1
|
Pedro BP, Romero LM. Physiological responses of wild birds to artificial grass during introduction to laboratory housing. PeerJ 2025; 13:e19095. [PMID: 40151451 PMCID: PMC11949117 DOI: 10.7717/peerj.19095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction of wild animals to captivity induces chronic stress often leading to weight loss, increases in baseline corticosterone, and increased DNA damage. To mitigate these effects, providing enrichment to the captive environment has been proposed. Yet, studies investigating the physiological effects of captive environment enrichments are rare in wild birds. Here, we test the potential of a single enrichment factor by monitoring weight, baseline corticosterone, and DNA damage in two groups of house sparrows (Passer domesticus) during introduction to captivity: (1) birds in standard laboratory cages with food dishes and (2) birds in cages where food is spread across artificial grass to simulate a more natural foraging environment. After 3 weeks, all birds switched environments for 3 additional weeks. Weight was monitored bi-weekly while baseline corticosterone and DNA damage were measured weekly. Initially, both groups lost significant weight and weight plateaued by about 2 weeks of captivity. However, after switching housing environments, only initially grass-caged birds continued to lose weight. After one week of captivity, grass-caged birds had lower DNA damage compared to standard-caged birds. Over time, standard-caged birds remained unchanged and initially grass-caged birds increased damage after switching housing environments. There were no significant differences in baseline corticosterone across groups or over time. Our findings provide limited support for artificial grass as a substantial enrichment in mitigating the physiological consequences associated with introduction to captivity. Furthermore, given the challenges to husbandry of using artificial grass, the data are insufficiently strong to recommend the use of artificial grass as a stress-reducing enrichment to laboratory housing.
Collapse
Affiliation(s)
- Bradley P. Pedro
- Department of Biology, Tufts University, Medford, MA, United States of America
| | - L. Michael Romero
- Department of Biology, Tufts University, Medford, MA, United States of America
| |
Collapse
|
2
|
Ganeyan A, Ganesh CB. Exposure to chronic stress impedes seasonal and gonadotropin-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Reprod Biol 2024; 24:100957. [PMID: 39378728 DOI: 10.1016/j.repbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
The neuroendocrine regulation of the stress-reproductive axis in reptiles is complex due to the diverse reproductive strategies adopted by these animals. Consequently, the underlying mechanisms by which stress can affect the reproductive axis remain opaque in reptiles. In the present study, we examined the effect of stress on the seasonal and FSH-induced ovarian recrudescence during the breeding and non-breeding phases of the cycle in the tropical and subtropical house gecko Hemidactylus frenatus. During the recrudescence phase of the ovarian cycle, exposure of lizards to various stressors (handling, confinement, chasing, and noise) caused a significant increase in the percentage of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH)-immunoreactive (ir) content in the median eminence (ME) and/or pars distalis of the pituitary gland (PD), concomitant with a significant decrease in the release of gonadotropin-releasing hormone (GnRH)-ir content into the ME and PD, and number of oogonia in the germinal bed and absence of the stage IV and V (vitellogenic) follicles in the ovary compared to experimental controls. During the non-breeding phase, treatment of stressed lizards with FSH did not stimulate the development of stage IV and V follicles, in contrast to their appearance in FSH-only-treated lizards. Collectively, these findings suggest that exposure to stressors prevents the seasonal ovarian recrudescence, possibly mediated through the suppression of hypothalamic GnRH release into the ME and PD and/or directly at the level of the ovary.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
3
|
Farrar VS. Revisiting the specific and potentially independent role of the gonad in hormone regulation and reproductive behavior. J Exp Biol 2024; 227:jeb247686. [PMID: 39508240 DOI: 10.1242/jeb.247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Gonadal sex steroid hormones are well-studied modulators of reproductive physiology and behavior. Recent behavioral endocrinology research has focused on how the brain dynamically responds to - and may even produce - sex steroids, but the gonadal tissues that primarily release these hormones receive much less attention as a potential mediator of behavioral variation. This Commentary revisits mechanisms by which the reproductive hypothalamic-pituitary-gonadal (HPG) axis can be modulated specifically at the gonadal level. These mechanisms include those that may allow the gonad to be regulated independently of the HPG axis, such as receptors for non-HPG hormones, neural inputs and local production of conventional 'neuropeptides'. Here, I highlight studies that examine variation in these gonadal mechanisms in diverse taxa, with an emphasis on recent transcriptomic work. I then outline how future work can establish functional roles of gonadal mechanisms in reproductive behavior and evaluate gonad responsiveness to environmental cues. When integrated with neural mechanisms, further investigation of gonadal hormone regulation can yield new insight into the control and evolution of steroid-mediated traits, including behavior.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Brandl HB, Farine DR. Stress in the social environment: behavioural and social consequences of stress transmission in bird flocks. Proc Biol Sci 2024; 291:20241961. [PMID: 39533955 PMCID: PMC11558247 DOI: 10.1098/rspb.2024.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
The stress response helps individuals cope with challenges, yet how individual stress levels shape group-level processes and the behaviour of other group members has rarely been explored. In social groups, stress responses can be buffered by others or transmitted to members that have not even experienced the stressor first-hand. Stress transmission, in particular, can have profound consequences for the dynamics of social groups and the fitness of individuals therein. We experimentally induced chronic stress within replicated colonies of zebra finches and used fine-scale tracking to observe the consequences of stress-exposed colony members for the behaviour and reproduction of non-manipulated colony members. Non-manipulated individuals in colonies containing stress-exposed individuals exhibited reduced activity, and fewer-but more differentiated-social bonds. These effects were stronger in colonies with a greater proportion of stress-treated individuals, demonstrating that the impact of stressors can reach beyond directly exposed individuals by also affecting their group mates. We found no evidence that socially transmitted stress affected reproduction or long-term physiological measurement in unmanipulated birds, even though the stress-exposed demonstrators laid slightly fewer eggs and showed stressor-dependent changes in feather corticosterone. Social transmission of these effects, if occurring at all, might be more subtle.
Collapse
Affiliation(s)
- Hanja B. Brandl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz78457, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich8057, Switzerland
| | - Damien R. Farine
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz78457, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich8057, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra2601, Australia
| |
Collapse
|
5
|
Currier SA, Whitt JG, Reyna KS. Biological validation of faecal corticosterone metabolites as a non-invasive stress assessment in translocated California valley quail ( Callipepla californica). CONSERVATION PHYSIOLOGY 2024; 12:coae012. [PMID: 38616893 PMCID: PMC11015821 DOI: 10.1093/conphys/coae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
US quail species are vulnerable to population declines as a result of climate change, habitat loss and habitat fragmentation, all of which can result in physiological stress. Additionally, population restoration techniques (PRTs), like translocations, also induce stress. Traditional assessments of avian stress hormone levels include capturing and handling birds to extract blood, methods that are inherently stressful and can compound stress analyses. However, the stress hormone corticosterone (CORT) is metabolized from the blood and excreted in faeces as faecal corticosterone metabolites (FCMs). FCMs have been used as a non-invasive measurement of stress hormone levels in a variety of species, but must be validated for each species. The objective of this study was to biologically validate the use of FCMs as a non-invasive measurement of CORT levels in California valley quail (Callipepla californica). Reference and treatment quail were acclimated for 3 weeks in an outdoor aviary. Subsequently, treatment quail were subjected to a simulated 48-h translocation, a common and stress hormone-inducing PRT. Faecal samples were collected every 4 h and processed using an enzyme immunoassay. Mean FCM concentrations of treatment quail (41.50 ± 16.13 ng/g) were higher than reference FCM concentrations (24.07 ± 10.4 ng/g). These results biologically validate the use of FCMs as a non-invasive method to assess CORT levels in California valley quail, demonstrate diurnal variation in quail CORT levels, and confirm that quail translocations are a stress-inducing PRT. Ultimately, this research validates a new non-invasive tool for stress response measurement to advance quail research, management and conservation.
Collapse
Affiliation(s)
- Sarah A Currier
- The Quail Research Laboratory, Ted and Donna Lyon Center for Gamebird Research, Texas A&M University-Commerce, Commerce, TX, 75429, USA
| | - Jeffrey G Whitt
- The Quail Research Laboratory, Ted and Donna Lyon Center for Gamebird Research, Texas A&M University-Commerce, Commerce, TX, 75429, USA
| | - Kelly S Reyna
- The Quail Research Laboratory, Ted and Donna Lyon Center for Gamebird Research, Texas A&M University-Commerce, Commerce, TX, 75429, USA
| |
Collapse
|
6
|
Murray BA, Soos C, Machin KL. The effects of pre-hatch elevated corticosterone and post-hatch restrictive food availability on the HPA axis development of mallard ducks (Anas platyrhynchos). Gen Comp Endocrinol 2023; 342:114339. [PMID: 37369328 DOI: 10.1016/j.ygcen.2023.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Environmental changes can be stressors (altered habitat and food supply, climate change, etc.) to wild animals. Stressors trigger the hypothalamic pituitary adrenal (HPA) axis to release corticosterone (CORT) which modifies energy homeostasis. During nesting, stressed females can deposit increased concentrations of CORT into eggs, altering egg viability and offspring characteristics, constituting a significant mechanism regulating population productivity in subsequent generations. In this study, increased maternal disposition of CORT was mimicked through a 15 ng/g in ovo injection of CORT into mallard duck eggs. Growth and HPA axis function were measured during post-hatch development. For growth, changes in mass were compared at hatch, 7 weeks and 11 weeks. The HPA axis was assessed at seven weeks by measuring CORT at baseline, followed by restraint stress, dexamethasone (negative feedback) and ACTH (maximal adrenal capacity) challenges. At eleven weeks of age, ducks were subjected to a 6-day 25% feed reduction to simulate a poor quality environment to evaluate response to a chronic stressor by comparing CORT at baseline and after restraint stress. Growth and CORT concentration did not differ between treatments at seven weeks or after feed restriction (11 weeks). The CORT dosage administered did not appear to affect HPA axis development in ducklings. Mallards are a highly adaptable species and may have overcome any early alterations to their phenotype. Further research is needed to determine the effects of increased maternal CORT on growth and the development of the HPA axis in ducks. SUMMARY STATEMENT: This study examines how maternal stress (simulated through elevated corticosterone in ovo) and post-hatch chronic stressors (food restriction) affect the development of the HPA axis in a precocial bird.
Collapse
Affiliation(s)
- Breanne A Murray
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 115 Perimeter Road, Saskatoon, Saskatchewan S7N 0X4, Canada
| | - Karen L Machin
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
7
|
Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. MICROBIAL ECOLOGY 2023; 85:820-838. [PMID: 35316343 DOI: 10.1007/s00248-022-01991-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
During the ongoing biodiversity crisis, captive conservation and breeding programs offer a refuge for species to persist and provide source populations for reintroduction efforts. Unfortunately, captive animals are at a higher disease risk and reintroduction efforts remain largely unsuccessful. One potential factor in these outcomes is the host microbiota which includes a large diversity and abundance of bacteria, fungi, and viruses that play an essential role in host physiology. Relative to wild populations, the generalized pattern of gut and skin microbiomes in captivity are reduced alpha diversity and they exhibit a significant shift in community composition and/or structure which often correlates with various physiological maladies. Many conditions of captivity (antibiotic exposure, altered diet composition, homogenous environment, increased stress, and altered intraspecific interactions) likely lead to changes in the host-associated microbiome. To minimize the problems arising from captivity, efforts can be taken to manipulate microbial diversity and composition to be comparable with wild populations through methods such as increasing dietary diversity, exposure to natural environmental reservoirs, or probiotics. For individuals destined for reintroduction, these strategies can prime the microbiota to buffer against novel pathogens and changes in diet and improve reintroduction success. The microbiome is a critical component of animal physiology and its role in species conservation should be expanded and included in the repertoire of future management practices.
Collapse
Affiliation(s)
- Jason W Dallas
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
8
|
Palarski J, Kubečka BW, Rollins D, Ruzicka RE, Mathewson HA. Northern bobwhite subspecies exhibit reduced survival and reproduction when translocated outside their native range. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- John Palarski
- Department of Wildlife and Natural Resources Tarleton State University, Box T‐0050 Stephenville TX 76402 USA
| | | | - Dale Rollins
- Rolling Plains Quail Research Foundation 1262 US‐180 Rotan TX 79546 USA
| | | | - Heather A. Mathewson
- Department of Wildlife and Natural Resources Tarleton State University, Box T‐0050 Stephenville TX 76402 USA
| |
Collapse
|
9
|
Stevenson TJ, Peng KY, Rouse ML, Alward BA, Ball GF. Social regulation of immediate early gene induction in gonadotropin releasing-hormone 1 neurons and singing behavior in canaries (Serinus canaria). Physiol Behav 2022; 256:113959. [PMID: 36088981 DOI: 10.1016/j.physbeh.2022.113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Social cues modulate the neuroendocrine control of reproduction. However, the neural systems involved in the integration of social cues are not well described. Gonadotropin-releasing hormone 1 (GnRH1) cells in the preoptic area (POA) are the final common node that links the brain with peripheral reproductive physiology. These experiments investigated whether induction of the immediate early gene, EGR1, in anatomically localized GnRH1 cell populations in Border canaries is regulated by the social environment. First, we characterized behavioral modifications in singing behavior and found males paired with a female for 2 weeks significantly reduced many aspects of singing behavior. However, paired males had a significantly higher percentage of GnRH1 cells co-labeled with EGR1. The second experiment manipulated the social environment by pairing males and females in mixed sex dyads, same sex dyads or housed birds in isolation. Only when birds are paired in mixed sex dyads was there a significantly greater percentage of GnRH1 cells expressing EGR1 cells. Increased GnRH1-EGR1 co-expression was localized to the rostral POA. These data reveal that discrete GnRH1 cells are involved in the neural integration of specific social cues and support the hypothesis that the POA exhibits functional topography related to courtship and sexual behaviors.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | | | - Melvin L Rouse
- Department of Psychology, University of Puget Sound, USA
| | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| |
Collapse
|
10
|
Environmental and Social Influences on the Behaviour of Free-Living Mandarin Ducks in Richmond Park. Animals (Basel) 2022; 12:ani12192554. [PMID: 36230295 PMCID: PMC9559490 DOI: 10.3390/ani12192554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Collecting information on how wild animals behave in the free-living environment can be useful for improving how such species are managed when under human care (e.g., in the zoo). Mandarin Ducks are an example of a species with a large captive population where research into the behaviour of wild birds can help with explaining and evaluating how this species is coping in captivity. This research collected data on free-living Mandarins in a large public park and compared such data to published research on captive Mandarins to evaluate any differences in time budgets. The overall aim of this research was to provide information on what behaviours are commonest amongst free-living Mandarin Ducks to help others with the assessment of behavioural normality of captive birds. Abstract Many species of birds are housed in zoos globally and are some of the most popular of animals kept under human care. Careful observations of how species live and behave in their natural habitats can provide us with important knowledge about their needs, adaptations, and internal states, allowing identification of those behaviours that are most important to the individual’s physical health and wellbeing. For this study, Mandarin Ducks (Aix galericulata) were chosen as a study species because, like many species of waterfowl, they are widely kept in both private institutions and zoos, yet little research has been conducted on their core needs in captivity. A free-living population of naturalised Mandarin Ducks living in Richmond Park was used for this research. Data on state behaviours (resting, swimming, foraging, perching, preening, and vigilance) were collected five days a week (08:00–18:00) from the 26 March to 26 May 2021. Secondly, temporal, seasonal, environmental, and animal-centric factors (e.g., Sex) were recorded to assess any impact on the Mandarin’s time-activity budget. Lastly, a comparison between free-living anmd captive activity was conducted (via the literature) to evaluate whether captive behaviours differ to how they are expressed in the wild. Results showed that free-living Mandarins predominantly rested (19.88% ± 28.97), swam (19.57% ± 19.43) and foraged (19.47% ± 25.82), with variations in activity related to factors such as vegetation cover and pond size. Results also showed differences between the time-budgets of free-living and captive Mandarins, suggesting that captive birds may not always have the opportunity to express species-typical behaviours. This research indicated that study of natural behaviours performed in the wild may help to evaluate “normal” behaviour patterns of zoo-housed individuals and provide evidence for environmental and husbandry alterations that can promote good welfare. However, any potential impact on the activity patterns of free-living species due to human interactions should be considered when assessing deviations between the behaviour of wild and captive individuals.
Collapse
|
11
|
Kou G, Wang Y, Dudley R, Wu Y, Li D. Coping with captivity: takeoff speed and load-lifting capacity are unaffected by substantial changes in body condition for a passerine bird. J Exp Biol 2022; 225:276048. [PMID: 35765864 DOI: 10.1242/jeb.244642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Captivity presumably challenges physiological equilibrium of birds and thus influences flight ability. However, the extent to which captive birds exhibit altered features underpinning maximum flight performance remains largely unknown. Here, we studied changes in physiological condition and load-lifting performance in the Eurasian tree sparrow (Passer montanus) over 15, 30, and 45 days of captivity. Sparrows showed body mass constancy over time but also an increased hematocrit at 15 days of captivity; both relative pectoralis mass and its fat content increased at 30 days. However, maximum takeoff speed and maximum lifted load remained largely unchanged until 45 days of captivity. Wingbeat frequency was independent of captivity duration and loading condition, whereas body angle and stroke plane angle varied only with maximum loading and not with duration of captivity. Overall, these results suggest that captive birds can maintain maximum flight performance when experiencing dramatic changes in both internal milieu and external environment.
Collapse
Affiliation(s)
- Guanqun Kou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuefeng Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
12
|
Readyhough TS, Joseph S, Vyas K, Schreier AL. The effects of Zoo Lights on animal welfare: A case study of great Indian hornbills at Denver Zoo. Zoo Biol 2022; 41:263-270. [PMID: 35084058 DOI: 10.1002/zoo.21681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/12/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Popular evening events, such as Zoo Lights, increase the exposure of animals in managed care to stressors such as artificial light and noise, which may alter their behavior and negatively affect animal well-being. The pair of great Indian hornbills (Buceros bicornis) at Denver Zoo provided an opportunity to study the impacts of these stressors because their exhibit was open every evening during Zoo Lights 2017. We expected the hornbills to display increased aggressive behaviors during Zoo Lights due to more exposure to stressors compared to the periods before and after the holiday event. Alternatively, if behavioral changes were associated with hornbills' breeding season which runs from December-March, we expected the hornbills to engage in more affiliative behaviors, and to increase conspecific and nest proximity, during and after Zoo Lights compared to before it due to the onset and progression of the breeding season. The hornbills did not engage in significantly more aggressive behavior during Zoo Lights than before or after it. By contrast, the hornbills engaged in significantly more affiliative behaviors and increased conspecific proximity during and after Zoo Lights compared to before the event. These results are consistent with the timing of the hornbills' breeding season and not with the increased exposure to stressors during Zoo Lights. This case study provides an early step in assessing the impact of Zoo Lights on animals whose exhibits are part of these holiday events. Studies like this will help inform best practices for Zoo Lights events such that they are positive experiences for the zoo, visitors, and animals.
Collapse
Affiliation(s)
- Taylor S Readyhough
- Department of Biology, Regis University, Denver, Colorado, USA.,Department of Animal Welfare and Research, Denver Zoo, Denver, Colorado, USA
| | - Sharon Joseph
- Department of Animal Welfare and Research, Denver Zoo, Denver, Colorado, USA
| | - Katie Vyas
- Department of Animal Care, Denver Zoo, Denver, Colorado, USA
| | - Amy L Schreier
- Department of Biology, Regis University, Denver, Colorado, USA.,Department of Animal Welfare and Research, Denver Zoo, Denver, Colorado, USA
| |
Collapse
|
13
|
Alonge MM, Greville LJS, Faure PA, Bentley GE. Immunoreactive distribution of gonadotropin-inhibitory hormone precursor, RFRP, in a temperate bat species (Eptesicus fuscus). J Comp Neurol 2021; 530:1459-1469. [PMID: 34957555 DOI: 10.1002/cne.25291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH, also known RFRP-3 in mammals) is an important regulator of the hypothalamic-pituitary-gonadal (HPG) axis and downstream reproductive physiology. Substantial species differences exist in the localization of cell bodies producing RFRP-3 and patterns of fiber immunoreactivity in the brain, raising the question of functional differences. Many temperate bat species exhibit unusual annual reproductive patterns. Male bats upregulate spermatogenesis in late spring which is asynchronous with periods of mating in the fall, while females have the physiological capacity to delay their reproductive investment over winter via sperm storage or delayed ovulation/fertilization. Neuroendocrine mechanisms regulating reproductive timing in male and female bats are not well-studied. We provide the first description of RFRP - precursor peptide of gonadotropin-inhibitory hormone - expression and localization in the brain of any bat using a widespread temperate species (Eptesicus fuscus, big brown bat) as a model. RFRP mRNA expression was detected in the hypothalamus, testes, and ovaries of big brown bats. Cellular RFRP-immunoreactivity was observed within the PVN, DMH, arcuate nucleus (Arc) and median eminence (ME). As in other vertebrates, RFRP fiber immunoreactivity was widespread, with greatest density observed in the hypothalamus, POA, ARC, ME, midbrain, and thalamic nuclei. Putative interactions between RFRP-ir fibers and gonadotropin-releasing hormone cell bodies were observed in 16% of GnRH-ir cells, suggesting direct regulation of GnRH via RFRP signaling. This characterization of RFRP distribution contributes to deeper understanding of bat neuroendocrinology which serves as foundation for manipulative approaches examining changes in reproductive neuropeptide signaling in response to environmental and physiological challenges within, and among, bat species. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mattina M Alonge
- University of California Berkeley, Department of Integrative Biology and Helen Wills Neuroscience Institute, Berkeley, California, USA
| | - Lucas J S Greville
- McMaster University, Department of Psychology, Neuroscience & Behavior, Hamilton, Ontario, Canada
| | - Paul A Faure
- McMaster University, Department of Psychology, Neuroscience & Behavior, Hamilton, Ontario, Canada
| | - George E Bentley
- University of California Berkeley, Department of Integrative Biology and Helen Wills Neuroscience Institute, Berkeley, California, USA
| |
Collapse
|
14
|
Kaplan G. Casting the Net Widely for Change in Animal Welfare: The Plight of Birds in Zoos, Ex Situ Conservation, and Conservation Fieldwork. Animals (Basel) 2021; 12:ani12010031. [PMID: 35011137 PMCID: PMC8749551 DOI: 10.3390/ani12010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Animal welfare measures have been designed to improve the health and environmental conditions of animals living under human control, for whatever reason. Welfare regulations have evolved also in line with new research insights into the cognitive, affective, and physiological domain of birds, as this paper discusses. This paper casts a critical eye on areas that Animal Welfare regulations have not reached at all, have not gone far enough, or are not regulated or supervised. It identifies the plight of birds living in captivity or being studied in the field, which either by neglect, ignorance, or design are subject to practices and procedures that may not meet basic welfare standards. The paper discusses some profound contradictions in the way we think about birds and their plight in today’s world: marked for extinction on one hand and highly admired as pets on the other; damaging fieldwork on one hand and the aims of conservation on the other. It highlights some common and distressing examples of poor welfare in birds. It also offers some solutions involving simple legislative changes and ways to eliminate some unacceptably low ethical standards in the handling and management of birds. Abstract This paper discusses paradoxes in our relationship to and treatment of birds in captive and conservation contexts. The paper identifies modern and new challenges that arise from declining bird numbers worldwide. Such challenges have partly changed zoos into providers of insurance populations specifically for species at risk of extinction. They have also accelerated fieldwork projects, but by using advanced technological tools and in increasing numbers, contradictorily, they may cause serious harm to the very birds studied for conservation purposes. In practice, very few avian species have any notable protection or guarantee of good treatment. The paper first deals with shortcomings of identifying problematic avian behavior in captive birds. It then brings together specific cases of field studies and captive breeding for conservation in which major welfare deficits are identified. Indeed, the paper argues that avian welfare is now an urgent task. This is not just because of declining bird numbers but because of investment in new technologies in field studies that may have introduced additional stressors and put at risk bird survival. While the paper documents a substantial number of peer-reviewed papers criticizing practices counter to modern welfare standards, they have by and large not led to changes in some practices. Some solutions are suggested that could be readily implemented and, to my knowledge, have never been considered under a welfare model before.
Collapse
Affiliation(s)
- Gisela Kaplan
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
15
|
Delfino HC, Carlos CJ. Behavioral repertoire of a population of wild Chilean Flamingos Phoenicopterus chilensis in southern Brazil. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1978574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Henrique Cardoso Delfino
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal, Laboratório de Ecologia e Sistemática de Aves e Mamíferos Marinhos (LABSMAR), Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, Brasil
| | - Caio J. Carlos
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal, Laboratório de Ecologia e Sistemática de Aves e Mamíferos Marinhos (LABSMAR), Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, Brasil
| |
Collapse
|
16
|
Ahmed F, Pudda F, Muzzeddu M, Schiavone A, Varcasia A, Nery J, Serra G, Seidavi A, Cappai MG. Excreta quality and digestive function of singly versus couple caged Sardinian partridges (Alectoris barbara barbara Bonnaterre, 1790) as non-invasive indicators of birds' coping ability to forced pairing. J Anim Physiol Anim Nutr (Berl) 2021; 106:854-859. [PMID: 34148262 DOI: 10.1111/jpn.13594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
The Sardinian partridge is a monogamous wild bird species of least concern according to IUCN list at present, though formerly accounted among threatened species for decades. The creation of couples is crucial in captivity, because forced pairing in cages can lead to poor welfare of birds, specially of females. This study investigated the impact of single versus couple caging of Sardinian partridges during non-laying period based on the collection and interpretation of indirect and non-invasive parameters (feed intake; space availability; excreta quality; and nutrient utilization). A total of 24 couples of breeding partridges were enrolled for two consequent phases of a same investigation (lasting 15 days each). During phase 1, all couples were fed ad libitum with a pelleted complete diet (DM, 905 g kg-1 of diet; CP, 160 g kg-1 ; and EE, 25 g kg-1 ). In phase 2, each male from 12 out of 24 couples was moved to an identical cage close to that where the female remained alone, to keep visual contact. The rest of couples continued to be kept like in phase 1. During phases 1 and 2, feed intake and excreta outputs were recorded daily. Pooled excreta of the last 3 days from couples and single birds were assessed for pH and DM, CP and ash content. Nutrient digestibility was calculated. No significant differences were noted between single versus couple caging regarding body weight (438 vs. 422 g respectively) or nutrient digestibility. However, singly housed males reduced daily feed intakes and females increased daily feed intake per g-1 BW (0.041 vs. 0.052 g, respectively, p < 0.001). Our results suggest that singly caged partridges from permanent couples can improve the access to feed and reduce competition during the non-mating season.
Collapse
Affiliation(s)
- Fahad Ahmed
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Flavia Pudda
- Rescue Center of the Autonomous Region of Sardinia, FORESTAS, località Tottubella, Italy
| | - Marco Muzzeddu
- Rescue Center of the Autonomous Region of Sardinia, FORESTAS, località Tottubella, Italy
| | - Achille Schiavone
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Antonio Varcasia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Joana Nery
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Giuseppe Serra
- Institute of BioEconomy, National Research Council, Sassari, Italy
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | |
Collapse
|
17
|
DuRant S, Love AC, Belin B, Tamayo-Sanchez D, Santos Pacheco M, Dickens MJ, Calisi RM. Captivity alters neuroendocrine regulators of stress and reproduction in the hypothalamus in response to acute stress. Gen Comp Endocrinol 2020; 295:113519. [PMID: 32470473 DOI: 10.1016/j.ygcen.2020.113519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 01/19/2023]
Abstract
Wild animals are brought into captivity for many reasons. However, unlike laboratory-bred animals, wild caught animals often respond to the dramatic shift in their environment with physiological changes in the stress and reproductive pathways. Using wild-caught male and female house sparrows (Passer domesticus) we examined how time in captivity affects the expression of reproductive and stress-associated genes in the brain, specifically, the hypothalamus. We quantified relative mRNA expression of a neurohormone involved in the stress response (corticotropin releasing hormone [CRH]), a hypothalamic inhibitor of reproduction (gonadotropin inhibitory hormone [GnIH]), and the glucocorticoid receptor (GR), which is important in terminating the stress response. To understand potential shifts at the cellular level, we also examined the presence of hypothalamic GnIH (GnIH-ir) using immunohistochemistry. We hypothesized that expression of these genes and the abundance of cells immunoreactive for GnIH would change in response to time in captivity as compared to free-living individuals. We found that GR mRNA expression and GnIH-ir cell abundance increased after 24 and 45 days in captivity, as compared to wild-caught birds. At 66 days in captivity, GR expression and GnIH cell abundance did not differ from wild-caught birds, suggesting birds had acclimated to captivity. Evaluation of CRH and GnIH mRNA expression yielded similar trends, though they were not statistically significant. In addition, although neuroendocrine factors appeared to acclimate to captivity, a previous study indicated that corticosterone release and immune responses of these same birds did not acclimate to captivity, suggesting that neuroendocrine endpoints may adapt more rapidly to captivity than downstream physiological measures. These data expand our understanding of the physiological shifts occurring when wild animals are brought into captivity.
Collapse
Affiliation(s)
- Sarah DuRant
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Ashley C Love
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74074, United States
| | - Bryana Belin
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States
| | - Doris Tamayo-Sanchez
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States
| | - Michelle Santos Pacheco
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States
| | - Molly J Dickens
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - Rebecca M Calisi
- Department of Biology, Program in Neuroscience and Behavior, Barnard College of Columbia University, New York, NY 10027, United States; Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| |
Collapse
|
18
|
Wilsterman K, Alonge MM, Bao X, Conner KA, Bentley GE. Food access modifies GnIH, but not CRH, cell number in the hypothalamus in a female songbird. Gen Comp Endocrinol 2020; 292:113438. [PMID: 32060003 DOI: 10.1016/j.ygcen.2020.113438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/23/2022]
Abstract
Food deprivation or restriction causes animals to mount a stereotypical behavioral and physiological response that involves overall increases in activity, elevated glucocorticoid production, and (often) inhibition of the reproductive system. Although there is increasing evidence that these responses can differ in their degree or covariation between the sexes, most studies to-date on food restriction/deprivation have focused on male songbirds. We therefore aimed to characterize the behavioral, physiological, and neuroendocrine response to acute food deprivation in a female songbird using a nomadic species, the zebra finch. We quantified behavior during a 6.5 h food deprivation and then measured physiological and neuroendocrine responses of female birds at the 6.5 h timepoint. Within 1 h of acute food deprivation, female zebra finches increased foraging behaviors, and after 6.5 h of food deprivation, females lost 5% of their body mass, on average. Change in body mass was positively associated with elevated corticosterone and (contrary to findings in male zebra finches) negatively related to the number of gonadotropin inhibitory hormone-immunoreactive cells in the hypothalamus. However, there was no effect of food deprivation on corticotropin releasing hormone-immunoreactive cells in the hypothalamus. There was also no relationship between corticotropin releasing hormone-immunoreactive cell number and circulating corticosterone. Our results are consistent with the hypothesis that neuroendocrine responses to food deprivation differ between male and female songbirds. Future studies should work to incorporate sex comparisons to evaluate sex-specific neuroendocrine responses to acute stress.
Collapse
Affiliation(s)
| | - Mattina M Alonge
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA
| | - Xinmiao Bao
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA
| | - Kristin A Conner
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA
| | - George E Bentley
- Integrative Biology, Univ. of California - Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, Univ. of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
19
|
Cooke SJ, Madliger CL, Cramp RL, Beardall J, Burness G, Chown SL, Clark TD, Dantzer B, de la Barrera E, Fangue NA, Franklin CE, Fuller A, Hawkes LA, Hultine KR, Hunt KE, Love OP, MacMillan HA, Mandelman JW, Mark FC, Martin LB, Newman AEM, Nicotra AB, Robinson SA, Ropert-Coudert Y, Rummer JL, Seebacher F, Todgham AE. Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. CONSERVATION PHYSIOLOGY 2020; 8:coaa016. [PMID: 32274063 PMCID: PMC7125050 DOI: 10.1093/conphys/coaa016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada.
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 14 3216, Australia
| | - Ben Dantzer
- Department of Psychology, Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, 58190, Mexico
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Rd, Parktown, 2193, South Africa
| | - Lucy A Hawkes
- College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27574 Bremerhaven, Germany
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences (SEALS) and Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 5811, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Ave. Davis, CA, 95616, USA
| |
Collapse
|
20
|
Jakob-Hoff R, Kingan M, Fenemore C, Schmid G, Cockrem JF, Crackle A, Bemmel EV, Connor R, Descovich K. Potential Impact of Construction Noise on Selected Zoo Animals. Animals (Basel) 2019; 9:E504. [PMID: 31370284 PMCID: PMC6721009 DOI: 10.3390/ani9080504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
Abstract
In anticipation of a major construction project in an urban New Zealand zoo, a study was initiated to assess the response to construction noise of selected animal species (elephant, giraffe, emu and alligator) previously observed to be sensitive to this kind of noise. The overall aim was to detect any signs of aversive responses to this noise to enable keepers to recognize these and take any necessary mitigating actions during the construction period. The experimental approach involved the creation of acoustic maps of each focal animal enclosure, a series of 90-min video recordings of the animals' behavior in response to ambient noise (control) and amplified broadcast of pre-recorded continuous and intermittent construction noise. Concentration of fecal corticosterone metabolites was also measured for the emus. Key findings were that giraffes, elephants and emus appeared to show an increase in behaviors that could indicate stress or agitation including vigilance and locomotion and may prefer quieter regions of their enclosure during sound exposure. Giraffes also increased close contact with conspecifics when exposed to construction noise. While alligators did not show clear evidence of noise-related stress, our findings indicated that all focal species showed some behavioral responses to recorded construction noise.
Collapse
Affiliation(s)
- Richard Jakob-Hoff
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland 1022, New Zealand.
| | - Michael Kingan
- Department of Mechanical Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Chiaki Fenemore
- Department of Mechanical Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Gian Schmid
- Department of Mechanical Engineering, University of Auckland, Auckland 1010, New Zealand
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Amanda Crackle
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland 1022, New Zealand
| | - Emily Van Bemmel
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland 1142, New Zealand
| | - Rebecca Connor
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland 1142, New Zealand
| | - Kris Descovich
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland 1142, New Zealand
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
21
|
Gormally BMG, Ramos S, Yin H, Romero LM. Recovery periods during repeated stress impact corticosterone and behavioral responses differently in house sparrows. Horm Behav 2019; 112:81-88. [PMID: 30986400 DOI: 10.1016/j.yhbeh.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/10/2023]
Abstract
A number of studies have shown that chronic stress can negatively impact both physiology and behavior in a variety of organisms. What has yet to be extensively explored is whether these changes permanently alter an animal's functioning, or if they can be reversed. In this study, we used wild-caught house sparrows (Passer domesticus) to assess how recovery periods influence the physiological and behavioral impacts of an initial four days and subsequent four days of repeated stressors. Birds were randomly assigned to a recovery group and either experienced 0, 24, or 72 h of recovery between the two sets of stressors (cage rolling and cage tapping). We measured the regulation of the hypothalamic pituitary adrenal (HPA) axis by quantifying baseline and stress-induced corticosterone as well as negative feedback strength. We also assessed behavior using neophobia trials to measure how birds altered their approach towards novel objects and their overall activity. Both behavior and corticosterone responses were assessed before the experiment, after the recovery time, and following the final 4 days of stressors. We found that birds that experienced 24 h of recovery had reduced stress-induced corticosterone, but enhanced negative feedback relative to the pre-experiment sample. Additionally, 4 days of stressors was enough to significantly reduce approach latency towards novel objects; however, pre-experiment levels returned with longer periods of recovery. Finally, recovery time did not significantly influence responses to the second 4 days of stressors. Our results indicate that brief recovery periods partially ameliorate the hormonal and behavioral effects of repeated stress.
Collapse
Affiliation(s)
| | - Sarah Ramos
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Hannah Yin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
22
|
Fischer CP, Romero LM. Chronic captivity stress in wild animals is highly species-specific. CONSERVATION PHYSIOLOGY 2019; 7:coz093. [PMID: 31824674 PMCID: PMC6892464 DOI: 10.1093/conphys/coz093] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 05/05/2023]
Abstract
Wild animals are brought into captivity for many reasons-conservation, research, agriculture and the exotic pet trade. While the physical needs of animals are met in captivity, the conditions of confinement and exposure to humans can result in physiological stress. The stress response consists of the suite of hormonal and physiological reactions to help an animal survive potentially harmful stimuli. The adrenomedullary response results in increased heart rate and muscle tone (among other effects); elevated glucocorticoid (GC) hormones help to direct resources towards immediate survival. While these responses are adaptive, overexposure to stress can cause physiological problems, such as weight loss, changes to the immune system and decreased reproductive capacity. Many people who work with wild animals in captivity assume that they will eventually adjust to their new circumstances. However, captivity may have long-term or permanent impacts on physiology if the stress response is chronically activated. We reviewed the literature on the effects of introduction to captivity in wild-caught individuals on the physiological systems impacted by stress, particularly weight changes, GC regulation, adrenomedullary regulation and the immune and reproductive systems. This paper did not review studies on captive-born animals. Adjustment to captivity has been reported for some physiological systems in some species. However, for many species, permanent alterations to physiology may occur with captivity. For example, captive animals may have elevated GCs and/or reduced reproductive capacity compared to free-living animals even after months in captivity. Full adjustment to captivity may occur only in some species, and may be dependent on time of year or other variables. We discuss some of the methods that can be used to reduce chronic captivity stress.
Collapse
Affiliation(s)
| | - L Michael Romero
- Department of Biology, 200 College Ave. Tufts University, Medford, MA 02155 USA
- Corresponding author: Department of Biology, Medford, MA 02155, USA.
| |
Collapse
|
23
|
Gormally BMG, Fuller R, McVey M, Romero LM. DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:116-122. [PMID: 30336278 DOI: 10.1016/j.cbpa.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023]
Abstract
Corticosterone does not change in consistent ways across species and contexts, making it challenging to use as an indicator of chronic stress. We assessed DNA damage as a potential metric that could be a more integrative stress measurement with direct links to health. We captured free-living house sparrows, took an immediate blood sample, and transferred them to the laboratory, exposing them to the chronic stress of captivity. Biweekly blood and weight samples were then taken for 4 weeks. We immediately assessed DNA damage in red blood cells using the comet assay and later quantified corticosterone. Uric acid was analyzed in a separate group of birds. We found that birds initially lost, but began to regain weight over the course of captivity. DNA damage peaked within the first 10 days of captivity, and mostly remained elevated. However, the cellular distribution of damage changed considerably over time; most cells showed low levels of damage early, a bimodal distribution of high and low DNA damage during the peak of damage, and a wide unimodal distribution of damage at the end of the 4 weeks. Furthermore, corticosterone increased and remained elevated and uric acid decreased and remained depleted over the same period. Although both a molecular (DNA damage) and an endocrine (corticosterone) marker showed similar response profiles over the 4 weeks, they were not correlated, suggesting they reflect different aspects of the underlying physiology. These data provide convincing preliminary evidence that DNA damage has potential to be an additional indicator of chronic stress.
Collapse
Affiliation(s)
| | - Rory Fuller
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | |
Collapse
|
24
|
Gormally BMG, Romero LM. House sparrows (Passer domesticus) adjusted hypothalamic-pituitary-adrenal axis negative feedback and perch hopping activities in response to a single repeated stimulus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:597-605. [PMID: 30238686 DOI: 10.1002/jez.2229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Chronic stress has been extensively studied in both laboratory and field settings; however, a conclusive and consistent phenotype has not been reached. Several studies have reported attenuation of the hypothalamic-pituitary-adrenal axis during experiments intended to cause chronic stress. We sought to determine whether this attenuation could be indicative of habituation. Importantly, we were not investigating habituation to a specific stimulus-as many stress physiology studies do-but rather we assessed how the underlying physiology and behavior changed in response to repeated stressor presentation. We exposed house sparrows (Passer domesticus) to a single stimulus twice per day at random times for 8 consecutive days. We predicted that this period of time would be long enough for the birds to determine that these acute stressors were not, in fact, dangerous and they would, therefore, acclimate. A second control group remained undisturbed for the same period of time. We measured baseline, stress-induced, negative feedback strength, and maximum production of corticosterone as well as neophobic behavior before, during, and after this 8-day experiment. When birds experienced a stimulus for 4 days, their negative feedback strength was significantly diminished, but recovered after the second 4 days. Additionally, perch hopping decreased and recovered in this same time frame. These data suggest that distinct physiological and behavioral responses arise when house sparrows are exposed to the same stressor for several consecutive days as opposed to many stressors layered on top of one another. Furthermore, they indicate that habituation-as with chronic stress-can appear differently depending on the metric being examined.
Collapse
|
25
|
Pozner T, Vistoropsky Y, Moaraf S, Heiblum R, Barnea A. Questioning Seasonality of Neuronal Plasticity in the Adult Avian Brain. Sci Rep 2018; 8:11289. [PMID: 30050046 PMCID: PMC6062517 DOI: 10.1038/s41598-018-29532-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
To date, studies that reported seasonal patterns of adult neurogenesis and neuronal recruitment have correlated them to seasonal behaviors as the cause or as a consequence of neuronal changes. The aim of our study was to test this correlation, and to investigate whether there is a seasonal pattern of new neuronal recruitment that is not correlated to behavior. To do this, we used adult female zebra finches (songbirds that are not seasonal breeders), kept them under constant social, behavioral, and spatial environments, and compared neuronal recruitment in their brains during two seasons, under natural and laboratory conditions. Under natural conditions, no significant differences were found in the pattern of new neuronal recruitment across seasons. However, under artificial indoor conditions that imitated the natural conditions, higher neuronal recruitment occurred in late summer (August) compared to early spring (February). Moreover, our data indicate that "mixing" temperature and day length significantly reduces new neuronal recruitment, demonstrating the importance of the natural combination of temperature and day length. Taken together, our findings show, for the first time, that neuroplasticity changes under natural vs. artificial conditions, and demonstrate the importance of both laboratory and field experiments when looking at complex biological systems.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel.
- Department of Stem Cell Biology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, 91054, Germany.
| | - Yulia Vistoropsky
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Stan Moaraf
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Rachel Heiblum
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| |
Collapse
|
26
|
Bentley GE, Wilsterman K, Ernst DK, Lynn SE, Dickens MJ, Calisi RM, Kriegsfeld LJ, Kaufer D, Geraghty AC, viviD D, McGuire NL, Lopes PC, Tsutsui K. Neural Versus Gonadal GnIH: Are they Independent Systems? A Mini-Review. Integr Comp Biol 2018; 57:1194-1203. [PMID: 28992195 DOI: 10.1093/icb/icx085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Based on research in protochordates and basal vertebrates, we know that communication across the first endocrine axes likely relied on diffusion. Because diffusion is relatively slow, rapid responses to some cues, including stress-related cues, may have required further local control of axis outputs (e.g., steroid hormone production by the gonads). Despite the evolution of much more efficient circulatory systems and complex nervous systems in vertebrates, production of many "neuro"transmitters has been identified outside of the hypothalamus across the vertebrate phylogeny and these neurotransmitters are known to locally regulate endocrine function. Our understanding of tissue-specific neuropeptide expression and their role coordinating physiological/behavioral responses of the whole organism remains limited, in part, due to nomenclature and historic dogma that ignores local regulation of axis output. Here, we review regulation of gonadotropin-inhibitory hormone (GnIH) across the reproductive axis in birds and mammals to bring further attention to context-dependent disparities and similarities in neuropeptide production by the brain and gonads. We find that GnIH responsiveness to cues of stress appears conserved across species, but that the response of specific tissues and the direction of GnIH regulation varies. The implications of differential regulation across tissues remain unclear in most studies, but further work that manipulates and contrasts function in different tissues has the potential to inform us about both organism-specific function and endocrine axis evolution.
Collapse
Affiliation(s)
- George E Bentley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darcy K Ernst
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sharon E Lynn
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Molly J Dickens
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Lance J Kriegsfeld
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.,Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Anna C Geraghty
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dax viviD
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicolette L McGuire
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
27
|
Gormally BMG, Wright-Lichter J, Reed JM, Romero LM. Physiological and behavioral responses of house sparrows to repeated stressors. PeerJ 2018; 6:e4961. [PMID: 29892510 PMCID: PMC5994160 DOI: 10.7717/peerj.4961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Despite decades of research, we still lack a complete understanding of what factors influence the transition of the necessary and adaptive acute stress response to what has become known as chronic stress. This gap in knowledge has illuminated the necessity for studies that examine the thresholds between these two sides of the stress response. Here, we determine how repeated exposure to acute stressors influences physiological and behavioral responses. In this repeated measures study, house sparrows (Passer domesticus) were exposed to a chronic stress protocol. We took physiological and behavioral measurements before, during, and after the protocol. Blood samples were used to assess four aspects of hypothalamic-pituitary-adrenal (HPA) axis function: baseline corticosterone, stress-induced corticosterone, negative feedback, and the maximal capacity to secrete corticosterone. We also assessed bacterial killing capacity and changes in uric acid concentration. Neophobia trials were used to assess behavioral changes throughout the protocol. We found no significant changes in HPA axis regulation in any of the four aspects we tested. However, we found that uric acid concentrations and neophobia significantly decreased after only four days of the chronic stress protocol, while bacterial killing capacity did not decrease until after eight days of exposure. These results indicate that different components of the stress response can be impacted by chronic stress on different timescales. Our results further indicate the importance of assessing multiple aspects of both physiology and behavior in order to understand how exposure to chronic stress may influence ability to cope with future challenges.
Collapse
Affiliation(s)
- Brenna M G Gormally
- Department of Biology, Tufts University, Medford, MA, United States of America
| | | | - J Michael Reed
- Department of Biology, Tufts University, Medford, MA, United States of America
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA, United States of America
| |
Collapse
|
28
|
Calisi RM, Austin SH, Lang AS, MacManes MD. Sex-biased transcriptomic response of the reproductive axis to stress. Horm Behav 2018; 100:56-68. [PMID: 29378207 DOI: 10.1016/j.yhbeh.2017.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Stress is a well-known cause of reproductive dysfunction in many species, including birds, rodents, and humans, though males and females may respond differently. A powerful way to investigate how stress affects reproduction is by examining its effects on a biological system essential for regulating reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. Often this is done by observing how a stressor affects the amount of glucocorticoids, such as cortisol or corticosterone, circulating in the blood and their relationship with a handful of known HPG-producing reproductive hormones, like testosterone and estradiol. Until now, we have lacked a full understanding of how stress affects all genomic activity of the HPG axis and how this might differ between the sexes. We leveraged a highly replicated and sex-balanced experimental approach to test how male and female rock doves (Columba livia) respond to restraint stress at the level of their transcriptome. Females exhibit increased genomic responsiveness to stress at all levels of their HPG axis as compared to males, and these responsive genes are mostly unique to females. Reasons for this may be due to fluctuations in the female endocrine environment over the reproductive cycle and/or their evolutionary history, including parental investment and the potential for maternal effects. Direct links between genome to phenome cause and effect cannot be ascertained at this stage; however, the data we report provide a vital genomic foundation on which sex-specific reproductive dysfunction and adaptation in the face of stress can be further experimentally studied, as well as novel gene targets for genetic intervention and therapy investigations.
Collapse
Affiliation(s)
- Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, United States
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, United States
| |
Collapse
|
29
|
Spool JA, Riters LV. Associations Between Environmental Resources and the "Wanting" and "Liking" of Male Song in Female Songbirds. Integr Comp Biol 2017; 57:835-845. [PMID: 28985327 PMCID: PMC5886317 DOI: 10.1093/icb/icx117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reproductive success requires animals to adjust social and sexual behaviors in response to changes in environmental resources. In many species, males produce courtship signals to attract females; however, not all females are attracted by these signals. One possible explanation for this is that environmental resources alter neural mechanisms underlying motivation and reward in females so that male courtship is attractive when conditions are most favorable for an individual to breed. Here, we first introduce resource-dependent breeding behaviors of female songbirds. We then review studies that show associations between neural systems underlying motivation and reward, female responses to male courtship stimuli, and environmental resources necessary for breeding success (e.g., in female starlings, a nest cavity). Overall, we review evidence supporting the working hypotheses that (1) dopamine underlies sexually-motivated female responses to male courtship stimuli (i.e., song), (2) opioids underlie reward induced in females by hearing male courtship song, and (3) these systems are possibly modified by resources such that male courtship song is only attractive and rewarding to females with access to limited environmental resources essential for breeding success.
Collapse
Affiliation(s)
- Jeremy A. Spool
- Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
30
|
Roach SP, Mennill DJ, Phillmore LS. Operant discrimination of relative frequency ratios in black-capped chickadee song. Anim Cogn 2017; 20:961-973. [PMID: 28721574 DOI: 10.1007/s10071-017-1115-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/17/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Abstract
The two-note fee bee song of the black-capped chickadee (Poecile atricapillus) is sung at many different absolute frequencies, but the relative frequencies, or "pitch ratios", between the start and end of the fee note (glissando) and the fee and the bee notes (inter-note interval) are preserved with each pitch-shift. Ability to perceive these ratios and their relative salience varies with sex of the bird and setting: while both sexes appear to perceive changes in the inter-note interval, males appear to attend to the glissando in the field, and females appear to attend to both ratios. In this study, we compared directly whether male and female chickadees could discriminate between normal fee bee songs and songs that had one or both of the pitch ratios altered, and whether birds attended to one type of alteration over another. Both sexes learned to discriminate normal from altered songs; songs lacking an inter-note interval were more easily discriminated than songs with only the glissando removed. Females performed slightly better than males, including in the most difficult task with the stimuli lacking the glissando. Our study illustrates the value of using perceptual tasks to directly compare performance between the sexes and to demonstrate the difference between perception of and attention to acoustic features of vocal communication.
Collapse
Affiliation(s)
- Sean P Roach
- Department of Psychology and Neuroscience, Dalhousie University, P.O. Box 15000, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Daniel J Mennill
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Leslie S Phillmore
- Department of Psychology and Neuroscience, Dalhousie University, P.O. Box 15000, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
31
|
Prior NH, Yap KN, Mainwaring MC, Adomat HH, Crino OL, Ma C, Guns ES, Griffith SC, Buchanan KL, Soma KK. Sex steroid profiles in zebra finches: Effects of reproductive state and domestication. Gen Comp Endocrinol 2017; 244:108-117. [PMID: 26899721 DOI: 10.1016/j.ygcen.2016.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/13/2023]
Abstract
The zebra finch is a common model organism in neuroscience, endocrinology, and ethology. Zebra finches are generally considered opportunistic breeders, but the extent of their opportunism depends on the predictability of their habitat. This plasticity in the timing of breeding raises the question of how domestication, a process that increases environmental predictability, has affected their reproductive physiology. Here, we compared circulating steroid levels in various "strains" of zebra finches. In Study 1, using radioimmunoassay, we examined circulating testosterone levels in several strains of zebra finches (males and females). Subjects were wild or captive (Captive Wild-Caught, Wild-Derived, or Domesticated). In Study 2, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined circulating sex steroid profiles in wild and domesticated zebra finches (males and females). In Study 1, circulating testosterone levels in males differed across strains. In Study 2, six steroids were detectable in plasma from wild zebra finches (pregnenolone, progesterone, dehydroepiandrosterone (DHEA), testosterone, androsterone, and 5α-dihydrotestosterone (5α-DHT)). Only pregnenolone and progesterone levels changed across reproductive states in wild finches. Compared to wild zebra finches, domesticated zebra finches had elevated levels of circulating pregnenolone, progesterone, DHEA, testosterone, androstenedione, and androsterone. These data suggest that domestication has profoundly altered the endocrinology of this common model organism. These results have implications for interpreting studies of domesticated zebra finches, as well as studies of other domesticated species.
Collapse
Affiliation(s)
- Nora H Prior
- Zoology Department, University of British Columbia, Vancouver, BC, Canada.
| | - Kang Nian Yap
- Psychology Department, University of British Columbia, Vancouver, BC, Canada
| | - Mark C Mainwaring
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Hans H Adomat
- The Prostate Centre at Vancouver General Hospital, Vancouver, BC, Canada
| | - Ondi L Crino
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia; School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Chunqi Ma
- Psychology Department, University of British Columbia, Vancouver, BC, Canada
| | - Emma S Guns
- The Prostate Centre at Vancouver General Hospital, Vancouver, BC, Canada
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kiran K Soma
- Zoology Department, University of British Columbia, Vancouver, BC, Canada; Psychology Department, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Neuman-Lee L, Greives T, Hopkins GR, French SS. The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana). Horm Behav 2017; 89:48-54. [PMID: 28017596 DOI: 10.1016/j.yhbeh.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022]
Abstract
The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors.
Collapse
Affiliation(s)
- Lorin Neuman-Lee
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58106, USA
| | - Gareth R Hopkins
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Susannah S French
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA; The Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, USA.
| |
Collapse
|
33
|
Angelier F, Parenteau C, Trouvé C, Angelier N. Does the stress response predict the ability of wild birds to adjust to short-term captivity? A study of the rock pigeon ( Columbia livia). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160840. [PMID: 28083117 PMCID: PMC5210699 DOI: 10.1098/rsos.160840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 05/30/2023]
Abstract
Although the transfer of wild animals to captivity is crucial for conservation purposes, this process is often challenging because some species or individuals do not adjust well to captive conditions. Chronic stress has been identified as a major concern for animals held on long-term captivity. Surprisingly, the first hours or days of captivity have been relatively overlooked. However, they are certainly very stressful, because individuals are being transferred to a totally novel and confined environment. To ensure the success of conservation programmes, it appears crucial to better understand the proximate causes of interspecific and interindividual variability in the sensitivity to these first hours of captivity. In that respect, the study of stress hormones is relevant, because the hormonal stress response may help to assess whether specific individuals or species adjust, or not, to such captive conditions ('the stress response-adjustment to captivity hypothesis'). We tested this hypothesis in rock pigeons by measuring their corticosterone stress response and their ability to adjust to short-term captivity (body mass loss and circulating corticosterone levels after a day of captivity). We showed that an increased corticosterone stress response is associated with a lower ability to adjust to short-term captivity (i.e. higher body mass loss and circulating corticosterone levels). Our study suggests, therefore, that a low physiological sensitivity to stress may be beneficial for adjusting to captivity. Future studies should now explore whether the stress response can be useful to predict the ability of individuals from different populations or species to not only adjust to short-term but also long-term captivity.
Collapse
|
34
|
Rudolph LM, Bentley GE, Calandra RS, Paredes AH, Tesone M, Wu TJ, Micevych PE. Peripheral and Central Mechanisms Involved in the Hormonal Control of Male and Female Reproduction. J Neuroendocrinol 2016; 28:10.1111/jne.12405. [PMID: 27329133 PMCID: PMC5146987 DOI: 10.1111/jne.12405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Reproduction involves the integration of hormonal signals acting across multiple systems to generate a synchronised physiological output. A critical component of reproduction is the luteinising hormone (LH) surge, which is mediated by oestradiol (E2 ) and neuroprogesterone interacting to stimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recent evidence indicates the involvement of both classical and membrane E2 and progesterone signalling in this pathway. A metabolite of gonadotrophin-releasing hormone (GnRH), GnRH-(1-5), has been shown to stimulate GnRH expression and secretion, and has a role in the regulation of lordosis. Additionally, gonadotrophin release-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurones in birds. Stress-induced changes in GnIH have been shown to alter breeding behaviour in birds, demonstrating another mechanism for the molecular control of reproduction. Peripherally, paracrine and autocrine actions within the gonad have been suggested as therapeutic targets for infertility in both males and females. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic male infertility. Indeed, local production of melatonin and corticotrophin-releasing hormone could influence spermatogenesis via immune pathways in the gonad. In females, vascular endothelial growth factor A has been implicated in an angiogenic process that mediates development of the corpus luteum and thus fertility via the Notch signalling pathway. Age-induced decreases in fertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally, morphological changes in the arcuate nucleus of the hypothalamus influence female sexual receptivity in rats. The processes mediating these morphological changes have been shown to involve the rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. In summary, this review highlights new research in these areas, focusing on recent findings concerning the molecular mechanisms involved in the central and peripheral hormonal control of reproduction.
Collapse
Affiliation(s)
- L M Rudolph
- Department of Neurobiology, Laboratory of Neuroendocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - G E Bentley
- Department of Integrative Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - R S Calandra
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - A H Paredes
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Independencia, Santiago, Chile
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - T J Wu
- Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA
| | - P E Micevych
- Department of Neurobiology, Laboratory of Neuroendocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
35
|
O'Brien JK, Steinman KJ, Montano GA, Dubach JM, Robeck TR. Chicks produced in the Magellanic penguin (Spheniscus magellanicus) after cloacal insemination of frozen-thawed semen. Zoo Biol 2016; 35:326-38. [DOI: 10.1002/zoo.21304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Justine Kellie O'Brien
- SeaWorld and Busch Gardens Reproductive Research Center; SeaWorld Parks and Entertainment; San Diego California
| | - Karen J. Steinman
- SeaWorld and Busch Gardens Reproductive Research Center; SeaWorld Parks and Entertainment; San Diego California
| | - Gisele A. Montano
- SeaWorld and Busch Gardens Reproductive Research Center; SeaWorld Parks and Entertainment; San Diego California
| | | | - Todd R. Robeck
- SeaWorld and Busch Gardens Reproductive Research Center; SeaWorld Parks and Entertainment; San Diego California
| |
Collapse
|
36
|
Ernst DK, Lynn SE, Bentley GE. Differential response of GnIH in the brain and gonads following acute stress in a songbird. Gen Comp Endocrinol 2016; 227:51-7. [PMID: 26158243 DOI: 10.1016/j.ygcen.2015.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/28/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) acts to inhibit reproduction at all levels of the hypothalamo-pituitary-gonad axis. GnIH expression and/or immunoreactivity in the hypothalamus increase with acute stress in some birds and mammals, and thus may be involved in stress-induced reproductive inhibition. Much is known about GnIH and stress in seasonal and continuous breeders, but far less is known about these interactions in opportunistic breeders. For opportunistically breeding animals, reproductive readiness is closely associated with unpredictable environmental cues, and thus the GnIH system may be more sensitive to stress. To test this, we collected tissues from zebra finches immediately following capture or after 60 min of restraint. Restraint significantly increased plasma corticosterone in males and females but, contrary to studies on other species, restrained birds had significantly fewer GnIH immunoreactive (GnIH-ir) cell bodies than control birds. GnIH-ir cell number did not differ between the sexes. Stressed females had lower mRNA expression of the beta subunit of follicle stimulating hormone (FSHβ) in the pituitary, suggesting that the reduction in observed GnIH immunoreactivity in females may have been due to increased GnIH release in response to acute stress. GnIH expression increased in the testes, but not the ovaries, of restrained animals. Our data suggest that although GnIH responsiveness to stress appears to be conserved across species, specific tissue response and direction of GnIH regulation is not. Variation in the GnIH response to stress between species might be the result of ecological adaptations or other species differences in the response of the GnIH system to stress.
Collapse
Affiliation(s)
- Darcy K Ernst
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Sharon E Lynn
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - George E Bentley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| |
Collapse
|
37
|
Wingfield JC, Perfito N, Calisi R, Bentley G, Ubuka T, Mukai M, O'Brien S, Tsutsui K. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen Comp Endocrinol 2016; 227:16-26. [PMID: 26474923 DOI: 10.1016/j.ygcen.2015.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Seasonal breeding is widespread in vertebrates and involves sequential development of the gonads, onset of breeding activities (e.g. cycling in females) and then termination resulting in regression of the reproductive system. Whereas males generally show complete spermatogenesis prior to and after onset of breeding, females of many vertebrate species show only partial ovarian development and may delay onset of cycling (e.g. estrous), yolk deposition or germinal vesicle breakdown until conditions conducive for ovulation and onset of breeding are favorable. Regulation of this "brake" on the onset of breeding remains relatively unknown, but could have profound implications for conservation efforts and for "mismatches" of breeding in relation to global climate change. Using avian models it is proposed that a brain peptide, gonadotropin-inhibitory hormone (GnIH), may be the brake to prevent onset of breeding in females. Evidence to date suggests that although GnIH may be involved in the regulation of gonadal development and regression, it plays more regulatory roles in the process of final ovarian development leading to ovulation, transitions from sexual to parental behavior and suppression of reproductive function by environmental stress. Accumulating experimental evidence strongly suggests that GnIH inhibits actions of gonadotropin-releasing hormones on behavior (central effects), gonadotropin secretion (central and hypophysiotropic effects), and has direct actions in the gonad to inhibit steroidogenesis. Thus, actual onset of breeding activities leading to ovulation may involve environmental cues releasing an inhibition (brake) on the hypothalamo-pituitary-gonad axis.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Nicole Perfito
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rebecca Calisi
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA
| | - George Bentley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - T Ubuka
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - M Mukai
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sara O'Brien
- Department of Biology, Radford University, Radford, VA 24142, USA
| | - K Tsutsui
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
38
|
Dickens MJ, Vecchiarelli HA, Hill MN, Bentley GE. Endocannabinoid Signaling in the Stress Response of Male and Female Songbirds. Endocrinology 2015; 156:4649-59. [PMID: 26431225 PMCID: PMC4655215 DOI: 10.1210/en.2015-1425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endocannabinoid (eCB) signaling plays an important role in the stress response pathways of the mammalian brain, yet its role in the avian stress response has not been described. Understanding eCB signaling in avian species (such as the European starling, Sturnus vulgaris) allows a model system that exhibits natural attenuation of hypothalamic-pituitary-adrenal (HPA) responsiveness to stressors. Specifically, seasonally breeding birds exhibit the highest HPA activity during the breeding season and subsequently exhibit a robust HPA down-regulation during molt. Because eCB signaling in mammals has an overall inhibitory effect on HPA activity, we expected shifts in eCB signaling to regulate the seasonal HPA down-regulation during molt. However, our data did not support a role for eCB signaling in the molt-related suppression of HPA activity. For example, injection of the cannabinoid receptor (CB1) antagonist, AM251, did not potentiate molt-suppressed HPA activity. Instead, our data suggest eCB regulation of HPA plasticity as birds transition from breeding to molt. In support of this hypothesis, birds in the late breeding season demonstrated a more dynamic response at the level of avian amygdala eCB content in response to acute stress. The response and directionality of this effect match that seen in mammals. Overall, our data suggest that eCB signaling may allow for a dynamic range in HPA responsiveness (eg, breeding), but the signaling pathway's role may be limited when the HPA response is restrained (eg, molt). This first characterization of eCB signaling in the avian stress response also emphasizes that although the system functions similarly to other species, its exact role may be species specific.
Collapse
Affiliation(s)
- Molly J Dickens
- Department of Integrative Biology (M.J.D., G.E.B.), University of California, Berkeley, Berkeley, California 94609; Department of Cell Biology and Anatomy (H.A.V., M.N.H.), Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4; and Helen Wills Neuroscience Institute (G.E.B.), University of California, Berkeley, Berkeley, California 94720-1650
| | - Haley A Vecchiarelli
- Department of Integrative Biology (M.J.D., G.E.B.), University of California, Berkeley, Berkeley, California 94609; Department of Cell Biology and Anatomy (H.A.V., M.N.H.), Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4; and Helen Wills Neuroscience Institute (G.E.B.), University of California, Berkeley, Berkeley, California 94720-1650
| | - Matthew N Hill
- Department of Integrative Biology (M.J.D., G.E.B.), University of California, Berkeley, Berkeley, California 94609; Department of Cell Biology and Anatomy (H.A.V., M.N.H.), Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4; and Helen Wills Neuroscience Institute (G.E.B.), University of California, Berkeley, Berkeley, California 94720-1650
| | - George E Bentley
- Department of Integrative Biology (M.J.D., G.E.B.), University of California, Berkeley, Berkeley, California 94609; Department of Cell Biology and Anatomy (H.A.V., M.N.H.), Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4; and Helen Wills Neuroscience Institute (G.E.B.), University of California, Berkeley, Berkeley, California 94720-1650
| |
Collapse
|
39
|
Sex steroid profiles and pair-maintenance behavior of captive wild-caught zebra finches (Taeniopygia guttata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:35-44. [PMID: 26610331 DOI: 10.1007/s00359-015-1050-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
Here, we studied the life-long monogamous zebra finch, to examine the relationship between circulating sex steroid profiles and pair-maintenance behavior in pairs of wild-caught zebra finches (paired in the laboratory for >1 month). We used liquid chromatography-tandem mass spectrometry to examine a total of eight androgens and progestins [pregnenolone, progesterone, dehydroepiandrosterone (DHEA), androstenediol, pregnan-3,17-diol-20-one, androsterone, androstanediol, and testosterone]. In the plasma, only pregnenolone, progesterone, DHEA, and testosterone were above the limit of quantification. Sex steroid profiles were similar between males and females, with only circulating progesterone levels significantly different between the sexes (female > male). Circulating pregnenolone levels were high in both sexes, suggesting that pregnenolone might serve as a circulating prohormone for local steroid synthesis in zebra finches. Furthermore, circulating testosterone levels were extremely low in both sexes. Additionally, we found no correlations between circulating steroid levels and pair-maintenance behavior. Taken together, our data raise several interesting questions about the neuroendocrinology of zebra finches.
Collapse
|
40
|
Vocal production and playback of altered song do not affect ZENK expression in black-capped chickadees (Poecile atricapillus). Behav Brain Res 2015; 298:91-9. [PMID: 26523856 DOI: 10.1016/j.bbr.2015.10.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/17/2015] [Accepted: 10/24/2015] [Indexed: 11/23/2022]
Abstract
The two-note fee bee song of the black-capped chickadee (Poecile atricapillus) is sung at many different absolute frequencies, but the relative frequencies between the start and end of the fee note (the glissando) and between the fee and the bee notes (the inter-note ratio) are preserved regardless of absolute frequency. If these relative frequencies are experimentally manipulated, birds exhibit reduced behavioural responses to playback of altered songs both in field studies and laboratory studies. Interestingly, males appear to be sensitive to alterations in the glissando, while females appear to be sensitive to alterations in both the glissando and the inter-note ratio. In this study, we sought to determine whether the behaviour of male and female chickadees corresponds to differences in zenk protein immunoreactivity (ZENK-ir) in auditory perceptual regions following playback of fee bee songs with typical and altered pitch ratios. Overall, there was a small but significant sex difference in ZENK-ir (females>males), but altering relative frequencies did not reduce ZENK-ir compared to typical song. Birds did vocalize less in response to playback of songs that lacked an inter-note interval, but amount of singing fee bee song, chick-a-dee calls, or gargles was not correlated with ZENK-ir in perceptual regions (caudomedial nidopallium, NCM and caudomedial mesopallium, CMM) or in HVC, which is part of the song system. Our results confirm that ZENK-ir in NCM and CMM is not involved in fine-grain perceptual discrimination, however it did not support the idea that increased vocalizing increases ZENK-ir in HVC.
Collapse
|
41
|
van Breukelen NA, Snekser JL, Itzkowitz M. Male convict cichlid 11-ketotestosterone levels throughout the reproductive cycle: an exploratory profile study in laboratory and field populations. PeerJ 2015; 3:e949. [PMID: 26020006 PMCID: PMC4435447 DOI: 10.7717/peerj.949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/20/2015] [Indexed: 11/29/2022] Open
Abstract
The convict cichlid (Amatitlania nigrofasciata) has been extensively examined in relation to many behavioral topics, such as courtship, pair-bonding, bi-parental care, and territoriality. Recently, this model species has been utilized in studies on genetics, endocrinology, and neuroanatomy, with an ultimate goal of connecting behavior with its underlying mechanisms. The goal of this study was two-fold: (1) profile the circulating levels of plasma 11KT in the male convict cichlid at multiple points during the reproductive cycle and (2) generally compare the hormonal profiles of the widely used laboratory populations and those of a free-living population in the streams of Costa Rica. The results of the field experiment showed that male convict cichlids had higher levels of circulating 11KT during courtship and lower during the parental care and non-breeding phases. The profile of the laboratory population was similar to the profile of the free-living individuals, with significantly higher levels of 11KT occurring during courtship than during parental care, though the level of 11KT during non-breeding phase was elevated in the laboratory. The high levels of 11KT during courtship and low levels of 11KT during parental care found in both the field and the laboratory is similar to what has been reported in other species of teleosts, and may suggest an important function of 11KT in the expression of courtship behavior and the subsequent onset of parental behaviors in this model species.
Collapse
Affiliation(s)
| | | | - Murray Itzkowitz
- Lehigh University, Department of Biological Sciences , Bethlehem, PA , USA
| |
Collapse
|
42
|
Pluháček J, Steck BL. Different Sex Allocations in Two Related Species: The Case of the Extant Hippopotamus. Ethology 2015. [DOI: 10.1111/eth.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jan Pluháček
- Department of Ethology; Institute of Animal Science; Praha - Uhříněves Czech Republic
- Ostrava Zoo; Ostrava Czech Republic
| | | |
Collapse
|