1
|
Guillot B, Boileve A, Walton R, Harfoush A, Conte C, Sainte-Marie Y, Charron S, Bernus O, Recalde A, Sallé L, Brette F, Lezoualc'h F. Inhibition of EPAC1 signaling pathway alters atrial electrophysiology and prevents atrial fibrillation. Front Physiol 2023; 14:1120336. [PMID: 36909224 PMCID: PMC9992743 DOI: 10.3389/fphys.2023.1120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with increased mortality and morbidity. The Exchange Protein directly Activated by cAMP (EPAC), has been implicated in pro-arrhythmic signaling pathways in the atria, but the underlying mechanisms remain unknown. Methods: In this study, we investigated the involvement of EPAC1 and EPAC2 isoforms in the genesis of AF in wild type (WT) mice and knockout (KO) mice for EPAC1 or EPAC2. We also employed EPAC pharmacological modulators to selectively activate EPAC proteins (8-CPT-AM; 10 μM), or inhibit either EPAC1 (AM-001; 20 μM) or EPAC2 (ESI-05; 25 μM). Transesophageal stimulation was used to characterize the induction of AF in vivo in mice. Optical mapping experiments were performed on isolated mouse atria and cellular electrophysiology was examined by whole-cell patch-clamp technique. Results: In wild type mice, we found 8-CPT-AM slightly increased AF susceptibility and that this was blocked by the EPAC1 inhibitor AM-001 but not the EPAC2 inhibitor ESI-05. Consistent with this, in EPAC1 KO mice, occurrence of AF was observed in 3/12 (vs. 4/10 WT littermates) and 4/10 in EPAC2 KO (vs. 5/10 WT littermates). In wild type animals, optical mapping experiments revealed that 8-CPT-AM perfusion increased action potential duration even in the presence of AM-001 or ESI-05. Interestingly, 8-CPT-AM perfusion decreased conduction velocity, an effect blunted by AM-001 but not ESI-05. Patch-clamp experiments demonstrated action potential prolongation after 8-CPT-AM perfusion in both wild type and EPAC1 KO mice and this effect was partially prevented by AM-001 in WT. Conclusion: Together, these results indicate that EPAC1 and EPAC2 signaling pathways differentially alter atrial electrophysiology but only the EPAC1 isoform is involved in the genesis of AF. Selective blockade of EPAC1 with AM-001 prevents AF in mice.
Collapse
Affiliation(s)
- Bastien Guillot
- IHU LIRYC -CRCTB U1045, Pessac, France.,INSERM U1045 -Université de Bordeaux, Bordeaux, France
| | - Arthur Boileve
- UR 4650 PSIR, GIP Cyceron, Caen, France.,Université de Caen-Normandie, Caen, France
| | - Richard Walton
- IHU LIRYC -CRCTB U1045, Pessac, France.,INSERM U1045 -Université de Bordeaux, Bordeaux, France
| | - Alexandre Harfoush
- UR 4650 PSIR, GIP Cyceron, Caen, France.,Université de Caen-Normandie, Caen, France
| | - Caroline Conte
- Université de Toulouse-Paul Sabatier, Toulouse, France.,Institut des maladies métaboliques et cardiovasculaires, INSERM UMR-1297, Toulouse, France
| | - Yannis Sainte-Marie
- Université de Toulouse-Paul Sabatier, Toulouse, France.,Institut des maladies métaboliques et cardiovasculaires, INSERM UMR-1297, Toulouse, France
| | - Sabine Charron
- IHU LIRYC -CRCTB U1045, Pessac, France.,INSERM U1045 -Université de Bordeaux, Bordeaux, France
| | - Olivier Bernus
- IHU LIRYC -CRCTB U1045, Pessac, France.,INSERM U1045 -Université de Bordeaux, Bordeaux, France
| | - Alice Recalde
- IHU LIRYC -CRCTB U1045, Pessac, France.,INSERM U1045 -Université de Bordeaux, Bordeaux, France
| | - Laurent Sallé
- UR 4650 PSIR, GIP Cyceron, Caen, France.,Université de Caen-Normandie, Caen, France
| | - Fabien Brette
- IHU LIRYC -CRCTB U1045, Pessac, France.,INSERM U1045 -Université de Bordeaux, Bordeaux, France.,PhyMedExp, INSERM U1046, CNRS 9412, Université de Montpellier, Montpellier, France
| | - Frank Lezoualc'h
- Université de Toulouse-Paul Sabatier, Toulouse, France.,Institut des maladies métaboliques et cardiovasculaires, INSERM UMR-1297, Toulouse, France
| |
Collapse
|
2
|
BLAGA SN, TODOR N, ZDRENGHEA D, ROȘU R, CISMARU G, PUIU M, GUȘETU G, POP D. The profile of patients with atrial fibrillation scheduled for cardioversion or catheter ablation hospitalized in a Romanian rehabilitation hospital. BALNEO AND PRM RESEARCH JOURNAL 2021:306-313. [DOI: 10.12680/balneo.2021.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Objectives - Structural cardiac, mainly atrial remodeling in non-valvular atrial fibrillation (NVAF) creates conditions for thromboembolic complications, despite the optimization of oral anticoagulant treatment over the past years. This study aims to provide a comparative analysis of patients with NVAF, with and without atrial thrombotic masses, in an integrated approach using clinical, electrocardiographic, anatomohemodynamic cardiac findings assessed by echocardiography, as well as an evaluation of the inflammatory status based on the usual screening blood markers. Methods – The study was based on the anonymous analysis of the medical records of 50 patients with NVAF monitored in a center of cardiology in Cluj-Napoca between March 2019 – February 2020, who received optimal oral anticoagulant treatment, all undergoing transesophageal ultrasound prior to cardioversion or ablation therapy. The statistical data processing methods were based on the “chi square” test and overall model fit logistic regression. Results – Atrial thrombotic complications were found in 7 (14%) patients with NVAF. These had, compared to patients without thrombotic masses, a mean CHA2DS2-VASc scale of 3 versus 2.76 (p=0.05), more frequently other atrial tachyarrhythmias (p<0.01), a more expressed inflammatory reaction (p=0.02), as well as a reduction of LVEF (p<0.01) and the peak left atrial appendage emptying velocity (p<0.01). Conclusions – In addition to a high CHA2DS2-VASc score, left anatomohemodynamic cardiac alteration, atrial arrhythmic complexity and background inflammatory status create conditions for high thromboembolic risk in patients with NVAF.
Keywords: non-valvular atrial fibrillation, cardiac thrombosis, left ventricular ejection fraction, inflammatory status, peak left atrial appendage velocity,
Collapse
Affiliation(s)
| | - Nicolae TODOR
- Institutul Oncologic "Ion Chiricuță", Cluj-Napoca, Romania
| | - Dumitru ZDRENGHEA
- “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu ROȘU
- “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel CISMARU
- “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai PUIU
- Cardiology-Rehabilitation Department, Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Gabriel GUȘETU
- “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana POP
- “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|
4
|
Verkerk AO, Marchal GA, Zegers JG, Kawasaki M, Driessen AHG, Remme CA, de Groot JR, Wilders R. Patch-Clamp Recordings of Action Potentials From Human Atrial Myocytes: Optimization Through Dynamic Clamp. Front Pharmacol 2021; 12:649414. [PMID: 33912059 PMCID: PMC8072333 DOI: 10.3389/fphar.2021.649414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Consequently, novel therapies are being developed. Ultimately, the impact of compounds on the action potential (AP) needs to be tested in freshly isolated human atrial myocytes. However, the frequent depolarized state of these cells upon isolation seriously hampers reliable AP recordings. Purpose: We assessed whether AP recordings from single human atrial myocytes could be improved by providing these cells with a proper inward rectifier K+ current (IK1), and consequently with a regular, non-depolarized resting membrane potential (RMP), through “dynamic clamp”. Methods: Single myocytes were enzymatically isolated from left atrial appendage tissue obtained from patients with paroxysmal AF undergoing minimally invasive surgical ablation. APs were elicited at 1 Hz and measured using perforated patch-clamp methodology, injecting a synthetic IK1 to generate a regular RMP. The injected IK1 had strong or moderate rectification. For comparison, a regular RMP was forced through injection of a constant outward current. A wide variety of ion channel blockers was tested to assess their modulatory effects on AP characteristics. Results: Without any current injection, RMPs ranged from −9.6 to −86.2 mV in 58 cells. In depolarized cells (RMP positive to −60 mV), RMP could be set at −80 mV using IK1 or constant current injection and APs could be evoked upon stimulation. AP duration differed significantly between current injection methods (p < 0.05) and was shortest with constant current injection and longest with injection of IK1 with strong rectification. With moderate rectification, AP duration at 90% repolarization (APD90) was similar to myocytes with regular non-depolarized RMP, suggesting that a synthetic IK1 with moderate rectification is the most appropriate for human atrial myocytes. Importantly, APs evoked using each injection method were still sensitive to all drugs tested (lidocaine, nifedipine, E-4031, low dose 4-aminopyridine, barium, and apamin), suggesting that the major ionic currents of the atrial cells remained functional. However, certain drug effects were quantitatively dependent on the current injection approach used. Conclusion: Injection of a synthetic IK1 with moderate rectification facilitates detailed AP measurements in human atrial myocytes. Therefore, dynamic clamp represents a promising tool for testing novel antiarrhythmic drugs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G Zegers
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Makiri Kawasaki
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H G Driessen
- Department of Cardiothoracic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris R de Groot
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Wang D, Sun L, Zhang G, Liu Y, Liang Z, Zhao J, Yin S, Su M, Zhang S, Wei Y, Liu H, Liang D, Li Y. Increased Susceptibility of Atrial Fibrillation Induced by Hyperuricemia in Rats: Mechanisms and Implications. Cardiovasc Toxicol 2021; 21:192-205. [PMID: 33099748 DOI: 10.1007/s12012-020-09611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
High levels of serum uric acid is closely associated with atrial fibrillation (AF); nonetheless, the detailed mechanisms remain unknown. Therefore, this work examined the intricate mechanisms of AF triggered by hyperuricemia and the impact of the uricosuric agent benzbromarone on atrial remodeling in hyperuricemic rats. After adjusting baseline serum uric acid levels, a total of 28 healthy male adult Sprague Dawley rats were randomly divided into 4 groups, namely, control (CTR), hyperuricemia (oxonic acid potassium salt, OXO) and benzbromarone (+ BBR), and OXO withdrawal groups. Primary rat cardiomyocytes were cultured with uric acid for 24 h to investigate the direct influence of uric acid on cardiomyocytes. Results revealed that AF vulnerability and AF duration were dramatically greater in hyperuricemic rats (OXO group), while the atrial effective refractory periods (AERPs) were significantly shorter. Meanwhile, BBR treatment and withdrawal of 2% OXO administration remarkably reduced AF inducibility and shortened AF duration. Moreover, abnormal morphology of atrial myocytes, atrial fibrosis, apoptosis, and substantial sympathetic nerve sprouting were observed in hyperuricemic rats. Apoptosis and fibrosis of atria were partly mediated by caspase-3, BAX, TGF-β1, and α-smooth muscle actin. Uric acid significantly induced primary rat cardiomyocyte apoptosis and fibrosis in vitro. Also, we found that sympathetic nerve sprouting was markedly upregulated in the atria of hyperuricemia rats, and was restored by BRB or absence of OXO administration. In summary, our study confirmed that AF induced by hyperuricemic rats occurred primarily via induction of atrial remodeling, thereby providing a novel potential treatment approach for hyperuricemia-related AF.
Collapse
Affiliation(s)
- Dingyu Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Li Sun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Guowei Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yang Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Zhaoguang Liang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jing Zhao
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Shuangli Yin
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Mengqi Su
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Song Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Ying Wei
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - He Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Desen Liang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
6
|
Smith CER, Trafford AW, Caldwell JL, Dibb KM. Physiology and patho-physiology of the cardiac transverse tubular system. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp. Int J Mol Sci 2017; 18:ijms18091873. [PMID: 28867785 PMCID: PMC5618522 DOI: 10.3390/ijms18091873] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in "ventricular-like" and "atrial-like" hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jan G Zegers
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Connie R Bezzina
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Tse G, Chan YWF, Keung W, Yan BP. Electrophysiological mechanisms of long and short QT syndromes. IJC HEART & VASCULATURE 2017; 14:8-13. [PMID: 28382321 PMCID: PMC5368285 DOI: 10.1016/j.ijcha.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 12/21/2022]
Abstract
The QT interval on the human electrocardiogram is normally in the order of 450 ms, and reflects the summated durations of action potential (AP) depolarization and repolarization of ventricular myocytes. Both prolongation and shortening in the QT interval have been associated with ventricular tachy-arrhythmias, which predispose affected individuals to sudden cardiac death. In this article, the molecular determinants of the AP duration and the causes of long and short QT syndromes (LQTS and SQTS) are explored. This is followed by a review of the recent advances on their arrhythmogenic mechanisms involving reentry and/or triggered activity based on experiments conducted in mouse models. Established and novel clinical risk markers based on the QT interval for the prediction of arrhythmic risk and cardiovascular mortality are presented here. It is concluded by a discussion on strategies for the future rational design of anti-arrhythmic agents.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Yin Wah Fiona Chan
- Department of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, PR China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Nguyen KT, Gladstone RA, Dukes JW, Nazer B, Vittinghoff E, Badhwar N, Vedantham V, Gerstenfeld EP, Lee BK, Lee RJ, Tseng ZH, Olgin JE, Scheinman MM, Marcus GM. The QT Interval as a Noninvasive Marker of Atrial Refractoriness. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2016; 39:1366-1372. [PMID: 27753113 DOI: 10.1111/pace.12962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/25/2016] [Accepted: 10/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Atrial refractoriness may be an important determinant of atrial fibrillation (AF) risk, but its measurement is not clinically accessible. Because the QT interval predicts incident AF and the atrium and ventricle share repolarizing ion currents, we investigated the association between an individual's QT interval and atrial effective refractory period (AERP). METHODS In paroxysmal AF patients presenting for catheter ablation, the QT interval was measured from the surface 12-lead electrocardiogram. The AERP was defined as the longest S1-S2 coupling interval without atrial capture using a 600-ms drive cycle length. RESULTS In 28 patients, there was a positive correlation between QTc and mean AERP. After multivariate adjustment, a 1-ms increase in QTc predicted a 0.70-ms increase in AERP. CONCLUSIONS The QTc interval reflects the AERP, suggesting that the QTc interval may be used as a marker of atrial refractoriness relevant to assessing AF risk and mechanism-specific therapeutic strategies.
Collapse
Affiliation(s)
- Kaylin T Nguyen
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Rachel A Gladstone
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jonathan W Dukes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Babak Nazer
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Nitish Badhwar
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Vasanth Vedantham
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Byron K Lee
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Randall J Lee
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Zian H Tseng
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jeffrey E Olgin
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Melvin M Scheinman
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Gregory M Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
10
|
Abstract
Although atrial fibrillation (AF) is clinically and genetically a highly heterogeneous disease, recent studies suggest that the arrhythmia may arise because of interactions between genetic and acquired risk factors - the so called "double-hit" hypothesis. Genome-wide association studies have identified common AF susceptibility loci, and linkage analysis and candidate gene approaches have identified mutations in genes that encode for cardiac ion channels and signaling proteins; however, most of the heritability of AF still remains unexplained. The voltage-dependent cardiac sodium channel, encoded by SCN5A, conducts the main cardiac inward sodium current (INa) and is responsible for the upstroke of the atrial action potential. Mutations in SCN5A, which encodes the α-subunit of the NaV1.5 channel, have been linked with increased susceptibility to not only AF but also ventricular arrhythmias (long QT syndrome, Brugada syndrome), progressive cardiac conduction disease, and overlap syndromes with mixed arrhythmia phenotypes. Over the last decade, functional characterization of SCN5A mutations by expressing the channel in heterologous expression systems and applying cellular electrophysiological techniques has not only advanced our understanding of molecular mechanisms of AF but also potentially identified a mechanism-based approach to treating this common and morbid condition.
Collapse
Affiliation(s)
| | - Dawood Darbar
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
Josowitz R, Lu J, Falce C, D’Souza SL, Wu M, Cohen N, Dubois NC, Zhao Y, Sobie EA, Fishman GI, Gelb BD. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PLoS One 2014; 9:e101316. [PMID: 25010565 PMCID: PMC4092021 DOI: 10.1371/journal.pone.0101316] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/05/2014] [Indexed: 12/16/2022] Open
Abstract
The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC) reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN). When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.
Collapse
Affiliation(s)
- Rebecca Josowitz
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jia Lu
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - Christine Falce
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sunita L. D’Souza
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Meng Wu
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nicole C. Dubois
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yong Zhao
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Glenn I. Fishman
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Balse E, Boycott HE, Barbier CS, Hatem SN. [Shear stress triggers membrane insertion of voltage-gated potassium channels in atrial myocytes]. Med Sci (Paris) 2014; 30:236-8. [PMID: 24685208 DOI: 10.1051/medsci/20143003005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elise Balse
- Université Pierre et Marie Curie-Paris 6, Inserm UMRS 1166, Faculté de médecine Pitié-Salpêtrière, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Hannah E Boycott
- Université Pierre et Marie Curie-Paris 6, Inserm UMRS 1166, Faculté de médecine Pitié-Salpêtrière, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Camille S Barbier
- Université Pierre et Marie Curie-Paris 6, Inserm UMRS 1166, Faculté de médecine Pitié-Salpêtrière, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Stéphane N Hatem
- Université Pierre et Marie Curie-Paris 6, Inserm UMRS 1166, Faculté de médecine Pitié-Salpêtrière, 91, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
13
|
Abstract
Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice. AF is often associated with profound functional and structural alterations of the atrial myocardium that compose its substrate. Recently, a relationship between the thickness of epicardial adipose tissue (EAT) and the incidence and severity of AF has been reported. Adipose tissue is a biologically active organ regulating the metabolism of neighbouring organs. It is also a major source of cytokines. In the heart, EAT is contiguous with the myocardium without fascia boundaries resulting in paracrine effects through the release of adipokines. Indeed, Activin A, which is produced in abundance by EAT during heart failure or diabetes, shows a marked fibrotic effect on the atrial myocardium. The infiltration of adipocytes into the atrial myocardium could also disorganize the depolarization wave front favouring micro re-entry circuits and local conduction block. Finally, EAT contains progenitor cells in abundance and therefore could be a source of myofibroblasts producing extracellular matrix. The study on the role played by adipose tissue in the pathogenesis of AF is just starting and is highly likely to uncover new biomarkers and therapeutic targets for AF.
Collapse
|
14
|
Abstract
Control and modulation of electrical signaling is vital to normal physiology, particularly in neurons, cardiac myocytes, and skeletal muscle. The orchestrated activities of variable sets of ion channels and transporters, including voltage-gated ion channels (VGICs), are responsible for initiation, conduction, and termination of the action potential (AP) in excitable cells. Slight changes in VGIC activity can lead to severe pathologies including arrhythmias, epilepsies, and paralyses, while normal excitability depends on the precise tuning of the AP waveform. VGICs are heavily posttranslationally modified, with upward of 30% of the mature channel mass consisting of N- and O-glycans. These glycans are terminated typically by negatively charged sialic acid residues that modulate voltage-dependent channel gating directly. The data indicate that sialic acids alter VGIC activity in isoform-specific manners, dependent in part, on the number/location of channel sialic acids attached to the pore-forming alpha and/or auxiliary subunits that often act through saturating electrostatic mechanisms. Additionally, cell-specific regulation of sialylation can affect VGIC gating distinctly. Thus, channel sialylation is likely regulated through two mechanisms that together contribute to a dynamic spectrum of possible gating motifs: a subunit-specific mechanism and regulated (aberrant) changes in the ability of the cell to glycosylate. Recent studies showed that neuronal and cardiac excitability is modulated through regulated changes in voltage-gated Na(+) channel sialylation, suggesting that both mechanisms of differential VGIC sialylation contribute to electrical signaling in the brain and heart. Together, the data provide insight into an important and novel paradigm involved in the control and modulation of electrical signaling.
Collapse
Affiliation(s)
- Andrew R Ednie
- Programs in Cardiovascular Research and Neuroscience, Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
15
|
Électrophysiologie de la fibrillation atriale. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2013. [DOI: 10.1016/s1878-6480(13)70885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Amorós I, Dolz-Gaitón P, Gómez R, Matamoros M, Barana A, de la Fuente MG, Núñez M, Pérez-Hernández M, Moraleda I, Gálvez E, Iriepa I, Tamargo J, Caballero R, Delpón E. Propafenone blocks human cardiac Kir2.x channels by decreasing the negative electrostatic charge in the cytoplasmic pore. Biochem Pharmacol 2013; 86:267-78. [PMID: 23648307 DOI: 10.1016/j.bcp.2013.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/24/2022]
Abstract
Human cardiac inward rectifier current (IK1) is generated by Kir2.x channels. Inhibition of IK1 could offer a useful antiarrhythmic strategy against fibrillatory arrhythmias. Therefore, elucidation of Kir2.x channels pharmacology, which still remains elusive, is mandatory. We characterized the electrophysiological and molecular basis of the inhibition produced by the antiarrhythmic propafenone of the current generated by Kir2.x channels (IKir2.x) and the IK1 recorded in human atrial myocytes. Wild type and mutated human Kir2.x channels were transiently transfected in CHO and HEK-293 cells. Macroscopic and single-channel currents were recorded using the patch-clamp technique. At concentrations >1μM propafenone inhibited IKir2.x the order of potency being Kir2.3∼IK1>Kir2.2>Kir2.1 channels. Blockade was irrespective of the extracellular K(+) concentration whereas markedly increased when the intracellular K(+) concentration was decreased. Propafenone decreased inward rectification since at potentials positive to the K(+) equilibrium potential propafenone-induced block decreased in a voltage-dependent manner. Importantly, propafenone favored the occurrence of subconductance levels in Kir2.x channels and decreased phosphatidylinositol 4,5-bisphosphate (PIP2)-channel affinity. Blind docking and site-directed mutagenesis experiments demonstrated that propafenone bound Kir2.x channels at the cytoplasmic domain, close to, but not in the pore itself, the binding site involving two conserved Arg residues (residues 228 and 260 in Kir2.1). Our results suggested that propafenone incorporated into the cytoplasmic domain of the channel in such a way that it decreased the net negative charge sensed by K(+) ions and polyamines which, in turn, promotes the appearance of subconductance levels and the decrease of PIP2 affinity of the channels.
Collapse
Affiliation(s)
- Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Franz MR, Jamal SM, Narayan SM. The role of action potential alternans in the initiation of atrial fibrillation in humans: a review and future directions. Europace 2013; 14 Suppl 5:v58-v64. [PMID: 23104916 DOI: 10.1093/europace/eus273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This review highlights the role of atrial monophasic action potential duration (APD) in understanding atrial electrical properties in paroxysmal, persistent, and permanent atrial fibrillation (AF) states. Alternans of APD and rate maladaptation in a spatially divergent way appear mechanistically involved in AF initiation, development, and persistence. The underlying pathophysiology warrants further investigation.
Collapse
Affiliation(s)
- Michael R Franz
- Cardiology Division, VA Medical Center, 50 Irving Street NW, Washington, DC 20422, USA.
| | | | | |
Collapse
|
18
|
Hatem S. [Biology of the substrate of atrial fibrillation]. Biol Aujourdhui 2012; 206:5-9. [PMID: 22463991 DOI: 10.1051/jbio/2012004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Indexed: 11/14/2022]
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia in clinical practice, is often associated with progressive dilatation and remodeling of the atria which constitute the substrate of the arrhythmia. This atrial remodeling is characterized by complex structural and functional alterations of the atrial myocardium: short action potentials, heterogeneous refractory periods, dystrophic myocytes and interstitial fibrosis which act together to favor local conduction bloc, activation of ectopies and the forma-tion of microreentries of the electrical excitation. However, the underlying mechanisms of the AF substrate are not yet fully understood. The possibility of studying human atrial myocytes has led to the identification of ionic currents that contribute to the shortening of the action potential and refractory periods during AF. The down-regulation of the L-type calcium current plays a central role in this electrical remodeling. It results mainly from the dephosphorylation of calcium channels as the consequence of an excessive stimulation of atrial myocytes by neurohormones such as the atrial natriuretic factor. Abnormal trafficking and targeting of ion channels at the plasma membrane has emerged as mechanisms that can contribute to the abnormal electrical properties of the atria during AF. Fibrosis is the other feature of the AF substrate and it is favored by the atrial hemodynamic overload. Local activation of the renin-angiotensin system is involved in the extracellular matrix remodeling of the atrial myocardium. Thrombin that accumulates in dilated and fibrillating atria could be another important mediator of the myocardial structural alterations during AF. This peptide, by binding on its receptor PAR1, can modulate several signaling pathways regulating growth and survival of myocardial cells. Better understanding of pathogenic factors involved in the formation of the AF substrate is crucial for the identification of novel biomarkers and therapeutic targets that could be used to improve the diagnostic and treatment of AF.
Collapse
Affiliation(s)
- Stéphane Hatem
- ICAN Institute of Cardiometabolism & Nutrition, UMRS-956 (INSERM/UPMC), Faculté de Médecine Pitié-Salpêtrière, 91 boulevard de l'Hôspital, 75634 Paris Cedex 13, France.
| |
Collapse
|
19
|
Moreno JD, Zhu ZI, Yang PC, Bankston JR, Jeng MT, Kang C, Wang L, Bayer JD, Christini DJ, Trayanova NA, Ripplinger CM, Kass RS, Clancy CE. A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms. Sci Transl Med 2012; 3:98ra83. [PMID: 21885405 DOI: 10.1126/scitranslmed.3002588] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A long-sought, and thus far elusive, goal has been to develop drugs to manage diseases of excitability. One such disease that affects millions each year is cardiac arrhythmia, which occurs when electrical impulses in the heart become disordered, sometimes causing sudden death. Pharmacological management of cardiac arrhythmia has failed because it is not possible to predict how drugs that target cardiac ion channels, and have intrinsically complex dynamic interactions with ion channels, will alter the emergent electrical behavior generated in the heart. Here, we applied a computational model, which was informed and validated by experimental data, that defined key measurable parameters necessary to simulate the interaction kinetics of the anti-arrhythmic drugs flecainide and lidocaine with cardiac sodium channels. We then used the model to predict the effects of these drugs on normal human ventricular cellular and tissue electrical activity in the setting of a common arrhythmia trigger, spontaneous ventricular ectopy. The model forecasts the clinically relevant concentrations at which flecainide and lidocaine exacerbate, rather than ameliorate, arrhythmia. Experiments in rabbit hearts and simulations in human ventricles based on magnetic resonance images validated the model predictions. This computational framework initiates the first steps toward development of a virtual drug-screening system that models drug-channel interactions and predicts the effects of drugs on emergent electrical activity in the heart.
Collapse
Affiliation(s)
- Jonathan D Moreno
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 2011; 109:1055-66. [PMID: 21921263 DOI: 10.1161/circresaha.111.253955] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited. OBJECTIVE To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. METHODS AND RESULTS Atria versus ventricles have lower I(K1), resulting in more depolarized resting membrane potential (≈7 mV). We used higher I(to,fast) density in atrium, removed I(to,slow), and included an atrial-specific I(Kur). I(NCX) and I(NaK) densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte Ca2+ transients. To simulate chronic AF, we reduced I(CaL), I(to), I(Kur) and SERCA, and increased I(K1),I(Ks) and I(NCX). We also investigated the link between Kv1.5 channelopathy, [Ca2+]i, and AF. The sinus rhythm model showed a typical human atrial AP morphology. Consistent with experiments, the model showed shorter APs and reduced AP duration shortening at increasing pacing frequencies in AF or when I(CaL) was partially blocked, suggesting a crucial role of Ca2+ and Na+ in this effect. This also explained blunted Ca2+ transient and rate-adaptation of [Ca2+]i and [Na+]i in chronic AF. Moreover, increasing [Na+]i and altered I(NaK) and I(NCX) causes rate-dependent atrial AP shortening. Blocking I(Kur) to mimic Kv1.5 loss-of-function increased [Ca2+]i and caused early afterdepolarizations under adrenergic stress, as observed experimentally. CONCLUSIONS Our study provides a novel tool and insights into ionic bases of atrioventricular AP differences, and shows how Na+ and Ca2+ homeostases critically mediate abnormal repolarization in AF.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Dr, GBSF Room 3513, Davis, CA 95616-8636, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cheng YM, Fedida D, Kehl SJ. Kinetic analysis of the effects of H+ or Ni2+ on Kv1.5 current shows that both ions enhance slow inactivation and induce resting inactivation. J Physiol 2010; 588:3011-30. [PMID: 20581043 DOI: 10.1113/jphysiol.2010.191544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
External H+ and Ni2+ ions inhibit Kv1.5 channels by increasing current decay during a depolarizing pulse and reducing the maximal conductance. Although the former may be attributed to an enhancement of slow inactivation occurring from the open state, the latter cannot. Instead, we propose that the loss of conductance is due to the induction, by H+ or Ni2+, of a resting inactivation process. To assess whether the two inactivation processes are mechanistically related, we examined the time courses for the onset of and recovery from H+- or Ni2+-enhanced slow inactivation and resting inactivation. Compared to the time course of H+- or Ni2+-enhanced slow inactivation at +50 mV, the onset of resting inactivation induced at 80 mV with either ion involves a relatively slower process. Recovery from slow inactivation under control conditions was bi-exponential, indicative of at least two inactivated states. Recovery following H+- or Ni2+-enhanced slow inactivation or resting inactivation had time constants similar to those for recovery from control slow inactivation, although H+ and Ni2+ biased inactivation towards states from which recovery was fast and slow, respectively. The shared time constants suggest that the H+- and Ni2+-enhanced slow inactivated and induced resting inactivated states are similar to those visited during control slow inactivation at pH 7.4. We conclude that in Kv1.5 H+ and Ni2+ differentially enhance a slow inactivation process that involves at least two inactivated states and that resting inactivation is probably a close variant of slow inactivation.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|