1
|
Qin Y, Yu Q, Qiu T. A Longitudinal Study on the Influence of Parental Interaction on Preschool Children's Cognitive Development: A Retrospective Analysis. Clin Pediatr (Phila) 2025:99228251322607. [PMID: 40110862 DOI: 10.1177/00099228251322607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
To investigate the impact of parental interaction on cognitive development in preschool children, a study was conducted involving 198 preschool children selected between June 2021 and January 2022. These children were divided into a control group and an observation group based on their participation in parent-child interaction education. The propensity score matching method was employed to ensure baseline equivalence between the 2 groups. Post-matching, comparisons were made regarding language ability, social communication skills, social life skills, intelligence, and neurodevelopment. No significant differences were observed between the groups at baseline. Following the intervention, the observation group demonstrated significantly higher scores in language ability (P < .05), communication and life skills (P < .05), as well as intelligence and neurodevelopment, compared with the control group (P < .05). These findings suggest that parental interaction interventions can effectively enhance language abilities, social skills, social life skills, intelligence, and neurodevelopment in preschool children, and thus, are recommended for adoption.
Collapse
Affiliation(s)
- Yanli Qin
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| | - Qinchun Yu
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| | - Tian Qiu
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| |
Collapse
|
2
|
Turner MB, Dalmasso C, Loria AS. The adipose tissue keeps the score: priming of the adrenal-adipose tissue axis by early life stress predisposes women to obesity and cardiometabolic risk. Front Endocrinol (Lausanne) 2024; 15:1481923. [PMID: 39493777 PMCID: PMC11527639 DOI: 10.3389/fendo.2024.1481923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Adverse Childhood Experiences (ACEs) refer to early life stress events, including abuse, neglect, and other psychosocial childhood traumas that can have long-lasting effects on a wide range of physiological functions. ACEs provoke sex-specific effects, whereas women have been shown to display a strong positive correlation with obesity and cardiometabolic disease. Notably, rodent models of chronic behavioral stress during postnatal life recapitulate several effects of ACEs in a sex-specific fashion. In this review, we will discuss the potential mechanisms uncovered by models of early life stress that may explain the greater susceptibility of females to obesity and metabolic risk compared with their male counterparts. We highlight the early life stress-induced neuroendocrine shaping of the adrenal-adipose tissue axis as a primary event conferring sex-dependent heightened sensitivity to obesity.
Collapse
Affiliation(s)
| | | | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
McClafferty SR, Paniagua-Ugarte C, Hannabass ZM, Jackson PA, Hayes DM. Comparing the effects of infant maternal and sibling separation on adolescent behavior in rats (Rattus norvegicus). PLoS One 2024; 19:e0308958. [PMID: 39150925 PMCID: PMC11329123 DOI: 10.1371/journal.pone.0308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
Maternal separation in early life has been observed to have lasting, detrimental effects that impair personal and social development and can persist into adulthood. Maternal separation during infancy can be most detrimental during adolescence, leading to long-term adverse effects on development and social behavior. This research study compared the effects of sibling and maternal separation in infancy on anxiety, sociability, or memory later in adolescence (postnatal day, PND, 50-58) in male and female Long-Evans Rats (Rattus norvegicus). Rat pups were semi-randomly assigned into eight conditions for daily isolation (PND 1-14). The groups were separated by the duration of isolation between 15 minutes (control group) or 180 minutes (experimental group) and the sex of the rat. They were also separated by comfort conditions with the dam present in an adjoining cage versus not present and siblings present or not present during isolation. The result was a 2 (15-min vs. 180-min) x 2 (dam vs. no dam) x 2 (single vs. grouped) x 2 (male vs. female) design. Once pups had reached adolescence (PND 50), researchers tested for differences in anxiety, activity, and social behavior using elevated plus-maze, open field habituation, a three-chamber social interaction, and a social discrimination task. Results indicate that longer isolation was more stressful and caused lower body weight. The female rats showed more anxious behavior in the open field but only if they were in the shorter isolation group. Social interaction showed that the rats isolated with the dam had different effects of isolation. In males, shorter isolation with the dam increased sociability but decreased sociability in females. These complicated findings may be due to the effects of inoculation, which describes how moderate stress combined with comfort may produce adaptation or immunity to stress and affect males and females differently.
Collapse
Affiliation(s)
- Shane R McClafferty
- Radford University, Radford, VA, United States of America
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | | | | | | | - Dayna M Hayes
- Radford University, Radford, VA, United States of America
| |
Collapse
|
4
|
Lonstein JS, Vitale EM, Olekanma D, McLocklin A, Pence N, Bredewold R, Veenema AH, Johnson AW, Burt SA. Anxiety, aggression, reward sensitivity, and forebrain dopamine receptor expression in a laboratory rat model of early-life disadvantage. Dev Psychobiol 2023; 65:e22421. [PMID: 37860907 DOI: 10.1002/dev.22421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Erika M Vitale
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Doris Olekanma
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Andrew McLocklin
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Nathan Pence
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Magierecka A, Cooper B, Sloman KA, Metcalfe NB. Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate. Horm Behav 2023; 154:105396. [PMID: 37399780 DOI: 10.1016/j.yhbeh.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK.
| | - Ben Cooper
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Katherine A Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| |
Collapse
|
6
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
7
|
DeRosa H, Caradonna SG, Tran H, Marrocco J, Kentner AC. Milking It for All It's Worth: The Effects of Environmental Enrichment on Maternal Nurturance, Lactation Quality, and Offspring Social Behavior. eNeuro 2022; 9:ENEURO.0148-22.2022. [PMID: 35995560 PMCID: PMC9417599 DOI: 10.1523/eneuro.0148-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/17/2022] Open
Abstract
Breastfeeding confers robust benefits to offspring development in terms of growth, immunity, and neurophysiology. Similarly, improving environmental complexity, i.e., environmental enrichment (EE), contributes developmental advantages to both humans and laboratory animal models. However, the impact of environmental context on maternal care and milk quality has not been thoroughly evaluated, nor are the biological underpinnings of EE on offspring development understood. Here, Sprague Dawley rats were housed and bred in either EE or standard-housed (SD) conditions. EE dams gave birth to a larger number of pups, and litters were standardized and cross-fostered across groups on postnatal day (P)1. Maternal milk samples were then collected on P1 (transitional milk phase) and P10 (mature milk phase) for analysis. While EE dams spent less time nursing, postnatal enrichment exposure was associated with heavier offspring bodyweights. Milk from EE mothers had increased triglyceride levels, a greater microbiome diversity, and a significantly higher abundance of bacterial families related to bodyweight and energy metabolism. These differences reflected comparable transcriptomic changes at the genome-wide level. In addition to changes in lactational quality, we observed elevated levels of cannabinoid receptor 1 in the hypothalamus of EE dams, and sex-dependent and time-dependent effects of EE on offspring social behavior. Together, these results underscore the multidimensional impact of the combined neonatal and maternal environments on offspring development and maternal health. Moreover, they highlight potential deficiencies in the use of "gold standard" laboratory housing in the attempt to design translationally relevant animal models in biomedical research.
Collapse
Affiliation(s)
- Holly DeRosa
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | | | - Hieu Tran
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
- Department of Biology, Touro University, New York, NY 10023
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| |
Collapse
|