1
|
Baugh AT. Male Cope's gray treefrogs (Hyla chrysoscelis) in amplexus have elevated and correlated steroid hormones compared to solitary males. Gen Comp Endocrinol 2024; 345:114391. [PMID: 37844651 DOI: 10.1016/j.ygcen.2023.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Gonadal steroid hormones are typically elevated during the breeding season-a finding known as an associated reproductive pattern. Though less studied, there is also evidence, in both sexes, for elevated adrenal/interrenal steroids, including acute elevations on the day of mating. I investigated gonadal and interrenal steroids in wild male Cope's gray treefrogs at breeding aggregations. I collected blood from males found in amplexus with female mates (amplexed males) and males sampled at the same time and location that were actively advertising vocally and without a mate (solo males). Concentrations of plasma corticosterone, testosterone, and 17β-estradiol (CORT, T and E2, respectively) were validated and measured. These two categories of males differed in four ways: (1) amplexed males exhibited significantly elevated concentrations of all three steroids compared to solo males (CORT: +347 %; T: +60 %; and E2: +43 %); (2) these hormone profiles alone accurately predicted male mating category with ca. 83 % accuracy using a discriminant function analysis; (3) amplexed males exhibited significant between-hormone correlations (T and E2 were positively correlated and CORT and E2 were negatively correlated) whereas no correlations were found in solo males; (4) amplexed males showed a negative correlation with CORT concentration and the time of night, whereas no such pattern was present in solo males. These findings suggest an acute and strong coactivation of the interrenal and gonadal axes that could drive phenotypic integration during this fitness-determining moment. I discuss these findings and suggest experiments to determine causation, including the role of motor behavior driving endocrine states and the role of female selection on endocrine profiles.
Collapse
Affiliation(s)
- Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Singer Hall, Swarthmore, PA 19081, USA.
| |
Collapse
|
2
|
Leslie CE, Walkowski W, Rosencrans RF, Gordon WC, Bazan NG, Ryan MJ, Farris HE. Estrogenic Modulation of Retinal Sensitivity in Reproductive Female Túngara Frogs. Integr Comp Biol 2021; 61:231-239. [PMID: 33901287 PMCID: PMC8300951 DOI: 10.1093/icb/icab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although mate searching behavior in female túngara frogs (Physalaemus pustulosus) is nocturnal and largely mediated by acoustic cues, male signaling includes visual cues produced by the vocal sac. To compensate for these low light conditions, visual sensitivity in females is modulated when they are in a reproductive state, as retinal thresholds are decreased. This study tested whether estradiol (E2) plays a role in this modulation. Female túngara frogs were injected with either human chorionic gonadotropin (hCG) or a combination of hCG and fadrozole. hCG induces a reproductive state and increases retinal sensitivity, while fadrozole is an aromatase inhibitor that blocks hCG-induced E2 synthesis. In an analysis of scotopic electroretinograms (ERGs), hCG treatment lowered the threshold for eliciting a b-wave response, whereas the addition of fadrozole abolished this effect, matching thresholds in non-reproductive saline-injected controls. This suggests that blocking E2 synthesis blocked the hCG-mediated reproductive modulation of retinal sensitivity. By implicating E2 in control of retinal sensitivity, our data add to growing evidence that the targets of gonadal steroid feedback loops include sensory receptor organs, where stimulus sensitivity may be modulated, rather than more central brain nuclei, where modulation may affect mechanisms involved in motivation.
Collapse
Affiliation(s)
- Caitlin E Leslie
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Whitney Walkowski
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Robert F Rosencrans
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - William C Gordon
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112, USA.,Department of Otorhinolaryngology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Baugh AT, Gall MD, Silver SC, Bee MA. Moderately elevated glucocorticoids increase mate choosiness but do not affect sexual proceptivity or preferences in female gray treefrogs. Horm Behav 2021; 130:104950. [PMID: 33556376 DOI: 10.1016/j.yhbeh.2021.104950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 01/20/2023]
Abstract
Glucocorticoids (GCs) are rarely studied in the context of female mate choice, despite the expression of receptors for these products in sexual, sensory and decision-making brain areas. Here we investigated the effects of GC concentrations on three aspects of female sexual behavior in breeding Cope's gray treefrogs (Hyla chrysoscelis): proceptivity-a measure of sexual motivation, intraspecific mate preferences, and mate choosiness. To our knowledge this is the first experimental study on the endocrine basis of mate choosiness. We predicted that mate choosiness-forfeiting an initial mate preference to pursue a suddenly more attractive mate-would be particularly impacted by elevated GCs with moderate GC levels associated with greater choosiness. We found support for this predicted inverted-U relationship. Females in the control group (no injection) showed no change in choosiness across timepoints. In contrast, females in the vehicle, Low (20 ng g-1) and High (180 ng g-1) corticosterone groups exhibited a nominal decline in choosiness after injection, suggesting that the experience of injection has little or perhaps slightly suppressive effects on female choosiness. Females in the moderate dose group (60 ng g-1), however, exhibited a significant increase (>100%) in choosiness. Further, we found no effect of elevated GCs on sexual proceptivity or the species-typical preference for longer calls. These findings may reflect a buffering of primary sensory areas in the brain against elevated GCs. The recruitment of other cognitive processes during active decision-making, however, may facilitate GC modulation of mate choosiness, thereby promoting tactical plasticity at this critical life history juncture.
Collapse
Affiliation(s)
- Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | - Megan D Gall
- Department of Biology, Vassar College, 124 Raymond Ave., Poughkeepsie, NY 12604, USA
| | - Stewart C Silver
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, 1479 Gortner Ave, St. Paul, MN 55108, USA; Graduate Program in Neuroscience, University of Minnesota - Twin Cities, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Baugh AT, Gray-Gaillard SL. Excreted testosterone and male sexual proceptivity: A hormone validation and proof-of-concept experiment in túngara frogs. Gen Comp Endocrinol 2021; 300:113638. [PMID: 33017582 DOI: 10.1016/j.ygcen.2020.113638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Conventional methods for sampling hormones often preclude strong inference experimental designs, including repeated measures of both hormones and behavior and balanced or simultaneous designs for hormone-behavior sampling. In amphibians there is an opportunity to non-invasively and repeatedly sample excreted steroids in the water. We examined testosterone (T) in túngara frogs (Physalaemus (=Engystomops) pustulosus) using minimally invasive water-borne methods. First, we validated procedures for the collection, extraction and measurement of T in adult males and females using pharmacological challenges coupled with estimates of parallelism and recovery determination. Next, we extended the timeline of sampling over 9 days in order to evaluate the kinetics of excretion (baseline phase, challenge phase, recovery phase), including the estimation of individual differences during baseline sampling. We also estimated concentrations of creatinine (Cr) in each water sample and evaluated whether correcting for this proxy of urine concentration significantly decreased error variance in T estimates. Lastly, we incorporated a standardized and repeated measures assay of male sexual proceptivity (phonotaxis) during the predicted peak T and recovery T timepoints. We found strong evidence supporting the utility of these methods for precise, biologically informative estimates of T in both sexes. Males had higher T than females and responded to pharmacological challenges by elevating T substantially within 48 h of challenge (hCG, GnRH). Males exhibited repeatability in baseline T and phonotaxis frequencies were positively associated with higher T. Adjusting T levels for the simultaneous measure of Cr significantly improved model fit, which in conjunction with marked variation in urine concentration, suggests that urine likely serves as the major source of excreted T. In summary, this proof-of-concept and methods study demonstrates the utility and accuracy of measuring water-borne T and behavior in amphibians.
Collapse
Affiliation(s)
- Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States.
| | - Sophie L Gray-Gaillard
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| |
Collapse
|
5
|
Trudeau VL, Thomson P, Zhang WS, Reynaud S, Navarro-Martin L, Langlois VS. Agrochemicals disrupt multiple endocrine axes in amphibians. Mol Cell Endocrinol 2020; 513:110861. [PMID: 32450283 DOI: 10.1016/j.mce.2020.110861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Concern over global amphibian declines and possible links to agrochemical use has led to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, fungicides, insecticides, acaricides, herbicides, metals, and mixtures. Amphibians, like other species, have to partition resources for body maintenance, growth, and reproduction. Recent studies suggest that metabolic impairments induced by endocrine disrupting chemicals, and more particularly agrichemicals, may disrupt physiological constraints associated with these limited resources and could cause deleterious effects on growth and reproduction. Metabolic disruption has hardly been considered for amphibian species following agrichemical exposure. As for metamorphosis, the key thyroid hormone-dependent developmental phase for amphibians, it can either be advanced or delayed by agrichemicals with consequences for juvenile and adult health and survival. While numerous agrichemicals affect anuran sexual development, including sex reversal and intersex in several species, little is known about the mechanisms involved in dysregulation of the sex differentiation processes. Adult anurans display stereotypical male mating calls and female phonotaxis responses leading to successful amplexus and spawning. These are hormone-dependent behaviours at the foundation of reproductive success. Therefore, male vocalizations are highly ecologically-relevant and may be a non-invasive low-cost method for the assessment of endocrine disruption at the population level. While it is clear that agrochemicals disrupt multiple endocrine systems in frogs, very little has been uncovered regarding the molecular and cellular mechanisms at the basis of these actions. This is surprising, given the importance of the frog models to our deep understanding of developmental biology and thyroid hormone action to understand human health. Several agrochemicals were found to have multiple endocrine effects at once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of agrochemicals that alter cross-talk between hormonal systems must be further addressed. Given the diversity of life-history traits in Anura, Caudata, and the Gymnophiona, it is essential that studies on endocrine disruption expand to include the lesser known taxa. Research under ecologically-relevant conditions will also be paramount. Closer collaboration between molecular and cellular endocrinologists and ecotoxicologists and ecologists is thus recommended.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Paisley Thomson
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| | - Wo Su Zhang
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Stéphane Reynaud
- Laboratoire d'Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, CS 40700, 38058, Grenoble cedex 9, France.
| | - Laia Navarro-Martin
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain.
| | - Valérie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| |
Collapse
|
6
|
Leslie CE, Rosencrans RF, Walkowski W, Gordon WC, Bazan NG, Ryan MJ, Farris HE. Reproductive State Modulates Retinal Sensitivity to Light in Female Túngara Frogs. Front Behav Neurosci 2020; 13:293. [PMID: 32076402 PMCID: PMC6985269 DOI: 10.3389/fnbeh.2019.00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Visual cues are often a vital part of animal communication and courtship. While a plethora of studies have focused on the role that hormones play in acoustic communication of anurans, relatively few have explored hormonal modulation of vision in these animals. Much of what we do know comes from behavioral studies, which show that a frog’s hormonal state can significantly affect both its visual behavior and mating decisions. However, to fully understand how frogs use visual cues to make these mating decisions, we must first understand how their visual system processes these cues, and how hormones affect these processes. To do this, we performed electroretinograms (ERGs) to measure retinal sensitivity of túngara frogs (Physalaemus pustulosus), a neotropical species whose mating behavior includes previously described visual cues. To determine the effect of hormonal state on visual sensitivity, ERGs were recorded under scotopic and photopic conditions in frogs that were either non-reproductive or hormone-treated with human chorionic gonadotropin (hCG) prior to testing. Additionally, measurements of optical anatomy determined how túngara frog eye and retina morphology related to physiological sensitivity. As expected, we found that both sexes display higher visual sensitivity under scotopic conditions compared to photopic conditions. However, hormone injections significantly increased retinal sensitivity of females under scotopic conditions. These results support the hypothesis that hormonal modulation of neural mechanisms, such as those mediating visually guided reproductive behavior in this species, include modulation of the receptor organ: the retina. Thus, our data serve as a starting point for elucidating the mechanism of hormonal modulation of visual sensitivity.
Collapse
Affiliation(s)
- Caitlin E Leslie
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Robert F Rosencrans
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Whitney Walkowski
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - William C Gordon
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Michael J Ryan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Smithsonian Tropical Research Institute, Balboa, Panama
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA, United States.,Department of Otorhinolaryngology, Louisiana State University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
7
|
Boyd SK. Effects of intracerebroventricular arginine vasotocin on a female amphibian proceptive behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:505-513. [DOI: 10.1007/s00359-019-01340-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
8
|
Gall MD, Bee MA, Baugh AT. The difference a day makes: Breeding remodels hearing, hormones and behavior in female Cope's gray treefrogs (Hyla chrysoscelis). Horm Behav 2019; 108:62-72. [PMID: 30653979 DOI: 10.1016/j.yhbeh.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
In seasonal breeders, there are behavioral, endocrine, and neural adaptations that promote the sexual receptivity of females and tune their sensory systems to detect and discriminate among advertising males and to successfully copulate. What happens immediately after this key life history event is unclear, but this transitional moment offers a window into the mechanisms that remodel sexual phenotypes. In this study of wild female Cope's gray treefrogs (Hyla chrysoscelis), we tested the hypothesis that oviposition results in a suite of coordinated changes in the sexual phenotype. Specifically, we predicted that sexual receptivity and discrimination behaviors would decline along with circulating concentrations of steroid hormones (corticosterone, estradiol, testosterone) and auditory sensitivity to the acoustic frequencies emphasized in male advertisement calls. We conducted these trait measurements before and after oviposition (ca. 24-h period). There was a 100% decrease in behavioral responsiveness after oviposition, and the concentrations of all three steroids plummeted during this brief window of time, especially testosterone. Moreover, higher concentrations of corticosterone-an important component of the endocrine stress response-were associated with longer response latencies, suggesting that adrenal hormones should be considered in future studies on the hormonal basis of mate choice. Counter to our prediction, auditory sensitivity increased following oviposition, and the amplitude of the auditory brainstem response was influenced by concentrations of estradiol. In pre-oviposition females auditory sensitivity diminished with increasing estradiol concentrations, while sensitivity increased with increasing estradiol concentrations in post-oviposition females, suggesting non-linear estrogenic modulation of peripheral auditory neural recruitment. Overall, our results indicate that there is considerable remodeling of behavioral output following oviposition that co-occurs with changes in both endocrine and sensory physiology.
Collapse
Affiliation(s)
- Megan D Gall
- Department of Biology, Vassar College, 124 Raymond Ave., Poughkeepsie, NY 12604, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, 1479 Gortner Ave, St. Paul, MN 55108, USA; Graduate Program in Neuroscience, University of Minnesota - Twin Cities, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| |
Collapse
|
9
|
Clulow J, Upton R, Trudeau VL, Clulow S. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:413-463. [PMID: 31471805 DOI: 10.1007/978-3-030-23633-5_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphibians have experienced a catastrophic decline since the 1980s driven by disease, habitat loss, and impacts of invasive species and face ongoing threats from climate change. About 40% of extant amphibians are under threat of extinction and about 200 species have disappeared completely. Reproductive technologies and biobanking of cryopreserved materials offer technologies that could increase the efficiency and effectiveness of conservation programs involving management of captive breeding and wild populations through reduced costs, better genetic management and reduced risk of species extinctions. However, there are relatively few examples of applications of these technologies in practice in on-the-ground conservation programs, and no example that we know of where genetic diversity has been restored to a threatened amphibian species in captive breeding or in wild populations using cryopreserved genetic material. This gap in the application of technology to conservation programs needs to be addressed if assisted reproductive technologies (ARTs) and biobanking are to realise their potential in amphibian conservation. We review successful technologies including non-invasive gamete collection, IVF and sperm cryopreservation that work well enough to be applied to many current conservation programs. We consider new advances in technology (vitrification and laser warming) of cryopreservation of aquatic embryos of fish and some marine invertebrates that may help us to overcome factors limiting amphibian oocyte and embryo cryopreservation. Finally, we address two case studies that illustrate the urgent need and the opportunity to implement immediately ARTs, cryopreservation and biobanking to amphibian conservation. These are (1) managing the biosecurity (disease risk) of the frogs of New Guinea which are currently free of chytridiomycosis, but are at high risk (2) the Sehuencas water frog of Bolivia, which until recently had only one known surviving male.
Collapse
Affiliation(s)
- J Clulow
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia.
| | - R Upton
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - V L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - S Clulow
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
10
|
Bastien B, Farley G, Ge F, Malin JS, Simon-Plumb CL, Pulley DM, Yang C, Baugh AT. The Waiting and Mating Game: Condition Dependent Mate Sampling in Female Gray Treefrogs (Hyla versicolor). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Clulow J, Pomering M, Herbert D, Upton R, Calatayud N, Clulow S, Mahony MJ, Trudeau VL. Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: A review. Gen Comp Endocrinol 2018; 265:141-148. [PMID: 29859744 DOI: 10.1016/j.ygcen.2018.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023]
Abstract
Most Australian frogs fall into two deeply split lineages, conveniently referred to as ground frogs (Myobatrachidae and Limnodynastidae) and tree frogs (Pelodryadidae). Species of both lineages are endangered because of the global chytrid pandemic, and there is increasing interest and research on the endocrine manipulation of reproduction to support the use of assisted reproductive technologies in conservation. Hormonal induction of gamete release in males and females is one such manipulation of the reproductive process. This paper reviews progress in temperate ground and tree frogs towards developing simple and efficient hormonal protocols for induction of spermiation and ovulation, and presents some new data, that together build towards an understanding of advances and obstacles towards progress in this area. We report that protocols for the non-invasive induction of sperm release, relying on single doses of gonadotropin-releasing hormone (GnRH) or human chorionic gonadotropin are very effective in both ground and tree frog species investigated to date. However, we find that, while protocols based on GnRH, and GnRH and dopamine antagonists, are moderately efficient in inducing ovulation in ground frogs, the same cannot be said for the use of such protocols in tree frogs. Although induced ovulation in the pelodryadid tree frogs has not been successfully implemented, and is difficult to explain in terms of the underlying endocrinology, we propose future avenues of investigation to address this problem, particularly the need for a source of purified or recombinant follicle-stimulating hormone and luteinising hormone for species from this group.
Collapse
Affiliation(s)
- John Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia.
| | - Melissa Pomering
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Danielle Herbert
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Rose Upton
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Natalie Calatayud
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | - Simon Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109 Australia
| | - Michael J Mahony
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Baugh AT, Bastien B, Still MB, Stowell N. Validation of water-borne steroid hormones in a tropical frog (Physalaemus pustulosus). Gen Comp Endocrinol 2018; 261:67-80. [PMID: 29397994 DOI: 10.1016/j.ygcen.2018.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
Abstract
Minimally invasive methods for estimating hormone concentrations in wild vertebrates offer the opportunity to repeatedly measure behavior and hormone concentrations within individuals while minimizing experimenter interference during sample collection. We examined three steroid hormones (corticosterone, CORT; 17-β estradiol, E2; progesterone, PROG) in túngara frogs (Physalaemus pustulosus) using non-invasive water-borne methods. Using solid-phase extraction of water samples and liquid extraction of plasma and homogenate samples, coupled with enzyme immunoassays, we complimented the conventional validation approaches (parallelism, recovery determination) with dose-response assays that incorporated pharmacological challenges with adrenocorticotropic hormone (ACTH) and human chorionic gonadotropin (HCG). We also compared steroid concentrations in water to those observed in plasma and whole body homogenates. Lastly, we identified the constituent steroids in each sample type with a panel targeting 30 steroid species using high performance liquid chromatography-mass spectrometry (HPLC-MS). We found that a 60-min water-bath captures physiologically relevant changes in concentrations of CORT, E2 and PROG. Peak levels of water-borne CORT were found at approximately 2 h after ACTH injection. Water-borne CORT and E2 concentrations were positively correlated with their plasma and homogenate equivalents, while water-borne PROG was uncorrelated with homogenate PROG concentrations but negatively correlated with homogenate E2 concentrations. Together, our findings indicate that sampling water-borne hormones presents a non-invasive and biologically informative approach that will be useful for behavioral endocrinologists and conservation physiologists.
Collapse
Affiliation(s)
- Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | - Brandon Bastien
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Meghan B Still
- Department of Integrative Biology, The University of Texas at Austin, 1 University Station, C0930, Austin, TX 78712, USA
| | - Nicole Stowell
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| |
Collapse
|
13
|
Burmeister SS. Neurobiology of Female Mate Choice in Frogs: Auditory Filtering and Valuation. Integr Comp Biol 2018; 57:857-864. [PMID: 29048536 DOI: 10.1093/icb/icx098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mate choice is a decision making process with profound implication for the reproductive success of both the sender and the chooser. Preferences for conspecific over heterospecific males and for some conspecifics over others are typically mediated by a female's response to signals produced by males. And although one can experimentally describe a female's preference function, there is relatively little understood about the neural mechanisms mediating these preferences. In anurans, mating preferences have often been explained in terms of sensory biases. Indeed, in the túngara frog (Physalaemus pustulosus), the auditory system appears to act as a filter for conspecific calls. However, auditory responses are not good predictors of intraspecific mating preferences in túngara frogs. Rather, neural activity in the preoptic area, which can be gated by estradiol, is a better predictor of mating preferences. A similar pattern holds in spadefoot toads (Spea bombifrons): the preoptic area, but not the auditory midbrain, integrates physiological cues in its response to mating calls in a pattern that predicts preferences. Neuroanatomically, the anuran preoptic area is poised to mediate forebrain influences on auditory response of the midbrain and it has descending projections to the medulla and spinal cord that could directly influence motor responses. Indeed, lesions of the preoptic area abolish phonotaxis. A role for the preoptic area in mating preferences is supported by studies in mammals that show the preoptic area is required for the expression of preferences. Further, activity of the preoptic area correlates with mating preference in fish. This leads to a model for the neurobiological mechanisms of mate choice, in which sensory systems filter relevant signals from irrelevant ones, but the preoptic area assigns value to the range of relevant signals.
Collapse
Affiliation(s)
- Sabrina S Burmeister
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Lynch KS. Understanding Female Receiver Psychology in Reproductive Contexts. Integr Comp Biol 2018; 57:797-807. [PMID: 28992038 DOI: 10.1093/icb/icx018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mate choice decision-making requires four components: sensory, cognitive, motivation, and salience. During the breeding season, the neural mechanisms underlying these components act in concert to radically transform the way a female perceives the social cues around her as well as the way in which cognitive and motivational processes influence her decision to respond to courting males. The role of each of these four components in mate choice responses will be discussed here as well as the brain regions involved in regulating each component. These components are not independent, modular systems. Instead, they are dependent on one another. This review will discuss the many ways in which these components interact and affect one another. The interaction of these components, however, ultimately leads back to a few key neuromodulators that thread motivation, sensory, salience, and cognitive components into a set of inter-dependent processes. These neuromodulators are estrogens and catecholamines. This review will highlight the need to understand estrogens in reproductive contexts not just as simply a 'sexual motivation modulator' or catecholamines as 'cognitive regulators' but as neuromodulators that work together to fully transform a non-breeding female into a completely reproductive female displaying: heightened sexual interest in courting males, greater arousal and selective attention toward courtship signals, improved signal detection and discrimination abilities, enhanced contextual signal memory, and increased motivation to respond to signals assigned incentive salience. The aim of this review is to build a foundation in which to understand the brain regions associated with cognitive, sensory, motivational, and signal salience not as independently acting systems but as a set of interacting processes that function together in a context-appropriate manner.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Department of Biology, Hofstra University, 325 Gittleson Hall, Hempstead, NY 11746, USA
| |
Collapse
|
15
|
Petersen CL, Hurley LM. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain. Integr Comp Biol 2018; 57:865-877. [PMID: 28985384 DOI: 10.1093/icb/icx055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world.
Collapse
Affiliation(s)
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
16
|
Calatayud NE, Stoops M, Durrant BS. Ovarian control and monitoring in amphibians. Theriogenology 2017; 109:70-81. [PMID: 29325879 DOI: 10.1016/j.theriogenology.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/29/2022]
Abstract
Amphibian evolution spans over 350 million years, consequently this taxonomic group displays a wide, complex array of physiological adaptations and their diverse modes of reproduction are a prime example. Reproduction can be affected by taxonomy, geographic and altitudinal distribution, and environmental factors. With some exceptions, amphibians can be categorized into discontinuous (strictly seasonal) and continuous breeders. Temperature and its close association with other proximate and genetic factors control reproduction via a tight relationship with circadian rhythms which drive genetic and hormonal responses to the environment. In recent times, the relationship of proximate factors and reproduction has directly or indirectly lead to the decline of this taxonomic group. Conservationists are tackling the rapid loss of species through a wide range of approaches including captive rescue. However, there is still much to be learned about the mechanisms of reproductive control and its requirements in order to fabricate species-appropriate captive environments that address a variety of reproductive strategies. As with other taxonomic groups, assisted reproductive technologies and other reproductive monitoring tools such as ultrasound, hormone analysis and body condition indices can assist conservationists in optimizing captive husbandry and breeding. In this review we discuss some of the mechanisms of ovarian control and the different tools being used to monitor female reproduction.
Collapse
Affiliation(s)
- N E Calatayud
- San Diego Zoo Global, Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States.
| | - M Stoops
- Cincinnati Zoo & Botanical Garden, Center for Conservation and Research of Endangered Wildlife, 3400 Vine Street, Cincinnati, OH 45220, United States
| | - B S Durrant
- San Diego Zoo Global, Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States
| |
Collapse
|
17
|
Hoskins TD, Dellapina M, Boone MD. Short-term atrazine exposure at breeding has no impact on Blanchard's cricket frog (Acris blanchardi) reproductive success. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3284-3288. [PMID: 28657116 DOI: 10.1002/etc.3900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Studies of endocrine-disrupting contaminants have focused on early-life exposures, but later exposures could impact fitness. We exposed adult frogs (Acris blanchardi) at reproduction to ecologically relevant atrazine concentrations (0, 1, or 10 µg/L) in outdoor arenas. We measured likelihood of breeding and number of resulting tadpoles. Atrazine impacted neither the probability of breeding nor the number of tadpoles produced, suggesting anuran reproductive success may not be impacted by short-term exposure to low concentrations. Environ Toxicol Chem 2017;36:3284-3288. © 2017 SETAC.
Collapse
|
18
|
Hanson JL, Hurley LM. Serotonin, estrus, and social context influence c-Fos immunoreactivity in the inferior colliculus. Behav Neurosci 2016; 130:600-613. [PMID: 27657308 PMCID: PMC5114148 DOI: 10.1037/bne0000165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental task of sensory systems is to extract relevant social information from a range of environmental stimuli in the face of changing behavioral contexts and reproductive states. Neuromodulatory pathways that interact with such contextual variables are 1 mechanism for achieving this. In the mouse inferior colliculus (IC), a midbrain auditory region, the neuromodulator serotonin increases in females interacting with courting males, but events downstream of serotonin release have not been investigated. Here, we manipulated serotonin levels in female mice with the serotonin releaser fenfluramine or the serotonin depleter para-chlorophenylalaninemethyl ester (pCPA). Females were then exposed to an empty cage, a male partner, or a playback of courtship vocalizations, and the numbers of neurons in the IC with positive immunoreactivity for the immediate early gene product c-Fos were measured. The effects of drug treatments depended on social context and estrous state. Fenfluramine had greater effects in the nonsocial than in the partner social treatments. Females in proestrus or estrus and given fenfluramine had higher densities of c-Fos immunoreactive neurons, while females in diestrus had fewer immunoreactive neurons. The drug pCPA had the expected opposite effect of fenfluramine, causing a decreased response in pro/estrus females and an increased response in diestrus females. These findings show that the effects of serotonin on c-Fos activity in the IC of females is dependent on both external context and reproductive state, and suggest that these effects occur downstream of serotonin release. (PsycINFO Database Record
Collapse
|
19
|
Vu M, Trudeau VL. Neuroendocrine control of spawning in amphibians and its practical applications. Gen Comp Endocrinol 2016; 234:28-39. [PMID: 27013378 DOI: 10.1016/j.ygcen.2016.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/21/2022]
Abstract
Across vertebrates, ovulation and sperm release are primarily triggered by the timed surge of luteinizing hormone (LH). These key reproductive events are governed by the action of several brain neuropeptides, pituitary hormones and gonadal steroids which operate to synchronize physiology with behaviour. In amphibians, it has long been recognized that the neuropeptide gonadotropin-releasing hormone (GnRH) has stimulatory effects to induce spawning. Extensive work in teleosts reveals an inhibitory role of dopamine in the GnRH-regulated release of LH. Preliminary evidence suggests that this may be a conserved function in amphibians. Emerging studies are proposing a growing list of modulators beyond GnRH that are involved in the control of spawning including prolactin, kisspeptins, pituitary adenylate cyclase-activating polypeptide, gonadotropin-inhibitory hormone and endocannabinoids. Based on these physiological data, spawning induction methods have been developed to test on selective amphibian species. However, several limitations remain to be investigated to strengthen the evidence for future applications. The current state of knowledge regarding the neuroendocrine control of spawning in amphibians will be reviewed in detail, the elements of which will have wide implications towards the captive breeding of endangered amphibian species for conservation.
Collapse
Affiliation(s)
- Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada.
| |
Collapse
|
20
|
|
21
|
Ward JL, Love EK, Baugh AT, Gordon NM, Tanner JC, Bee MA. Progesterone and prostaglandin F2α induce species-typical female preferences for male sexual displays in Cope's gray treefrog (Hyla chrysoscelis). Physiol Behav 2015; 152:280-7. [PMID: 26454212 DOI: 10.1016/j.physbeh.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of signaling behavior in males and sexual proceptivity in females. What is less understood is how hormones promote the expression of the often complex and highly selective set of stimulus-response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the breeding season, but the administration of hormones can induce sexual proceptivity. Here we test the hypothesis that manipulation of a minimal set of reproductive hormones-progesterone and prostaglandin F2α-are capable of evoking not only proceptive behavior in non-breeding females, but also the patterns of intraspecific selectivity for male sexual displays observed in gravid females tested during the breeding season. Specifically, we investigated whether preferences for faster call rates, longer call durations, and higher call efforts were similar between breeding and hormone-treated females of Cope's gray treefrog (Hyla chrysoscelis). Hormone injections induced patterns of selective phonotaxis in non-breeding females that were remarkably similar to those observed in breeding females. These results suggest that there may be an important contribution of hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings also support the idea that hormonal induction could be used to evaluate hypotheses about selective mate choice, and its underlying mechanisms, using non-breeding females.
Collapse
Affiliation(s)
- Jessica L Ward
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elliot K Love
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | - Noah M Gordon
- Department of Biology, University of Evansville, Evansville, IN, USA
| | - Jessie C Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
22
|
Chakraborty M, Burmeister SS. Effects of estradiol on neural responses to social signals in female túngara frogs. ACTA ACUST UNITED AC 2015; 218:3671-7. [PMID: 26449971 DOI: 10.1242/jeb.127738] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022]
Abstract
Estradiol plays an important role in mediating changes in female sexual behavior across reproductive cycles. In the túngara frog [Physalaemus (=Engystomops) pustulosus], the relationship between gonadal activity and female sexual behavior, as expressed by phonotaxis, is mediated primarily by estradiol. Estradiol receptors are expressed in auditory and motivational brain areas and the hormone could serve as an important modulator of neural responses to conspecific calls. To better understand how estradiol modifies neural responses to conspecific social signals, we manipulated estradiol levels and measured expression of the immediate early gene egr-1 in the auditory midbrain, thalamus and limbic forebrain in response to conspecific or heterospecific calls. We found that estradiol and conspecific calls increased egr-1 expression in the auditory midbrain and limbic forebrain, but in the thalamus, only conspecific calls were effective. In the preoptic area, estradiol enhanced the effect of the conspecific call on egr-1 expression, suggesting that the preoptic area could act as a hormonal gatekeeper to phonotaxis. Overall, the results suggest that estradiol has broad influences on the neural circuit involved in female reproduction, particularly those implicated in phonotaxis.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sabrina S Burmeister
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
24
|
Gall MD, Wilczynski W. Prior experience with conspecific signals enhances auditory midbrain responsiveness to conspecific vocalizations. J Exp Biol 2014; 217:1977-82. [DOI: 10.1242/jeb.096883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a long history in neuroethology of investigating how communication signals influence the brain and behavior. It has become increasingly clear that brain areas associated with sensory processing are plastic in adults and that this plasticity is related to reproductive condition. However, the role of communication signal reception in adult auditory plasticity has received relatively little attention. Here, we investigated whether the reception of communication signals (a frog chorus) could enhance the responsiveness of the auditory system to future reception of communication signals (a single male call). We found that animals that had been exposed to 10 days of a male chorus had stronger auditory midbrain immediate early gene expression than animals that had been exposed to 10 days of random tones when tested with 30 min of male calls or 30 min of tones. Our results suggest that exposure to dynamic social stimuli, like frog choruses, may play an important role in shaping the neural and behavioral responses to communication signals.
Collapse
Affiliation(s)
- Megan D. Gall
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Biology Department, Vassar College, Poughkeepsie, NY 12604, USA
| | - Walter Wilczynski
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
25
|
Reparaz LB, van Oers K, Naguib M, Doutrelant C, Visser ME, Caro SP. Mate preference of female blue tits varies with experimental photoperiod. PLoS One 2014; 9:e92527. [PMID: 24671133 PMCID: PMC3966787 DOI: 10.1371/journal.pone.0092527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Organisms use environmental cues to time their life-cycles and among these cues, photoperiod is the main trigger of reproductive behaviours such as territory defence or song activity. Whether photoperiod is also important for another behaviour closely associated with reproduction, mate choice, is unknown. In many bird species, mate choice occurs at two different times during the annual cycle that strongly differ in daylength: in late winter when photoperiod is short and social mates are chosen, and again around egg-laying when photoperiod is longer and extra-pair mates are chosen. This duality makes the role that photoperiod plays on mate choice behaviours intriguing. We investigated the effect of photoperiod on mate choice using three experimental photoperiodic treatments (9 L:15 D, 14 L:10 D, 18 L:6 D), using blue tits (Cyanistes caeruleus) as a biological model. We show that female choice was stronger under long photoperiods. In addition, female blue tits spent significantly more time near males with long tarsi and long wings. This latter preference was only expressed under long photoperiods, suggesting that some indices of male quality only become significant to females when they are strongly photostimulated, and therefore that females could select their social and extra-pair mates based on different phenotypic traits. These results shed light on the roles that photoperiod may play in stimulating pair-bonding and in refining female selectivity for male traits.
Collapse
Affiliation(s)
- Laura B. Reparaz
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University (WUR), The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University (WUR), The Netherlands
| | | | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Samuel P. Caro
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Evolutionary Ecology, CEFE-CNRS, Montpellier, France
- * E-mail:
| |
Collapse
|
26
|
Gonçalves D, Costa SS, Teles MC, Silva H, Inglês M, Oliveira RF. Oestradiol and prostaglandin F2α regulate sexual displays in females of a sex-role reversed fish. Proc Biol Sci 2014; 281:20133070. [PMID: 24452030 DOI: 10.1098/rspb.2013.3070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanisms regulating sexual behaviours in female vertebrates are still poorly understood, mainly because in most species sexual displays in females are more subtle and less frequent than displays in males. In a sex-role reversed population of a teleost fish, the peacock blenny Salaria pavo, an external fertilizer, females are the courting sex and their sexual displays are conspicuous and unambiguous. We took advantage of this to investigate the role of ovarian-synthesized hormones in the induction of sexual displays in females. In particular, the effects of the sex steroids oestradiol (E2) and testosterone (T) and of the prostaglandin F2α (PGF2α) were tested. Females were ovariectomized and their sexual behaviour tested 7 days (sex steroids and PGF2α) and 14 days (sex steroids) after ovariectomy by presenting females to an established nesting male. Ovariectomy reduced the expression of sexual behaviours, although a significant proportion of females still courted the male 14 days after the ovary removal. Administration of PGF2α to ovariectomized females recovered the frequency of approaches to the male's nest and of courtship displays towards the nesting male. However, E2 also had a positive effect on sexual behaviour, particularly on the frequency of approaches to the male's nest. T administration failed to recover sexual behaviours in ovariectomized females. These results suggest that the increase in E2 levels postulated to occur during the breeding season facilitates female mate-searching and assessment behaviours, whereas PGF2α acts as a short-latency endogenous signal informing the brain that oocytes are mature and ready to be spawned. In the light of these results, the classical view for female fishes, that sex steroids maintain sexual behaviour in internal fertilizers and that prostaglandins activate spawning behaviours in external fertilizers, needs to be reviewed.
Collapse
Affiliation(s)
- David Gonçalves
- Eco-Ethology Research Unit, ISPA-Instituto Universitário, , Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal, Centro de Ciências do Mar, Universidade do Algarve, , Campus de Gambelas, Faro 8005-139, Portugal, Department of Science and Environment, University of St Joseph, , Rua de Londres 16, Macau, People's Republic of China (SAR), Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, , Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
28
|
Gramapurohit NP, Radder RS. Changes in Plasma Sex Steroids in Relation to Reproductive Behavior of the Toad, Bufo melanostictus (Schn.). COPEIA 2013. [DOI: 10.1643/cp-11-100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:681-91. [PMID: 23681220 DOI: 10.1007/s00359-013-0826-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Monoamines are important neuromodulators that respond to social cues and that can, in turn, modify social responses. Yet we know very little about the ontogeny of monoaminergic systems and whether they contribute to the development of social behavior. Anurans are an excellent model for studying the development of social behavior because one of its primary components, phonotaxis, is expressed early in life. To examine the effect of social signals on monoamines early in ontogeny, we presented juvenile Mexican spadefoot toads (Spea multiplicata) with a male mating call or no sound and measured norepinephrine, epinephrine, dopamine, serotonin, and a serotonin metabolite, across the brain using high-pressure liquid chromatography. Our results demonstrate that adult-like monoaminergic systems are in place shortly after metamorphosis. Perhaps more interestingly, we found that mating calls increased the level of monoamines in the juvenile tegmentum, a midbrain region involved in sensory-motor integration and that contributes to brain arousal and attention. We saw no such increase in the auditory midbrain or in forebrain regions. We suggest that changes in monoamine levels in the juvenile tegmentum may reflect the effects of social signals on arousal state and could contribute to context-dependent modulation of social behavior.
Collapse
|
30
|
Ronald KL, Fernández-Juricic E, Lucas JR. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Hoffmann F, Kloas W. Effects of environmentally relevant concentrations of the xeno-androgen, methyldihydrotestosterone, on male and female mating behavior in Xenopus laevis. CHEMOSPHERE 2012; 87:1246-1253. [PMID: 22342339 DOI: 10.1016/j.chemosphere.2012.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
Endocrine disrupting compounds (EDCs) are well known to interfere with the hormone system of aquatic vertebrates and to affect their reproductive biology. 17α-Methyldihydrotestosterone (MDHT) is a widely used model compound for the assessment of androgenic EDCs, because it binds with high affinity to nuclear androgen receptors. It was previously shown to affect various aspects of reproductive biology in aquatic vertebrates, however, evidence for MDHT affecting mating behavior of aquatic vertebrate species is lacking. In order to test the assumption that MDHT affects reproductive behavior of aquatic vertebrates, we exposed male and female Xenopuslaevis to three environmentally relevant concentrations of MDHT (30.45 ng L(-1), 3.05 μg L(-1) and 30.45 μg L(-1)). In males, MDHT at all concentrations led to enhanced levels of advertisement calling and decreased the relative proportions of rasping, a call type characterizing a sexually unaroused state of the male, indicating an increase in sexual arousal of MDHT exposed males. Temporal and spectral parameters of the advertisement call itself, however, were not affected by MDHT exposure. In females, MDHT (30.45 ng L(-1)) did not have any effects, while MDHT at 3.05 μg L(-1) increased female receptivity, increased the duration of time females spent close to the speaker playing male advertisement calls and reduced their latency to respond. MDHT at 30.45 μg L(-1), on the other hand, decreased female receptivity and increased their latency to respond. In summary, this study illustrates that exposure to environmentally relevant concentrations of the androgenic EDC MDHT affects male and female mating behavior of X. laevis. Hence, we suggest that nonaromatizable androgens might play a direct and predominant role in the physiology and regulation of reproduction not only in male but also in female frogs.
Collapse
Affiliation(s)
- Frauke Hoffmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | | |
Collapse
|
32
|
Yoder KM, Vicario DS. To modulate and be modulated: estrogenic influences on auditory processing of communication signals within a socio-neuro-endocrine framework. Behav Neurosci 2012; 126:17-28. [PMID: 22201281 PMCID: PMC3272484 DOI: 10.1037/a0026673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1) Local estradiol action within an auditory area is necessary for socially relevant sounds to induce normal physiological responses in the brains of both sexes; 2) These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3) Estradiol action within the auditory forebrain enables behavioral discrimination among socially relevant sounds in males; and 4) Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors.
Collapse
|
33
|
Almli LM, Wilczynski W. Socially modulated cell proliferation is independent of gonadal steroid hormones in the brain of the adult green treefrog (Hyla cinerea). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:170-80. [PMID: 22269468 DOI: 10.1159/000335037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/21/2011] [Indexed: 12/22/2022]
Abstract
Gonadal steroid hormones have been shown to influence adult neurogenesis in addition to their well-defined role in regulating social behavior. Adult neurogenesis consists of several processes including cell proliferation, which can be studied via 5-bromo-2'-deoxyuridine (BrdU) labeling. In a previous study we found that social stimulation altered both cell proliferation and levels of circulating gonadal steroids, leaving the issue of cause/effect unclear. In this study, we sought to determine whether socially modulated BrdU-labeling depends on gonadal hormone changes. We investigated this using a gonadectomy-implant paradigm and by exposing male and female green treefrogs (Hyla cinerea) to their conspecific chorus or control stimuli (i.e. random tones). Our results indicate that socially modulated cell proliferation occurred independently of gonadal hormone levels; furthermore, neither androgens in males nor estrogen in females increased cell proliferation in the preoptic area (POA) and infundibular hypothalamus, brain regions involved in endocrine regulation and acoustic communication. In fact, elevated estrogen levels decreased cell proliferation in those brain regions in the implanted female. In male frogs, evoked calling behavior was positively correlated with BrdU-labeling in the POA; however, statistical analysis showed that this behavior did not mediate socially induced cell proliferation. These results show that the social modulation of cell proliferation can occur without gonadal hormone involvement in either male or female adult anuran amphibians, and confirms that it is independent of a behavioral response in males.
Collapse
Affiliation(s)
- Lynn M Almli
- Institute for Neuroscience, The University of Texas at Austin, Austin, Tex., USA
| | | |
Collapse
|
34
|
Maney DL, Pinaud R, Pinaud R. Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Front Neuroendocrinol 2011; 32:287-302. [PMID: 21146556 PMCID: PMC3119742 DOI: 10.1016/j.yfrne.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
35
|
Ryan MJ. The brain as a source of selection on the social niche: examples from the psychophysics of mate choice in túngara frogs. Integr Comp Biol 2011; 51:756-70. [PMID: 21771854 DOI: 10.1093/icb/icr065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main premise of this article is that various cognitive functions involved in signal analysis, memory, and decision making, all modulated by the animal's internal milieu, can generate selection for the forms of signals used in social interactions. Thus, just as an animal's view of its world, its Umwelt, determines how it interacts with its ecological niche, it can influence the evolution of its social niche. Thus, the brain is not only a landscape on which selection can act, but also it is a powerful source of selection on the animal's social niche.
Collapse
Affiliation(s)
- Michael J Ryan
- Section of Integrative Biology, 1 University Station C0930, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Abstract
Rather than being a static, species specific trait, reproductive behavior in female amphibians is variable within an individual during the breeding season when females are capable of reproductive activity. Changes in receptivity coincide with changes in circulating estrogen. Estrogen is highest at the point when females are ready to choose a male and lay eggs. At this time female receptivity (her probability of responding to a male vocal signal) is highest and her selectivity among conspecific calls (measured by her probability of responding to a degraded or otherwise usually unattractive male signal) is lowest. These changes occur even though females retain the ability to discriminate different acoustic characteristics of various conspecific calls. After releasing her eggs, female amphibians quickly become less receptive and more choosy in terms of their responses to male sexual advertisement signals. Male vocal signals stimulate both behavior and estrogen changes in amphibian females making mating more probable. The changes in female reproductive behavior are the same as those generally accepted as indicative of a change in female sexual arousal leading to copulation. They are situationally triggered, gated by interactions with males, and decline with the consummation of sexual reproduction with a chosen male. The changes can be triggered by either internal physiological state or by the presence of stimuli presented by males, and the same stimuli change both behavior and physiological (endocrine) state in such a way as to make acceptance of a male more likely. Thus amphibian females demonstrate many of the same general characteristics of changing female sexual state that in mammals indicate sexual arousal.
Collapse
Affiliation(s)
- Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-5030, USA.
| | | |
Collapse
|
37
|
O’Connell LA, Ding JH, Ryan MJ, Hofmann HA. Neural distribution of the nuclear progesterone receptor in the túngara frog, Physalaemus pustulosus. J Chem Neuroanat 2011; 41:137-47. [DOI: 10.1016/j.jchemneu.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
|
38
|
Ramsey ME, Wong RY, Cummings ME. Estradiol, reproductive cycle and preference behavior in a northern swordtail. Gen Comp Endocrinol 2011; 170:381-90. [PMID: 20977908 DOI: 10.1016/j.ygcen.2010.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 11/23/2022]
Abstract
Estrogen is associated with female sexual behaviors, particularly receptive behaviors during the reproductive cycle. Less is known about the relationship between estrogen and female preference behaviors that may precede receptivity and copulation. Separating the mechanisms underlying preference from receptivity is often confounded by the tightly coupled cycle- or estrogen-dependent expression of female sexual behaviors. Here we utilize a live-bearing poeciliid (Xiphophorus nigrensis), a model species for studying the evolution of female mate choice that can store sperm over multiple brood cycles. We assayed estradiol along with preference, receptivity and locomotor behaviors in gestating females and then re-tested these females on days 1, 7, 14, 21, and 28 post-parturition. With a posteriori reproductive cycle assessment, we asked whether reproductive state predicts differences in (i) estradiol levels, and (ii) behaviors (preference, receptivity, and general locomotor activity). We then examined if estradiol levels (independent of reproductive state) explain any variation in these behaviors. We found that endogenous estradiol levels vary across the reproductive cycle: gestating females had lower estradiol levels than those undergoing vitellogenesis/fertilization. In contrast, receptivity and preference behaviors did not vary over the reproductive cycle. Estradiol levels did not predict variation in receptive behavior, but were associated with increased locomotion. While individual female preference behaviors were consistent across the reproductive cycle, there was a small negative relationship between estradiol and preference behaviors explaining between 3% and 10% of the inter-female variation in preference behavior. Our data indicate X. nigrensis females may exhibit a facultatively dissociated reproductive system.
Collapse
Affiliation(s)
- Mary E Ramsey
- Section of Integrative Biology, University of Texas at Austin, TX 78712, USA.
| | | | | |
Collapse
|
39
|
Mangiamele LA, Thomson CJ, Lebonville CL, Burmeister SS. Characterization of the plasticity-related gene, Arc, in the frog brain. Dev Neurobiol 2011; 70:813-25. [PMID: 20602363 DOI: 10.1002/dneu.20817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In mammals, expression of the immediate early gene Arc/Arg3.1 in the brain is induced by exposure to novel environments, reception of sensory stimuli, and production of learned behaviors, suggesting a potentially important role in neural and behavioral plasticity. To date, Arc has only been characterized in a few species of mammals and birds, which limits our ability to understand its role in modifying behavior. To begin to address this gap, we identified Arc in two frog species, Xenopus tropicalis and Physalaemus pustulosus, and characterized its expression in the brain of P. pustulosus. We found that the predicted protein for frog Arc shared 60% sequence similarity with Arc in other vertebrates, and we observed high Arc expression in the forebrain, but not the midbrain or hindbrain, of female túngara frogs sacrificed at breeding ponds. We also examined the time-course of Arc induction in the medial pallium, the homologue of the mammalian hippocampus, in response to a recording of a P. pustulosus mating chorus and found that accumulation of Arc mRNA peaked 0.75 h following stimulus onset. We found that the mating chorus also induced Arc expression in the lateral and ventral pallia and the medial septum, but not in the striatum, hypothalamus, or auditory midbrain. Finally, we examined acoustically induced Arc expression in response to different types of mating calls and found that Arc expression levels in the pallium and septum did not vary with the biological relevance or acoustic complexity of the signal.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | | | |
Collapse
|
40
|
O'Connell LA, Matthews BJ, Ryan MJ, Hofmann HA. Characterization of the dopamine system in the brain of the túngara frog, Physalaemus pustulosus. BRAIN, BEHAVIOR AND EVOLUTION 2010; 76:211-25. [PMID: 21099197 DOI: 10.1159/000321715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
Dopamine is an evolutionarily ancient neurotransmitter that plays an essential role in mediating behavior. In vertebrates, dopamine is central to the mesolimbic reward system, a neural network concerned with the valuation of stimulus salience, and to the nigrostriatal motor system and hypothalamic nuclei involved in the regulation of locomotion and social behavior. In amphibians, dopaminergic neurons have been mapped out in several species, yet the distribution of dopaminoreceptive cells is unknown. The túngara frog, Physalaemus pustulosus, is an excellent model system for the study of neural mechanisms by which valuations of stimuli salience and social decisions are made, especially in the context of mate choice. In order to better understand where dopamine acts to regulate social decisions in this species, we have determined the distribution of putative dopaminergic cells (using tyrosine hydroxylase immunohistochemistry) and cells receptive to dopaminergic signaling (using DARPP-32 immunohistochemistry) throughout the brain of P. pustulosus. The distribution of dopaminergic cells was comparable to other anurans. DARPP-32 immunoreactivity was identified in key brain regions known to modulate social behavior in other vertebrates including the proposed anuran homologues of the mammalian amygdalar complex, nucleus accumbens, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Due to its widespread distribution, DARPP-32 likely also plays many roles in non-limbic brain regions that mediate non-social information processing. These results significantly extend our understanding of the distribution of the dopaminergic system in the anuran brain and beyond.
Collapse
|
41
|
Shenoy K, Crowley PH. Endocrine disruption of male mating signals: ecological and evolutionary implications. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01787.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Chakraborty M, Burmeister SS. Sexually dimorphic androgen and estrogen receptor mRNA expression in the brain of túngara frogs. Horm Behav 2010; 58:619-27. [PMID: 20600046 DOI: 10.1016/j.yhbeh.2010.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 06/03/2010] [Accepted: 06/17/2010] [Indexed: 11/23/2022]
Abstract
Sex steroid hormones are potent regulators of behavior and they exert their effects through influences on sensory, motor, and motivational systems. To elucidate where androgens and estrogens can act to regulate sex-typical behaviors in the túngara frog (Physalaemus pustulosus), we quantified expression of the androgen receptor (AR), estrogen receptor alpha (ERalpha), and estrogen receptor beta (ERbeta) genes in the brains of male and females. To do so, we cloned túngara-specific sequences for AR, ERalpha, and ERbeta, determined their distribution in the brain, and then quantified their expression in areas that are important in sexual communication. We found that AR, ERalpha, and ERbeta were expressed in the pallium, limbic forebrain (preoptic area, hypothalamus, nucleus accumbens, amygdala, septum, striatum), parts of the thalamus, and the auditory midbrain (torus semicircularis). Males and females had a similar distribution of AR and ER expression, but expression levels differed in some brain regions. In the auditory midbrain, females had higher ERalpha and ERbeta expression than males, whereas males had higher AR expression than females. In the forebrain, females had higher AR expression than males in the ventral hypothalamus and medial pallium (homolog to hippocampus), whereas males had higher ERalpha expression in the medial pallium. In the preoptic area, striatum, and septum, males and females had similar levels of AR and ER expression. Our results suggest that sex steroid hormones have sexually dimorphic effects on auditory processing, sexual motivation, and possibly memory and, therefore, have important implications for sexual communication in this system.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
43
|
Arch VS, Narins PM. Sexual hearing: the influence of sex hormones on acoustic communication in frogs. Hear Res 2009; 252:15-20. [PMID: 19272318 PMCID: PMC2722832 DOI: 10.1016/j.heares.2009.01.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/17/2008] [Accepted: 01/12/2009] [Indexed: 01/29/2023]
Abstract
The majority of anuran amphibians (frogs and toads) use acoustic communication to mediate sexual behavior and reproduction. Generally, females find and select their mates using acoustic cues provided by males in the form of conspicuous advertisement calls. In these species, vocal signal production and reception are intimately tied to successful reproduction. Research with anurans has demonstrated that acoustic communication is modulated by reproductive hormones, including gonadal steroids and peptide neuromodulators. Most of these studies have focused on the ways in which hormonal systems influence vocal signal production; however, here we will concentrate on a growing body of literature that examines hormonal modulation of call reception. This literature suggests that reproductive hormones contribute to the coordination of reproductive behaviors between signaler and receiver by modulating sensitivity and spectral filtering of the anuran auditory system. It has become evident that the hormonal systems that influence reproductive behaviors are highly conserved among vertebrate taxa. Thus, studying the endocrine and neuromodulatory bases of acoustic communication in frogs and toads can lead to insights of broader applicability to hormonal modulation of vertebrate sensory physiology and behavior.
Collapse
Affiliation(s)
- Victoria S. Arch
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Dr. South Los Angeles, CA 90095-1606, USA
| | - Peter M. Narins
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Dr. South Los Angeles, CA 90095-1606, USA
- Department of Physiological Science, University of California, Los Angeles, 621 Charles E. Young Dr. South Los Angeles, CA 90095-1606, USA
| |
Collapse
|