1
|
Bryant AR, Gabor CR. Lack of glucocorticoid flexibility is indicative of wear-and-tear in Hyla versicolor tadpoles from agricultural environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124265. [PMID: 38821344 DOI: 10.1016/j.envpol.2024.124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In habitats where stressors are frequent or persistent, it can become increasingly difficult for wildlife to appropriately match their endocrine responses to these more challenging environments. The dynamic regulation of glucocorticoid (GC) hormones plays a crucial role in determining how well individuals cope with environmental changes. Amphibians exposed to agricultural stressors can dampen aspects of their GC profile (baseline, agitation, recovery, stress responsiveness, and negative feedback) to cope in these stressful environments, but this dampening can lead to reductions in an individual's reactive scope and a loss of endocrine flexibility. Organic agriculture could potentially limit some of these effects, however, little is known about how amphibians respond physiologically to organic agricultural environments. We compared GC profiles of Hyla versicolor tadpoles from three treatments: natural ponds (<5% agriculture within 500m), ponds near organic farms, and ponds near conventional farms. We hypothesized that tadpoles would cope with agricultural habitats by dampening stress responsiveness and exhibiting more efficient negative feedback and that the magnitude of these changes in response would differ based on agricultural method. We found that tadpoles from conventional and organic ponds were less likely to downregulate GCs via negative feedback after stressor exposure than tadpoles from natural ponds. For agricultural tadpoles that did downregulate GCs after the stressor, we found lower stress responsiveness and faster downregulation to baseline corticosterone than tadpoles from natural ponds. These results point to an accumulation of wear-and-tear, leading to an overall reduction in reactive scope and limited GC flexibility in our agricultural tadpoles. Regardless of agricultural method used, agricultural tadpoles exhibited the same patterns of GC response, indicating that current efforts to incentivize farmers to switch to organic farming methods may not be sufficient to address negative agricultural impacts on amphibians.
Collapse
Affiliation(s)
- Amanda R Bryant
- Department of Biology, Texas State University, San Marcos, TX, 78666, United States.
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, TX, 78666, United States
| |
Collapse
|
2
|
Taff CC, Baldan D, Mentesana L, Ouyang JQ, Vitousek MN, Hau M. Endocrine flexibility can facilitate or constrain the ability to cope with global change. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220502. [PMID: 38310929 PMCID: PMC10838644 DOI: 10.1098/rstb.2022.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
Global climate change has increased average environmental temperatures world-wide, simultaneously intensifying temperature variability and extremes. Growing numbers of studies have documented phenological, behavioural and morphological responses to climate change in wild populations. As systemic signals, hormones can contribute to orchestrating many of these phenotypic changes. Yet little is known about whether mechanisms like hormonal flexibility (reversible changes in hormone concentrations) facilitate or limit the ability of individuals, populations and species to cope with a changing climate. In this perspective, we discuss different mechanisms by which hormonal flexibility, primarily in glucocorticoids, could promote versus hinder evolutionary adaptation to changing temperature regimes. We focus on temperature because it is a key gradient influenced by climate change, it is easy to quantify, and its links to hormones are well established. We argue that reaction norm studies that connect individual responses to population-level and species-wide patterns will be critical for making progress in this field. We also develop a case study on urban heat islands, where several key questions regarding hormonal flexibility and adaptation to climate change can be addressed. Understanding the mechanisms that allow animals to cope when conditions become more challenging will help in predicting which populations are vulnerable to ongoing climate change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Conor C. Taff
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucia Mentesana
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Faculty of Sciences, Republic University, Montevideo, 11200, Uruguay
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Maren N. Vitousek
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michaela Hau
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, Konstanz, 78467, Germany
| |
Collapse
|
3
|
Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP, Farmer JL, Prevelige BR, McMahon EK, McNeely T, Sisson ZR, Frenz BJ, Ziur AD, Clay EJ, Eames BD, McCollum SE, Haussmann MF. The response to stressors in adulthood depends on the interaction between prenatal exposure to glucocorticoids and environmental context. Sci Rep 2023; 13:6180. [PMID: 37061562 PMCID: PMC10105737 DOI: 10.1038/s41598-023-33447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Maternal stress during reproduction can influence how offspring respond to stress later in life. Greater lifetime exposure to glucocorticoid hormones released during stress is linked to greater risks of behavioral disorders, disease susceptibility, and mortality. The immense variation in individual's stress responses is explained, in part, by prenatal glucocorticoid exposure. To explore the long-term effects of embryonic glucocorticoid exposure, we injected Japanese quail (Coturnix japonica) eggs with corticosterone. We characterized the endocrine stress response in offspring and measured experienced aggression at three different ages. We found that prenatal glucocorticoid exposure affected (1) the speed at which the stress response was terminated suggesting dysregulated negative feedback, (2) baseline corticosterone levels in a manner dependent on current environmental conditions with higher levels of experienced aggression associated with higher levels of baseline corticosterone, (3) the magnitude of an acute stress response based on baseline concentrations. We finish by proposing a framework that can be used to test these findings in future work. Overall, our findings suggest that the potential adaptive nature of prenatal glucocorticoid exposure is likely dependent on environmental context and may also be tempered by the negative effects of longer exposure to glucocorticoids each time an animal faces a stressor.
Collapse
Affiliation(s)
- Ariana D Majer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Gianna M Tricola
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack E Geduldig
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Hannah P Litwa
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jenna L Farmer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Elyse K McMahon
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Taylor McNeely
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Zach R Sisson
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brian J Frenz
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Alexis D Ziur
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Emily J Clay
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brad D Eames
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| |
Collapse
|
4
|
Vitousek MN, Dantzer B, Fuxjager MJ, Schlinger BA. Evolutionary behavioral endocrinology: Introduction to the special issue. Horm Behav 2023; 152:105356. [PMID: 37031556 DOI: 10.1016/j.yhbeh.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, United States of America; Cornell Lab of Ornithology, Ithaca, NY 14850, United States of America
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States of America; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, United States of America
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, United States of America; Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
5
|
Taff C. Simulating physiological flexibility in the acute glucocorticoid response to stressors reveals limitations of current empirical approaches. PeerJ 2022; 10:e14039. [PMID: 36132217 PMCID: PMC9484456 DOI: 10.7717/peerj.14039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Wild animals often experience unpredictable challenges that demand rapid and flexible responses. The glucocorticoid mediated stress response is one of the major systems that allows vertebrates to rapidly adjust their physiology and behavior. Given its role in responding to challenges, evolutionary physiologists have focused on the consequences of between-individual and, more recently, within-individual variation in the acute glucocorticoid response. However, empirical studies of physiological flexibility are severely limited by the logistical challenges of measuring the same animal multiple times. Data simulation is a powerful approach when empirical data are limited, but has not been adopted to date in studies of physiological flexibility. In this article, I develop a simulation that can generate realistic acute glucocorticoid response data with user specified characteristics. Simulated animals can be sampled continuously through an acute response and across as many separate responses as desired, while varying key parameters. Using the simulation, I develop several scenarios that address key questions in physiological flexibility. These scenarios demonstrate the conditions under which a single glucocorticoid trait can be accurately assessed with typical experimental designs, the consequences of covariation between different components of the acute stress response, and the way that context specific differences in variability of acute responses can influence the power to detect relationships between the strength of the acute stress response and fitness. I also describe how to use the simulation tools to aid in the design and evaluation of empirical studies of physiological flexibility.
Collapse
Affiliation(s)
- Conor Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States,Lab of Ornithology, Cornell University, Ithaca, NY, United States
| |
Collapse
|