1
|
Kikuyama S, Yamamoto K, Toyoda F, Kouki T, Okada R. Hormonal and pheromonal studies on amphibians with special reference to metamorphosis and reproductive behavior. Dev Growth Differ 2023; 65:321-336. [PMID: 37246964 DOI: 10.1111/dgd.12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In this article, we review studies which have been conducted to investigate the hormonal influence on metamorphosis in bullfrog (Rana catesbeiana) and Japanese toad (Bufo japonicus) larvae, in addition to studies conducted on the hormonal and pheromonal control of reproductive behavior in red-bellied newts (Cynops pyrrhogaster). Metamorphosis was studied with an emphasis on the roles of prolactin (PRL) and thyrotropin (TSH). The release of PRL was shown to be regulated by thyrotropin-releasing hormone (TRH) and that of TSH was evidenced to be regulated by corticotropin-releasing factor. The significance of the fact that the neuropeptide that controls the secretion of TSH is different from those encountered in mammals is discussed in consideration of the observation that the release of TRH, which stimulates the release of PRL, is enhanced when the animals are subjected to a cold temperature. Findings that were made by using melanin-rich cells of Bufo embryos and larvae, such as the determination of the origin of the adenohypophyseal primordium, identification of the pancreatic chitinase, and involvement of the rostral preoptic recess organ as the hypothalamic inhibitory center of α-melanocyte-stimulating hormone (α-MSH) secretion, are mentioned in this article. In addition, the involvement of hormones in eliciting courtship behavior in male red-bellied newts and the discovery of the peptide sex pheromones and hormonal control of their secretion are also discussed in the present article.
Collapse
Affiliation(s)
- Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Japan
| | - Kazutoshi Yamamoto
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Japan
| | - Fumiyo Toyoda
- Physiology Department I, Nara Medical University, Nara, Japan
| | - Tom Kouki
- Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Reiko Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
2
|
Vu M, Trudeau VL. Neuroendocrine control of spawning in amphibians and its practical applications. Gen Comp Endocrinol 2016; 234:28-39. [PMID: 27013378 DOI: 10.1016/j.ygcen.2016.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/21/2022]
Abstract
Across vertebrates, ovulation and sperm release are primarily triggered by the timed surge of luteinizing hormone (LH). These key reproductive events are governed by the action of several brain neuropeptides, pituitary hormones and gonadal steroids which operate to synchronize physiology with behaviour. In amphibians, it has long been recognized that the neuropeptide gonadotropin-releasing hormone (GnRH) has stimulatory effects to induce spawning. Extensive work in teleosts reveals an inhibitory role of dopamine in the GnRH-regulated release of LH. Preliminary evidence suggests that this may be a conserved function in amphibians. Emerging studies are proposing a growing list of modulators beyond GnRH that are involved in the control of spawning including prolactin, kisspeptins, pituitary adenylate cyclase-activating polypeptide, gonadotropin-inhibitory hormone and endocannabinoids. Based on these physiological data, spawning induction methods have been developed to test on selective amphibian species. However, several limitations remain to be investigated to strengthen the evidence for future applications. The current state of knowledge regarding the neuroendocrine control of spawning in amphibians will be reviewed in detail, the elements of which will have wide implications towards the captive breeding of endangered amphibian species for conservation.
Collapse
Affiliation(s)
- Maria Vu
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, ON K1N 9B4, Canada.
| |
Collapse
|
3
|
Ogura Y, Haraguchi S, Nagino K, Ishikawa K, Fukahori Y, Tsutsui K. 7α-Hydroxypregnenolone regulates diurnal changes in sexual behavior of male quail. Gen Comp Endocrinol 2016; 227:130-5. [PMID: 26608258 DOI: 10.1016/j.ygcen.2015.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
In the Japanese quail, 7α-hydroxypregnenolone, a previously undescribed avian neurosteroid, is actively produced in the brain. 7α-Hydroxypregnenolone acts as a novel neuronal activator to stimulate locomotor activity of quail. Therefore, in this study, we determined whether 7α-hydroxypregnenolone changes the expression of sexual behavior in Japanese quail. We first measured diurnal changes in sexual behavior of male quail exposed to a long-day photoperiod. We found that sexual behavior of male quail was high in the morning when endogenous 7α-hydroxypregnenolone level is high. Subsequently, we centrally administered 7α-hydroxypregnenolone in the evening when endogenous 7α-hydroxypregnenolone level is low. In the 30 min after intracerebroventricular (ICV) injection, 7α-hydroxypregnenolone dose dependently increased the frequency of sexual behavior of male quail. However, 7β-hydroxypregnenolone, a stereoisomer of 7α-hydroxypregnenolone, did not effect on the frequency of sexual behavior of male quail. In addition, to confirm the action of 7α-hydroxypregnenolone on sexual behavior, male birds received an ICV injection of ketoconazole, an inhibitor of cytochrome P450s, and behavioral experiments were performed in the morning. Ketoconazole significantly decreased the frequency of sexual behavior of male quail, whereas administration of 7α-hydroxypregnenolone to ketoconazole-treated males increased the frequency of their sexual behavior. These results indicate that 7α-hydroxypregnenolone regulates diurnal changes in sexual behavior of male quail.
Collapse
Affiliation(s)
- Yuki Ogura
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| | - Koki Nagino
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| | - Kei Ishikawa
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| | - Yoko Fukahori
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| |
Collapse
|
4
|
Toyoda F, Hasunuma I, Nakada T, Haraguchi S, Tsutsui K, Kikuyama S. Possible hormonal interaction for eliciting courtship behavior in the male newt, Cynops pyrrhogaster. Gen Comp Endocrinol 2015; 224:96-103. [PMID: 26141146 DOI: 10.1016/j.ygcen.2015.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/07/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
Reproductive behavior in amphibians, as in other vertebrate animals, is under the control of multiple hormonal substances. Prolactin (PRL), arginine vasotocin (AVT), androgen, and 7α-hydroxypregnenolone (7α-OH PREG), four such substances with hormonal activity, are known to be involved in the expression of the tail vibration behavior which is the initial step of courtship performed by the male newt, Cynops pyrrhogaster. As current information on the interaction(s) between these hormones in terms of eliciting tail vibration behavior is limited, we have investigated whether the decline of expression of tail vibration behavior due to suppression of the activity of any one of these hormones can be restored by supplying any one of the other three hormones exogenously. Expression of the behavior was determined in terms of incidence (% of test animals exhibiting the behavior) and frequency (number of times that the behavior was repeated during the test period). Neither PRL nor androgen restored the decline in the incidence and frequency of the tail vibration behavior caused by the suppression of the activity of any one of other three hormones. AVT completely restored both the anti-PRL antibody-induced and flutamide (an androgen receptor antagonist)-induced, but not ketoconazole (an inhibitor of the steroidogenic CYP enzymes)-induced decline in the incidence and frequency of the tail vibration behavior. The neurosteroid, 7α-OH PREG, failed to restore flutamide-induced decline in the incidence and frequency of the behavior. However, it was able to restore both anti-PRL antibody-induced and AVT receptor antagonist-induced decline in the incidence, but not in the frequency of the behavior. In another experiment designed to see the activity of hormones enhancing the frequency of the tail vibration behavior, AVT was revealed to be more potent than 7α-OH PREG. The role of each hormonal substance in determining the expression of the tail vibration behavior was discussed based on the results.
Collapse
Affiliation(s)
- Fumiyo Toyoda
- Department of Neurophysiology, Nara Medical University, Nara 634-8521, Japan.
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Shogo Haraguchi
- Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| | - Sakae Kikuyama
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan; Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
5
|
Haraguchi S, Yamamoto Y, Suzuki Y, Hyung Chang J, Koyama T, Sato M, Mita M, Ueda H, Tsutsui K. 7α-Hydroxypregnenolone, a key neuronal modulator of locomotion, stimulates upstream migration by means of the dopaminergic system in salmon. Sci Rep 2015. [PMID: 26220247 PMCID: PMC4518220 DOI: 10.1038/srep12546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmon migrate upstream against an opposing current in their natal river. However, the molecular mechanisms that stimulate upstream migratory behavior are poorly understood. Here, we show that 7α-hydroxypregnenolone (7α-OH PREG), a newly identified neuronal modulator of locomotion, acts as a key factor for upstream migration in salmon. We first identified 7α-OH PREG and cytochrome P450 7α-hydroxylase (P4507α), a steroidogenic enzyme producing 7α-OH PREG, in the salmon brain and then found that 7α-OH PREG synthesis in the brain increases during upstream migration. Subsequently, we demonstrated that 7α-OH PREG increases upstream migratory behavior of salmon. We further found that 7α-OH PREG acts on dopamine neurons in the magnocellular preoptic nucleus during upstream migration. Thus, 7α-OH PREG stimulates upstream migratory behavior through the dopaminergic system in salmon. These findings provide new insights into the molecular mechanisms of fish upstream migration.
Collapse
Affiliation(s)
- Shogo Haraguchi
- 1] Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan [2] Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Yuzo Yamamoto
- 1] Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan [2] Current address: Demonstration Laboratory, Marine Ecology Research Institute, Niigata, Japan
| | - Yuko Suzuki
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Joon Hyung Chang
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Teppei Koyama
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Miku Sato
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Masatoshi Mita
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Hiroshi Ueda
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
6
|
Woodley S. Chemosignals, hormones, and amphibian reproduction. Horm Behav 2015; 68:3-13. [PMID: 24945995 DOI: 10.1016/j.yhbeh.2014.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/24/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.
Collapse
Affiliation(s)
- Sarah Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
7
|
Tsutsui K, Haraguchi S. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 2. Discovery of neurosteroids and pineal neurosteroids. Gen Comp Endocrinol 2014; 205:11-22. [PMID: 24704561 DOI: 10.1016/j.ygcen.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
8
|
Kim JK, Kim IH, Heo JH, Lee JH, Ra NY, Eom J, Jeong SM, Lee HJ, Park D. Arginine Vasotocin (AVT) Triggers Courtship Behavior Without Exposure to External Stimuli and Modulates the Olfactory Response of MaleHynobius leechiiSalamanders. Zoolog Sci 2013; 30:929-37. [DOI: 10.2108/zsj.30.929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
10
|
Hasunuma I, Toyoda F, Okada R, Yamamoto K, Kadono Y, Kikuyama S. Roles of arginine vasotocin receptors in the brain and pituitary of submammalian vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:191-225. [PMID: 23809437 DOI: 10.1016/b978-0-12-407696-9.00004-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This chapter reviews the functions of arginine vasotocin (AVT) and its receptors in the central nervous system (CNS) of primarily submammalian vertebrates. The V1a-type receptor, which is widely distributed in the CNS of birds, amphibians, and fish, is one of the most important receptors involved in the expression of social and reproductive behaviors. In mammals, the V1b receptor of arginine vasopressin, an AVT ortholog, is assumed to be involved in aggression, social memory, and stress responses. The distribution of the V1b-type receptor in the brain of submammalian vertebrates has only been reported in an amphibian species, and its putative functions are discussed in this review. The functions of V2-type receptor in the CNS are still unclear. Recent phylogenetical and pharmacological analyses have revealed that the avian VT1 receptor can be categorized as a V2b-type receptor. The distribution of this newly categorized VT1 receptor in the brain of avian species should contribute to our knowledge of the possible roles of the V2b-type receptor in the CNS of other nonmammalian vertebrates. The functions of AVT in the amphibian and avian pituitaries are also discussed, focusing on the V1b- and V1a-type receptors.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|