6590043 DOI: 10.7150/jca.30588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Fallopian tube epithelial cells (FTECs) are thought to be the origin of epithelial ovarian cancer. However, the effect of the hormones on FTECs is unknown, and therefore, this study explored this effect. We successfully derived FTECs from the fallopian tube epithelial layer and treated them with estradiol and progesterone. Reverse transcription polymerase chain reaction was used to evaluate the gene expression of the FTECs' hormone receptors. Confocal and electron microscopy were used to evaluate the morphology of the FTECs after they were treated with hormones. Finally, quantitative PCR was used to evaluate the gene expression of the hormone-treated FTECs. The results showed that the FTECs exhibited cuboidal cell morphology and could be maintained at a constant proliferation rate. Furthermore, flow cytometry revealed that the FTECs expressed stem cell markers, such as SSEA3, SSEA4, and Lgr5. Moreover, the FTECs could express both estrogen and progesterone receptors. In a culture treated with 400 nM estrogen, the FTECs differentiated toward ciliated cells, whereas in a culture treated with estradiol or progesterone, the FTECs increased their expression of certain stem cell markers (SSEA3, SSEA4, and Aldh1) and stemness genes [Wnt (AXIN2, LGR5, LGR6, and OLFM4) and Notch (Hes1) signaling]. In conclusion, hormones may alter the gene expressions of FTECs, and these cells may provide new insights into how FTECs regenerate in response to hormones.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Hualien, Taiwan.,Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan
| | - Dah-Ching Ding
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Hualien, Taiwan.,Department of Obstetrics and Gynecology, Hualien Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University; Hualien, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University; Hualien, Taiwan
| |
Collapse
|