1
|
Cheng H, Kahlert UD, Shi W. Editorial: lncRNAs: application in immunotherapy, radiotherapy, and chemotherapy. Front Cell Dev Biol 2024; 12:1438773. [PMID: 39119039 PMCID: PMC11306187 DOI: 10.3389/fcell.2024.1438773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Huaifu Cheng
- Department of Anal-colorectal Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, Magdeburg, Germany
| |
Collapse
|
2
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
3
|
Zhou M, He X, Mei C, Ou C. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers. Biomark Res 2023; 11:100. [PMID: 37981718 PMCID: PMC10658727 DOI: 10.1186/s40364-023-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the most abundant immune cell types in the tumor microenvironment (TME), account for approximately 50% of the local hematopoietic cells. TAMs play an important role in tumorigenesis and tumor development through crosstalk between various immune cells and cytokines in the TME. Exosomes are small extracellular vesicles with a diameter of 50-150 nm, that can transfer biological information (e.g., proteins, nucleic acids, and lipids) from secretory cells to recipient cells through the circulatory system, thereby influencing the progression of various human diseases, including cancer. Recent studies have suggested that TAMs-derived exosomes play crucial roles in malignant cell proliferation, invasion, metastasis, angiogenesis, immune responses, drug resistance, and tumor metabolic reprogramming. TAMs-derived exosomes have the potential to be targeted for tumor therapy. In addition, the abnormal expression of non-coding RNAs and proteins in TAMs-derived exosomes is closely related to the clinicopathological features of patients with cancer, and these exosomes are expected to become new liquid biopsy markers for the early diagnosis, prognosis, and monitoring of tumors. In this review, we explored the role of TAMs-derived exosomes in tumorigenesis to provide new diagnostic biomarkers and therapeutic targets for cancer prevention.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Chen L, Wang J, Liu Q. Long noncoding RNAs as therapeutic targets to overcome chemoresistance in ovarian cancer. Front Cell Dev Biol 2022; 10:999174. [PMID: 36105363 PMCID: PMC9464811 DOI: 10.3389/fcell.2022.999174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been characterized to play an essential role in ovarian tumorigenesis via controlling a variety of cellular processes, such as cell proliferation, invasion, apoptotic death, metastasis, cell cycle, migration, metabolism, immune evasion, and chemoresistance. The one obstacle for the therapeutic efficacy is due to the development of drug resistance in ovarian cancer patients. Therefore, in this review article, we describe the role of lncRNAs in chemoresistance in ovarian cancer. Moreover, we discuss the molecular mechanism of lncRNAs-involved drug resistance in ovarian cancer. We conclude that lncRNAs could be useful targets to overcome chemoresistance and improve therapeutic outcome in ovarian cancer patients.
Collapse
|
5
|
Xiao L, Shi XY, Li ZL, Li M, Zhang MM, Yan SJ, Wei ZL. Downregulation of LINC01508 contributes to cisplatin resistance in ovarian cancer via the regulation of the Hippo-YAP pathway. J Gynecol Oncol 2021; 32:e77. [PMID: 34132072 PMCID: PMC8362814 DOI: 10.3802/jgo.2021.32.e77] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 06/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Some long non-coding RNAs (lncRNAs) have been found to contribute to cisplatin resistance. Here, we identified a novel lncRNA that was downregulated in cisplatin-resistant to ovarian cancer (OC) cells and aimed to examine the contribution of LINC01508 to cisplatin resistance in OC cells. METHODS Differences in the lncRNA expression profile between OV2008 and C13K cells were assessed by lncRNA expression microarray. The expression of LINC01508 in ovarian epithelial cells, four OC cells, and OC, benign ovary tumor and normal ovary, cisplatin-resistant and non-resistant OC specimens were evaluated by quantitative real-time polymerase chain reaction (qPCR). The role of LINC01508 in OC cisplatin-resistant was evaluated by cell counting kit-8 (CCK-8), flow cytometry, colony formation, wound healing, Transwell, and tumor growth inhibition study in vivo. The clinical associations of LINC01508 in OC were evaluated using correlation analysis. The effects of verteporfin (VP) on cisplatin were explored to reveal the function of the hippo-YAP pathway on the cisplatin tolerance of C13K. RESULTS LINC01508 was downregulated in cisplatin-resistant OC cells and platinum-resistant OC tissue (p<0.01). LINC01508 downregulation was correlated with tumor size, residual tumor, and platinum resistance. The overexpression of LINC01508 improves in vitro and in vivo sensitivity to cisplatin while predicts the poor overall survival which need further follow-up research. The increased level of LINC01508 could suppress the cisplatin resistance of OC cells through the inhibition of the hippo-YAP pathway. CONCLUSIONS The study proposes that dysregulation of LINC01508 expression results in resistance of OC to cisplatin through the inhibition of the hippo-YAP pathway.
Collapse
Affiliation(s)
- Lan Xiao
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiao Yan Shi
- Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Lian Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min Min Zhang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shi Jie Yan
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhao Lian Wei
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.
| |
Collapse
|
6
|
Sun R, He XY, Mei C, Ou CL. Role of exosomal long non-coding RNAs in colorectal cancer. World J Gastrointest Oncol 2021; 13:867-878. [PMID: 34457192 PMCID: PMC8371516 DOI: 10.4251/wjgo.v13.i8.867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a class of small extracellular vesicles, 30-150 nm in diameter, that transfer biological information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Exosomes play critical roles in the occurrence and development of human cancers, including colorectal cancer (CRC). Recent studies have shown that long non-coding RNAs (lncRNAs) can be encapsulated in exosomes, which transfer lncRNAs from secretory cells into recipient cells. This process affects the progression of CRC, since exosomal lncRNAs display special and extensive functions in CRC tumorigenesis, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. Moreover, due to their specificity and sensitivity, exosomal lncRNAs are released into body fluids (e.g., urine, sputum, and plasma), which have the potential to be biomarkers of CRC tumorigenesis within screening efforts and medical and epidemiologic research. In this review, we aim to clarify the function and mechanism of exosomal lncRNAs in CRC tumorigenesis and provide a strategy for early diagnosis and medical treatment of this malignancy.
Collapse
Affiliation(s)
- Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Yun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Chun-Lin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
7
|
Zhu W, Xiao X, Chen J. Silencing of the long noncoding RNA LINC01132 alleviates the oncogenicity of epithelial ovarian cancer by regulating the microRNA‑431‑5p/SOX9 axis. Int J Mol Med 2021; 48:151. [PMID: 34132375 PMCID: PMC8219520 DOI: 10.3892/ijmm.2021.4984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
To date, the role of lncRNA long intergenic non‑protein‑coding RNA 1132 (LINC01132) expression in epithelial ovarian cancer (EOC) has not been explored. Thus, LINC01132 expression in EOC was assessed and the regulatory activity of LINC01132 on the malignant behaviours of EOC cells was investigated. Additionally, the molecular events that occurred downstream of LINC01132 in EOC cells were also revealed. In the present study, LINC01132 expression in EOC was verified by employing RT‑qPCR. The effects of LINC01132 on the aggressive behaviours of EOC cells were revealed utilizing multiple functional experiments. The targeting interaction among LINC01132, microRNA‑431‑5p (miR‑431‑5p) and SRY‑box 9 (SOX9) was demonstrated by RNA immunoprecipitation and luciferase reporter assay. Herein, LINC01132 was overexpressed in EOC and was significantly associated with poor patient prognosis. Functionally, cell experiments revealed that LINC01132 depletion produced cancer‑suppressive effects in EOC cells and regulated cell proliferation, migration, invasion and apoptosis in vitro. Additionally, the loss of LINC01132 attenuated tumour growth in vivo. Mechanistically, LINC01132 acted as a competing endogenous RNA by sequestering miR‑431‑5p and consequently overexpressing SOX9 in EOC cells, forming a LINC01132/miR‑431‑5p/SOX9 axis. In rescue experiments, miR‑431‑5p inhibition or SOX9 reintroduction eliminated the anti‑tumour effects of LINC01132 silencing on the pathological behaviours of EOC cells. Generally, LINC01132 exhibited oncogenic activities in EOC cells by regulating the outcome of the miR‑431‑5p/SOX9 axis, providing an effective target for EOC diagnosis, therapy and prognosis evaluation.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gynaecology and Obstetrics, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Xiangming Xiao
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Jinqin Chen
- Department of Gynaecology and Obstetrics, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| |
Collapse
|
8
|
Zamaraev AV, Volik PI, Sukhikh GT, Kopeina GS, Zhivotovsky B. Long non-coding RNAs: A view to kill ovarian cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188584. [PMID: 34157315 DOI: 10.1016/j.bbcan.2021.188584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
An emerging role of long non-coding RNAs (lncRNAs) in tumor progression has been revealed in the last decade. Through interactions with nucleic acids and proteins, lncRNAs could act as enhancers, scaffolds or decoys for a number of oncoproteins and tumor suppressors. The aberrant lncRNA expression or mutations are often associated with changes in a variety of cellular processes, including proliferation, stress response and cell death. Here, we will focus on the tumor-associated lncRNAs in ovarian cancer according to their contribution to cancer hallmarks, such as intense proliferation, cell death resistance, altered energy metabolism, invasion and metastasis, and immune evasion. Moreover, the potential clinical implications of lncRNAs and their significance for the diagnosis, prognosis and therapy of ovarian cancer will be discussed.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Pavel I Volik
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gennady T Sukhikh
- V. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| |
Collapse
|
9
|
Identification of Novel lncRNAs in Ovarian Cancer and Their Impact on Overall Survival. Int J Mol Sci 2021; 22:ijms22031079. [PMID: 33499129 PMCID: PMC7865736 DOI: 10.3390/ijms22031079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Long non-coding RNA’s (lncRNA) are RNA sequences that do not encode proteins and are greater than 200 nucleotides in length. They regulate complex cellular mechanisms and have been associated with prognosis in various types of cancer. We aimed to identify lncRNA sequences that are associated with high grade serous ovarian cancer (HGSC) and assess their impact on overall survival. RNA was extracted from 112 HGSC patients and 12 normal fallopian tube samples from our Biobank tissue repository. RNA was sequenced and the Ultrafast and Comprehensive lncRNA detection and quantification pipeline (UClncR) was used for the identification of lncRNA sequences. Univariate logistic and multivariate lasso regression analyses identified lncRNA that was associated with HGSC. Univariate and multivariate Cox proportional hazard ratios were used to evaluate independent predictors of survival. 1943 of 16,325 investigated lncRNA’s were differentially expressed in HGSC as compared to controls (p < 0.001). Nine of these demonstrated association with cancer after multivariate lasso regression. Our multivariate analysis of survival identified four lncRNA’s associated with survival in HGSC. Three out of these four were found to be independently significant after accounting for all clinical covariates. Lastly, seven lncRNAs were independently associated with initial response to chemotherapy; four portended a worse response, while three were associated with improved response. More research is needed, but there is potential for these lncRNAs to be used as biomarkers of HGSC or predictors of treatment outcome in the future.
Collapse
|
10
|
Bhardwaj V, Tan YQ, Wu MM, Ma L, Zhu T, Lobie PE, Pandey V. Long non-coding RNAs in recurrent ovarian cancer: Theranostic perspectives. Cancer Lett 2021; 502:97-107. [PMID: 33429007 DOI: 10.1016/j.canlet.2020.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/09/2023]
Abstract
Nearly 70% of ovarian cancer (OC) patients experience recurrence within the first 2 years after initial treatment. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a pivotal role in the pathogenesis of OC progression, resistance to therapy and recurrent OC (ROC). Transcriptome profiling studies have reported differential expression patterns of lncRNAs in OC which are related to increased cell invasion, metastasis and drug resistance. In this review, we highlighted the roles of lncRNAs in OC progression and outlined the potential molecular mechanisms by which lncRNAs impact on ROC. Recent advances using lncRNAs as potential biomarkers for screening, detection, prediction, response to therapy and as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ming Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
11
|
El-Khazragy N, Mohammed HF, Yassin M, Elghoneimy KK, Bayoumy W, Hewety A, El Magdoub HM, Elayat W, Zaki W, Safwat G, Mosa M, Zedan K, Salem S, Bannunah AM, Mansy A. Tissue-based long non-coding RNAs "PVT1, TUG1 and MEG3" signature predicts Cisplatin resistance in ovarian Cancer. Genomics 2020; 112:4640-4646. [PMID: 32781203 DOI: 10.1016/j.ygeno.2020.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The current study aimed to investigate the potentiality of three lncRNAs "Plasmacytoma variant translocation 1(lnc-PVT1), Taurine upregulated gene type 1(lnc-TUG1) and Maternally expressed gene 3 (lnc-MEG-3)", to predict Cisplatin resistance in ovarian cancer (OC), in addition, to access their prognostic significance. METHODS The expression level of lncRNAs were measured in 100 formalin-fixed paraffin-embedded tissue (FFET) samples of OC patients who were treated by Cisplatin-based chemotherapy using qPCR. RESULTS The results showed that lnc_PVT1 was significantly upregulated by 2.3 folds in Cisplatin resistant tissues, while, lnc-TUG1 and lnc-MEG3 were downregulated by 1.2 and 3 folds, respectively. In addition, the three lncRNAs exhibited high sensitivity and specificity in predicting chemo-resistance and they were negatively associated with OS and progression-free survival (p < 0.001). CONCLUSION The lnc-PVT1, lnc-TUG1, and lnc-MEG3 transcriptome signatures could be used for predicting resistance to Cisplatin in OC patients.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Clinical Pathology/Hematology & Biomedical Research Departments, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Biomedical Research Department, Global Research Labs, Cairo, Egypt.
| | - Hayam Fathy Mohammed
- Department of Obstetrics and Gynecology Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Yassin
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - K K Elghoneimy
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - Walid Bayoumy
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - Amr Hewety
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Wael Elayat
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walid Zaki
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Mai Mosa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Khouloud Zedan
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Salema Salem
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Azzah M Bannunah
- Common First year Deanship, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Azza Mansy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Egypt
| |
Collapse
|
12
|
Salamini-Montemurri M, Lamas-Maceiras M, Barreiro-Alonso A, Vizoso-Vázquez Á, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. The Challenges and Opportunities of LncRNAs in Ovarian Cancer Research and Clinical Use. Cancers (Basel) 2020; 12:E1020. [PMID: 32326249 PMCID: PMC7225988 DOI: 10.3390/cancers12041020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies worldwide because it tends to be detected late, when the disease has already spread, and prognosis is poor. In this review we aim to highlight the importance of long non-coding RNAs (lncRNAs) in diagnosis, prognosis and treatment choice, to make progress towards increasingly personalized medicine in this malignancy. We review the effects of lncRNAs associated with ovarian cancer in the context of cancer hallmarks. We also discuss the molecular mechanisms by which lncRNAs become involved in cellular physiology; the onset, development and progression of ovarian cancer; and lncRNAs' regulatory mechanisms at the transcriptional, post-transcriptional and post-translational stages of gene expression. Finally, we compile a series of online resources useful for the study of lncRNAs, especially in the context of ovarian cancer. Future work required in the field is also discussed along with some concluding remarks.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Ángel Vizoso-Vázquez
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Esther Rodríguez-Belmonte
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain;
| | - María Esperanza Cerdán
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| |
Collapse
|