1
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
2
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
3
|
Min CY, Gao Y, Jiang YN, Guo YK, Shi K, Yang ZG, Li Y. The additive effect of metabolic syndrome on left ventricular impairment in patients with obstructive coronary artery disease assessed by 3.0 T cardiac magnetic resonance feature tracking. Cardiovasc Diabetol 2024; 23:133. [PMID: 38654269 PMCID: PMC11040951 DOI: 10.1186/s12933-024-02225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) can increase the risk of morbidity and mortality of cardiovascular disease and obstructive coronary artery disease (OCAD), which usually have a poor prognosis. This study aimed to explore the impact of MetS on left ventricular (LV) deformation and function in OCAD patients and investigate the independent factors of impaired LV function and deformation. MATERIALS AND METHODS A total of 121 patients with OCAD and 52 sex- and age-matched controls who underwent cardiac magnetic resonance scanning were enrolled in the study. All OCAD patients were divided into two groups: OCAD with MetS [OCAD(MetS+), n = 83] and OCAD without MetS [OCAD(MetS-), n = 38]. LV functional and global strain parameters were measured and compared among the three groups. Multivariable linear regression analyses were constructed to investigate the independent factors of LV impairment in OCAD patients. Logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed to test the prediction efficiency of MetS for LV impairment. RESULTS From controls to the OCAD(MetS-) group to the OCAD(MetS+) group, LV mass (LVM) increased, and LV global function index (LVGFI) and LV global longitudinal peak strain (GLPS) decreased (all p < 0.05). Compared with the OCAD(MetS-) group, the LV GLPS declined significantly (p = 0.027), the LVM increased (p = 0.006), and the LVGFI decreased (p = 0.043) in the OCAD(MetS+) group. After adjustment for covariates in OCAD patients, MetS was an independent factor of decreased LV GLPS (β = - 0.211, p = 0.002) and increased LVM (β = 0.221, p = 0.003). The logistic multivariable regression analysis and ROC analysis showed that combined MetS improved the efficiency of predicting LV GLPS reduction (AUC = 0.88) and LVM (AUC = 0.89) increase. CONCLUSIONS MetS aggravated the damage of LV deformation and function in OCAD patients and was independently associated with LV deformation and impaired LV strain. Additionally, MetS increased the prediction efficiency of increased LVM and decreased LV GLPS. Early detection and intervention of MetS in patients with OCAD is of great significance.
Collapse
Affiliation(s)
- Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yi-Ning Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Sonaglioni A, Ferrulli A, Nicolosi GL, Lombardo M, Luzi L. The Influence of Anthropometrics on Cardiac Mechanics in Healthy Women With Opposite Obesity Phenotypes (Android vs Gynoid). Cureus 2024; 16:e51698. [PMID: 38187025 PMCID: PMC10768943 DOI: 10.7759/cureus.51698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND The possible influence exerted by mechanical factors and/or compressive phenomena on myocardial strain parameters in healthy individuals with opposite obesity phenotypes (android vs gynoid) has never been previously investigated. Accordingly, we aimed at evaluating the relationship between anthropometrics, such as the waist-to-hip ratio (WHR), modified Haller index (MHI, the ratio of chest transverse diameter over the distance between sternum and spine), and epicardial adipose tissue (EAT), and left ventricular (LV)-global longitudinal strain (GLS), in healthy women with opposite obesity phenotypes (android vs gynoid). METHODS Forty healthy women with obesity (body mass index (BMI) ≥30 Kg/m2) and WHR ≥0.85 ("android group") (52.5±13.2 yrs), 40 age- and BMI-matched healthy women with obesityand WHR <0.78 ("gynoid group") (49.8±13.4 yrs) and 40 age-matched healthy women without obesity (BMI <30 Kg/m2) (controls) (50.3±12.5 yrs) were retrospectively analyzed. All women underwent transthoracic echocardiography implemented with echocardiographic strain analysis of all cardiac chambers. Correlation between LV-GLS and anthropometrics (WHR, MHI, and EAT) was assessed in both groups of obese women. Age, WHR, homeostasis model assessment for insulin resistance (HOMA-IR), and left ventricular mass index (LVMi) were included in the logistic regression analysis performed for evaluating the independent predictors of reduced LV-GLS magnitude (less negative than -20%) in women with android obesity. RESULTS Compared to the other groups of women, those with android obesity were found with significantly greater LVMi, higher LV filling pressures, and lower biventricular and biatrial deformation indices. A strong inverse correlation between LV-GLS and all anthropometrics (WHR, MHI, and EAT) was demonstrated in both groups of women with obesity. Univariate logistic regression analysis revealed that WHR (OR 1.58, 95%CI 1.22-2.03, p<0.001) and LVMi (OR 1.09, 95%CI 1.02-1.16, p=0.006) were independently correlated with LV-GLS impairment in women with android obesity. On multivariate logistic regression analysis, the WHR maintained a statistically significant association with the above-mentioned outcome (OR 1.68, 95%CI 1.14-2.48, p=0.009). Receiver operating characteristic (ROC) curve analysis showed that a WHR value ≥1.01 had 93% sensitivity and 100% specificity for detecting LV-GLS impairment in women with android obesity (AUC=0.98; 95%CI 0.96-1.00). CONCLUSIONS Anthropometrics may strongly influence cardiac mechanics in healthy women with obesity. The WHR is associated with reduced LV-GLS magnitude in healthy women with android obesity, independent of age, glycometabolic status, and LV size.
Collapse
Affiliation(s)
- Andrea Sonaglioni
- Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, ITA
| | - Anna Ferrulli
- Endocrinology, Diabetes and Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, ITA
| | | | - Michele Lombardo
- Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, ITA
| | - Livio Luzi
- Endocrinology, Diabetes and Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, ITA
| |
Collapse
|
5
|
Vuorio A, Kovanen PT, Raal FJ. Coronary microcirculatory dysfunction in hypercholesterolemic patients with COVID-19: potential benefit from cholesterol-lowering treatment. Ann Med 2023; 55:2199218. [PMID: 37068045 PMCID: PMC10116911 DOI: 10.1080/07853890.2023.2199218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Patients with hypercholesterolemia often have coronary microvascular dysfunction (CMD). Viral infections, such as the SARS-CoV-2 infection, may also result in CMD. Three non-randomized studies have shown significant beneficial effects of statins on CMD in non-infected patients. Similarly, in SARS-CoV-2 - infected patients one beneficial mechanism of action of statins may be the amelioration of endothelial dysfunction, which is a major driver of CMD. Apart from statins, lipoprotein apheresis and PCSK9 inhibitors can also improve or even reverse CMD. The potential reversal of CMD by using effective cholesterol-lowering medications during and after COVID-19 infection, especially in hypercholesterolemic COVID-19 patients, is important.KEY MESSAGESCoronary microvascular dysfunction (CMD) is common in patients hospitalized with SARS-CoV-2 infectionThree nonrandomized studies in non-infected patients are showing the beneficial effects of statin treatment on CMDEffective cholesterol-lowering medication during and after SARS-CoV-2 infection, especially in hypercholesterolemic COVID-19 patients, is of great significance.
Collapse
Affiliation(s)
- Alpo Vuorio
- Forensic Medicine, Mehiläinen Airport Health Centre, Vantaa, Finland
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Frederick J Raal
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Visco V, Izzo C, Bonadies D, Di Feo F, Caliendo G, Loria F, Mancusi C, Chivasso P, Di Pietro P, Virtuoso N, Carrizzo A, Vecchione C, Ciccarelli M. Interventions to Address Cardiovascular Risk in Obese Patients: Many Hands Make Light Work. J Cardiovasc Dev Dis 2023; 10:327. [PMID: 37623340 PMCID: PMC10455377 DOI: 10.3390/jcdd10080327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Obesity is a growing public health epidemic worldwide and is implicated in slowing improved life expectancy and increasing cardiovascular (CV) risk; indeed, several obesity-related mechanisms drive structural, functional, humoral, and hemodynamic heart alterations. On the other hand, obesity may indirectly cause CV disease, mediated through different obesity-associated comorbidities. Diet and physical activity are key points in preventing CV disease and reducing CV risk; however, these strategies alone are not always sufficient, so other approaches, such as pharmacological treatments and bariatric surgery, must support them. Moreover, these strategies are associated with improved CV risk factors and effectively reduce the incidence of death and CV events such as myocardial infarction and stroke; consequently, an individualized care plan with a multidisciplinary approach is recommended. More precisely, this review explores several interventions (diet, physical activity, pharmacological and surgical treatments) to address CV risk in obese patients and emphasizes the importance of adherence to treatments.
Collapse
Affiliation(s)
- Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Davide Bonadies
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Federica Di Feo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Giuseppe Caliendo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Francesco Loria
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Costantino Mancusi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy;
| | - Pierpaolo Chivasso
- Department of Emergency Cardiac Surgery, Cardio-Thoracic-Vascular, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy;
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| | - Nicola Virtuoso
- Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.V.); (C.I.); (D.B.); (F.D.F.); (G.C.); (F.L.); (P.D.P.); (A.C.); (C.V.)
| |
Collapse
|
7
|
Toya T, Nagatomo Y, Ikegami Y, Masaki N, Adachi T. Coronary microvascular dysfunction in heart failure patients. Front Cardiovasc Med 2023; 10:1153994. [PMID: 37332583 PMCID: PMC10272355 DOI: 10.3389/fcvm.2023.1153994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Coronary microcirculation has multiple layers of autoregulatory function to maintain resting flow and augment hyperemic flow in response to myocardial demands. Functional or structural alterations in the coronary microvascular function are frequently observed in patients with heart failure with preserved or reduced ejection fraction, which may lead to myocardial ischemic injury and resultant worsening of clinical outcomes. In this review, we describe our current understanding of coronary microvascular dysfunction in the pathogenesis of heart failure with preserved and reduced ejection fraction.
Collapse
|
8
|
Macedo TA, Giampá SQC, Furlan SF, Freitas LS, Lebkuchen A, Cardozo KHM, Carvalho VM, Martins FC, Mendonça T, Bortolotto LA, Lorenzi-Filho G, Drager LF. Effect of continuous positive airway pressure on atrial remodeling and diastolic dysfunction of patients with obstructive sleep apnea and metabolic syndrome: a randomized study. Obesity (Silver Spring) 2023; 31:934-944. [PMID: 36855025 DOI: 10.1002/oby.23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the role of obstructive sleep apnea (OSA) treatment on heart remodeling and diastolic dysfunction in patients with metabolic syndrome (MS). METHODS This study is a prespecified analysis of a randomized placebo-controlled trial that enrolled patients with a recent diagnosis of MS and moderate-to-severe OSA to undergo continuous positive airway pressure (CPAP) or nasal dilators (placebo) for 6 months. Patients were invited to perform a transthoracic echocardiogram by a single investigator blinded to treatment assignment. RESULTS A total of 99 (79% men; mean [SD], age: 48 [9] years; BMI: 33 [4] kg/m2 ) completed the study. At follow-up, in the placebo group, patients had a significant increase in atrial diameter: from 39.5 (37.0-43.0) mm to 40.5 (39.0-44.8) mm (p = 0.003). CPAP prevented atrial enlargement: from 40.0 (38.0-44.0) to 40.0 (39.0-45.0) mm (p = 0.194). In patients with diastolic dysfunction at baseline, almost half had diastolic dysfunction reversibility with CPAP (in comparison with only two patients in the placebo group, p = 0.039). In the regression analysis, the chance of diastolic dysfunction reversibility by CPAP was 6.8-fold (95% CI: 1.48-50.26, p = 0.025) compared with placebo. CONCLUSIONS In patients with MS and OSA, 6 months of CPAP therapy prevented atrial remodeling and increased the chance of diastolic dysfunction reversibility.
Collapse
Affiliation(s)
- Thiago Andrade Macedo
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sara Q C Giampá
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sofia F Furlan
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lunara S Freitas
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Franco C Martins
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Mendonça
- Insper Instituto de Ensino e Pesquisa, São Paulo, Brazil
| | - Luiz A Bortolotto
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano F Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Lázaro-Suárez ML, Domínguez de la Mora I, Rodríguez-Aguilar JC, Fortis-Barrera Á, Blancas-Flores G, Gómez-Zamudio JH, Alarcon-Villaseñor EF, Román-Ramos R, Alarcon-Aguilar FJ. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue. Metab Syndr Relat Disord 2023; 21:101-108. [PMID: 36399542 DOI: 10.1089/met.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Perivascular adipose tissue (PVAT) plays an essential role in cardiovascular homeostasis. However, during obesity and diabetes, its role in vascular tone regulation is unclear. This study aimed to evaluate the function of the PVAT on aorta reactivity in the lean and cafeteria (CAF) diet-induced obese-hyperglycemic mice model. Methods: Aorta reactivity to phenylephrine, KCl, and acetylcholine was analyzed in lean (n = 6) and obese mice (n = 6). Also, nitric oxide (NO-) and cyclooxygenase participation, in the presence (n = 6) and absence (n = 6) of PVAT, were examined in the aortas. Results: After a CAF diet for 19 weeks, obese mice showed increased body weight, glucose intolerance, and hypercholesterolemia concerning lean mice. Vascular reactivity to phenylephrine was reduced significantly in the aorta of obese mice. In contrast, the contraction produced by KCl (80 mM) was increased in the aorta of obese mice independent of PVAT. Acetylcholine-induced vasorelaxation diminished in the aortas of obese mice in the presence of PVAT. Nonselective inhibition of cyclooxygenases likely shows that PVAT and endothelium release vasorelaxant prostanoids. Conclusions: The results suggest that PVAT modulates aorta reactivity by releasing NO-, decreasing the α1-adrenergic response to phenylephrine, and probably releasing vasorelaxant prostanoids. The data suggest that PVAT regulates the vascular smooth muscle and endothelial function in a CAF diet-induced obese-hyperglycemic mice model.
Collapse
Affiliation(s)
- Martha L Lázaro-Suárez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Israel Domínguez de la Mora
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Juan Carlos Rodríguez-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Ángeles Fortis-Barrera
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Jaime H Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - Rubén Román-Ramos
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Francisco Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
10
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
11
|
Moxonidine ameliorates cardiac injury in rats with metabolic syndrome by regulating autophagy. Life Sci 2022; 312:121210. [PMID: 36410408 DOI: 10.1016/j.lfs.2022.121210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
AIMS Reduced cardiac autophagy, ischemic injury, sympathetic overactivity, and apoptosis all contribute to metabolic syndrome (MetS)-associated cardiovascular risks. NR4A2, an orphan nuclear receptor NR4A family member, induces autophagy while suppressing apoptosis in myocardial infarction. Moxonidine, a sympathoinhibitor imidazoline1 receptor (I1R) agonist, has beneficial metabolic and hemodynamic effects; however, whether autophagy and/or NR4A2 signaling are involved in moxonidine's cardiovascular effects via I1R activation, is unknown, and is the aim of this study. MATERIALS AND METHODS To induce MetS, rats were fed 3 % salt in their diet and 10 % fructose in their drinking water for 12 weeks. MetS-rats were given either moxonidine (6 mg/kg/day, gavage), efaroxan (I1R antagonist, 0.6 mg/kg/day, i.p), both treatments, or vehicles for the last two weeks. Blood pressure, lipid profile, and glycemic control were evaluated. Histopathological examination, circulating cardiac troponin I (c-TnI), proinflammatory interleukin-6 (IL-6), apoptosis (active caspase-3 and Fas-immunostaining), interstitial fibrosis [transforming growth factor-β1 (TGF-β1), Mallory's trichrome staining], and extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], were used to assess cardiac pathology. Cardiac NR4A2 and its downstream factor, p53, as well as autophagic flux markers, SQSTM1/p62, LC3, and Beclin-1 were also determined. KEY FINDINGS Moxonidine significantly ameliorated MetS-induced metabolic and hemodynamic derangements and the associated cardiac pathology. Moxonidine restored NR4A2 and p53 myocardial levels and enhanced autophagic flux via modulating SQSTM1/p62, LC3, and Beclin-1. Efaroxan reversed the majority of the moxonidine-induced improvements. SIGNIFICANCE The current study suggests that autophagy modulation via I1R activation is involved in moxonidine-mediated cardiac beneficial effects in MetS.
Collapse
|
12
|
Ratchford SM, Lee JF, Bunsawat K, Alpenglow JK, Zhao J, Ma CL, Ryan JJ, Khor LL, Wray DW. The Impact of Obesity on the Regulation of Muscle Blood Flow during Exercise in Patients with Heart Failure with a Preserved Ejection Fraction. J Appl Physiol (1985) 2022; 132:1240-1249. [PMID: 35421322 PMCID: PMC9126213 DOI: 10.1152/japplphysiol.00833.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is now considered a primary comorbidity in heart failure with preserved ejection fraction (HFpEF) pathophysiology, mediated largely by systemic inflammation. While there is accumulating evidence for a disease-related dysregulation of blood flow during exercise in this patient group, the role of obesity in the hemodynamic response to exercise remain largely unknown. Small muscle mass handgrip (HG) exercise was utilized to evaluate exercising muscle blood flow in non-obese (BMI < 30 kg/m2,n=14) and obese (BMI > 30 kg/m2,n=40) patients with HFpEF. Heart rate (HR), stroke index (SI), cardiac index (CI), mean arterial pressure (MAP), forearm blood flow (FBF) and vascular conductance (FVC) were assessed during progressive intermittent HG exercise (15-30-45% maximal voluntary contraction, MVC). Blood biomarkers of inflammation (C-reactive protein (CRP) and Interleukin-6 (IL-6)) were also determined. Exercising FBF was reduced in obese patients with HFpEF at all work rates (15%: 304±42 vs. 229±15ml/min; 30%: 402±46 vs. 300±18ml/min; 45%: 484±55 vs. 380±23ml/min, non-obese vs. obese, p=0.025), and was negatively correlated with BMI (R=-.47, p<0.01). In contrast, no differences in central hemodynamics (HR, SI, CI, MAP) were found between groups. Proinflammatory biomarkers were markedly elevated in obese patients (CRP: 2133±418 vs. 4630±590ng/ml, p=0.02; IL-6: 2.9±0.3 vs. 5.2±0.7pg/ml, p = 0.04, non-obese vs. obese), and both biomarkers were positively correlated with BMI (CRP: R=0.40, p=0.03; IL-6: R=0.57, p<0.01). Together, these findings demonstrate the presence of obesity and an accompanying milieu of systemic inflammation as important factors in the dysregulation of exercising muscle blood flow in patients with HFpEF.
Collapse
Affiliation(s)
- Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT
| | - Joshua F Lee
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT
| | - Christy L Ma
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - John J Ryan
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Lillian L Khor
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, UT.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
13
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
14
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
15
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
16
|
Sucato V, Corrado E, Manno G, Amata F, Testa G, Novo G, Galassi AR. Biomarkers of Coronary Microvascular Dysfunction in Patients With Microvascular Angina: A Narrative Review. Angiology 2021; 73:395-406. [PMID: 34338554 DOI: 10.1177/00033197211034267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The current gold standard for diagnosis of coronary microvascular dysfunction (CMD) in the absence of myocardial diseases, whose clinical manifestation is microvascular angina (MVA), is reactivity testing using adenosine or acetylcholine during coronary angiography. This invasive test can be difficult to perform, expensive, and harmful. The identification of easily obtainable blood biomarkers which reflect the pathophysiology of CMD, characterized by high reliability, precision, accuracy, and accessibility may reduce risks and costs related to invasive procedures and even facilitate the screening and diagnosis of CMD. In this review, we summarized the results of several studies that have investigated the possible relationships between blood biomarkers involved with CMD and MVA. More specifically, we have divided the analyzed biomarkers into 3 different groups, according to the main mechanisms underlying CMD: biomarkers of "endothelial dysfunction," "vascular inflammation," and "oxidative stress." Finally, in the last section of the review, we consider mixed mechanisms and biomarkers which are not included in the 3 major categories mentioned above, but could be involved in the pathogenesis of CMD.
Collapse
Affiliation(s)
- Vincenzo Sucato
- Unit of Cardiology, University Hospital Paolo Giaccone, University of Palermo, Palermo, Italy.,Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Egle Corrado
- Unit of Cardiology, University Hospital Paolo Giaccone, University of Palermo, Palermo, Italy.,Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Girolamo Manno
- Unit of Cardiology, University Hospital Paolo Giaccone, University of Palermo, Palermo, Italy.,Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Francesco Amata
- Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Gabriella Testa
- Unit of Cardiology, University Hospital Paolo Giaccone, University of Palermo, Palermo, Italy.,Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Giuseppina Novo
- Unit of Cardiology, University Hospital Paolo Giaccone, University of Palermo, Palermo, Italy.,Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Alfredo R Galassi
- Department of Excellence of Sciences for Health Promotion and Maternal-Child Care, Internal Medicine and Specialties (ProMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Ahanchi NS, Hadaegh F, Azizi F, Khalili D. Sex- specific clustering of metabolic syndrome components and incidence of cardiovascular disease: A latent class analysis in a population-based cohort study. J Diabetes Complications 2021; 35:107942. [PMID: 33965337 DOI: 10.1016/j.jdiacomp.2021.107942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The prevalence of metabolic syndrome (MetS) is rapidly increasing in the world; also, the importance of management of MetS to decrease the risk of cardiovascular disease (CVD) has been recognized worldwide. This study aimed to explore the clusters of participants based on MetS components and its association with CVD outcomes. METHODS We included 2598 middle-aged participants (1545 women and 1053 men), 45-65 years old, at baseline and without prior CVD history. Participants were followed up for 10years. We conducted a latent class analysis based on MetS components. Subsequently, the relationship between latent classes and the incidence of CVD was investigated using Cox regression models adjusted for the main confounders. RESULTS During the study period, 393 (186 women and 207 men) new cases of CVD were identified among participants. In both genders, four distinct latent classes were identified: (1) Mets class (its prevalence rate in men: 19.6%, women: 27.7%), (2) Hypertension class (men: 12.1%, women: 13.7%), (3) Dyslipidemia class (men: 31.7%, women: 30.7%), (4) Low risk class (men: 39.3%, women: 30.5%). Compared with low-risk class, in both genders, Mets and hypertension classes were significant predictors of incident CVD. However, dyslipidemia class was a significant predictor just in women. CONCLUSION We found four subclasses in both genders indicating the same patterns of MetS latent classes in men and women. However, the relationship between subclasses of MetS and incident CVD varied by gender. These results suggest that the etiology of MetS involve more than one pathway and giving equal weight to each component or using the same cut-off values in both genders need to be reconsidered.
Collapse
Affiliation(s)
- Noushin Sadat Ahanchi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biostatistics and Epidemiology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|
19
|
Keulards DCJ, Bouwmeester S, de Vos AMJ, Dekker LRC, Pijls NHJ, Houthuizen P. High microvascular resistance and reduced left atrial strain in patients with coronary microvascular dysfunction: The micro-strain study. Int J Cardiol 2021; 333:21-28. [PMID: 33675889 DOI: 10.1016/j.ijcard.2021.02.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND It is already known that high coronary microvascular resistance (Rμ) is linked to altered left ventricular stiffness and might be an early indicator of heart failure with preserved ejection fraction (HFpEF). Left atrial dysfunction, on the other hand, varies according to the grade of left ventricular diastolic dysfunction. This is the first study to use the latest development for invasive assessment of Rμ and to combine it with echocardiographic assessment of left atrial strain during reservoir phase (LASr) by speckle tracking in relation to left ventricular (LV) diastolic function. METHODS AND RESULTS An invasive angiogram was performed in 97 patients because of suspected ANOCA. All patients underwent comprehensive echocardiography, yet image quality was poor in 15 patients leaving 82 patients to include in the final analysis. In order to compare Rμ with LASr values, patients were divided into 4 groups based upon normal values of Rμ as defined by Fournier et al. The mean LASr was plotted against the four resistance groups. The LASr was 48.6% in the lowest resistance group, and 40.1%, 36.3% and 30.1% in the low intermediate, high intermediate and high resistance group respectively. These differences were significant compared to the lowest resistance group (p < 0.05). Although higher Rμ groups showed more diastolic dysfunction, LASr was already decreased irrespective of the severity of diastolic dysfunction. CONCLUSION This study shows a relationship between increased Rμ and reduced LASr, that seems to precede conventional measures of left ventricular diastolic dysfunction. This suggests that microvascular dysfunction might be an early indicator for the development of impaired LA function.
Collapse
Affiliation(s)
| | | | | | - Lukas R C Dekker
- Catharina Hospital, Eindhoven, the Netherlands; Eindhoven University of Technology, the Netherlands
| | - Nico H J Pijls
- Catharina Hospital, Eindhoven, the Netherlands; Eindhoven University of Technology, the Netherlands
| | | |
Collapse
|
20
|
Ibrahim KG, Mukonowenzou NC, Usman D, Adeshina KA, Erlwanger KH. The potential of Artemisia species for use as broad-spectrum agents in the management of metabolic syndrome: a review. Arch Physiol Biochem 2021; 129:752-770. [PMID: 33569991 DOI: 10.1080/13813455.2021.1871761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although the prevalence of metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that predispose to the development of type 2 diabetes mellitus and cardiovascular diseases, is increasing globally, there is no broad-spectrum agent for its holistic treatment. Natural plant-derived products with a wide spectrum of biological activities are currently being explored as alternatives in the management of diseases. Artemisia species are a heterozygous group of plants of the Compositae family that possess several health benefits. Here we highlight their antidiabetic, anti-obesity, anti-hyperlipidaemic, hepatoprotective and cardioprotective properties among others. These activities have been linked to the presence of phytochemicals that act on several molecular targets to exert their effects and the species of Artemisia are considered to be relatively safe. Artemisia species offer significant anti-MetS activity and thus are strong therapeutic candidates for the effective management of MetS.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nyasha Charity Mukonowenzou
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Kobos L, Shannahan J. Particulate matter inhalation and the exacerbation of cardiopulmonary toxicity due to metabolic disease. Exp Biol Med (Maywood) 2021; 246:822-834. [PMID: 33467887 DOI: 10.1177/1535370220983275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Particulate matter is a significant public health issue in the United States and globally. Inhalation of particulate matter is associated with a number of systemic and organ-specific adverse health outcomes, with the pulmonary and cardiovascular systems being particularly vulnerable. Certain subpopulations are well-recognized as being more susceptible to inhalation exposures, such as the elderly and those with pre-existing respiratory disease. Metabolic syndrome is becoming increasingly prevalent in our society and has known adverse effects on the heart, lungs, and vascular systems. The limited evaluations of individuals with metabolic syndromehave demonstrated that theymay compose a sensitive subpopulation to particulate exposures. However, the toxicological mechanisms responsible for this increased vulnerability are not fully understood. This review evaluates the currently available literature regarding how the response of an individual's pulmonary and cardiovascular systems is influenced by metabolic syndrome and metabolic syndrome-associated conditions such as hypertension, dyslipidemia, and diabetes. Further, we will discuss potential therapeutic agents and targets for the alleviation and treatment of particulate-matter induced metabolic illness. The information reviewed here may contribute to the understanding of metabolic illness as a risk factor for particulate matter exposure and further the development of therapeutic approaches to treat vulnerable subpopulations, such as those with metabolic diseases.
Collapse
Affiliation(s)
- Lisa Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Chen X, Yan XR, Liu J, Zhang LP. Chaiqi decoction ameliorates vascular endothelial injury in metabolic syndrome by upregulating autophagy. Am J Transl Res 2020; 12:4902-4922. [PMID: 33042397 PMCID: PMC7540156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The present study aimed to investigate the protective effect of the Chaiqi decoction on vascular endothelial injury in metabolic syndrome and to determine whether the underlying mechanism was associated with autophagy. METHODS Chaiqi formula granules were administered to a rat model of metabolic syndrome established by feeding with a high-salt-sugar-fat diet (HSSFD). The drug-containing serum was used in a hyperglycemia cell model established using HUVECs cultured with palmitic acid PA. The influence of the Chaiqi decoction on metabolic syndrome-related vascular endothelial injury and autophagy was investigated. Autophagy flux was assessed in vitro by transfecting cells with GFP-mRFP-LC3 adenoviruses or incubating with DALGreen and DAPRed. RESULTS The metabolic syndrome model rats displayed adiposity, hyperglycemia, dyslipidemia, hypertension, thickened intima, deposition of various forms of collagen and lipid droplets, downregulated levels of phosphorylated endothelial nitric oxide synthase and nitric oxide, upregulated expression of endothelin 1, and dysfunctional autophagy. All these abnormalities were ameliorated by administration of the Chaiqi decoction to the metabolic syndrome rats. Furthermore, the Chaiqi-containing serum could upregulate autophagy similarly to rapamycin, in a time-dependent manner. CONCLUSION The Chaiqi decoction could ameliorate vascular endothelial injury by improving autophagy in metabolic syndrome.
Collapse
Affiliation(s)
- Xun Chen
- Xiyuan Hospital, China Academy of Chinese Medical SciencesBeijing, China
- Beijing University of Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Xiao-Ru Yan
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
| | - Jing Liu
- Beijing University of Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Dongfang Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Li-Ping Zhang
- Beijing University of Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Dongfang Hospital of Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
23
|
Palmeiro-Silva YK, Aravena RI, Ossio L, Parro Fluxa J. Effects of Daily Consumption of an Aqueous Dispersion of Free-Phytosterols Nanoparticles on Individuals with Metabolic Syndrome: A Randomised, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2020; 12:nu12082392. [PMID: 32785036 PMCID: PMC7468816 DOI: 10.3390/nu12082392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MS) affects up to 40% of the population and is associated with heart failure, stroke and diabetes. Phytosterols (PS) could help to manage one or more MS criteria. The purpose of this study was to evaluate the therapeutic effect of daily supplementation of an aqueous dispersion of 2 g of free-phytosterols nanoparticles in individuals with MS over six months of intervention, compared with placebo. This double-blind study included 202 participants with MS randomly assigned into phytosterol (n = 102) and placebo (n = 100) groups. Participants were assessed at baseline, 4, 12 and 24 weeks. General health questions, anthropometric measurements and blood parameters were analysed. At week 24, the proportion of participants with high triglycerides (≥150 mg/dL) in the phytosterol group was 15.65% lower than in the placebo group (p-value = 0.023). Similarly, half of the participants in the phytosterol group decreased their waist circumference up to 4 cm compared with 0 cm in the placebo group (p-value = 0.0001). We reported no adverse effects (diarrhoea or vitamin D reduction); nonetheless, almost 70% of participants in the phytosterol group self-reported an improvement in bowel habits. Daily intake of free-PS nanoparticles improved some MS criteria; therefore, it might be a promising adjuvant therapy for individuals with MS (NCT02969720).
Collapse
Affiliation(s)
- Yasna K. Palmeiro-Silva
- School of Nursing, Universidad de los Andes, Las Condes 7550000, Chile; (L.O.); (J.P.F.)
- Correspondence: ; Tel./Fax: +56-2-226181332
| | - Raúl I. Aravena
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, UK;
| | - Lisette Ossio
- School of Nursing, Universidad de los Andes, Las Condes 7550000, Chile; (L.O.); (J.P.F.)
| | - Javiera Parro Fluxa
- School of Nursing, Universidad de los Andes, Las Condes 7550000, Chile; (L.O.); (J.P.F.)
| |
Collapse
|
24
|
Wattanapol P, Vichinsartvichai P, Sakoonwatanyoo P. Serum adiponectin is a potential biomarker for metabolic syndrome in peri-and postmenopausal women. Gynecol Endocrinol 2020; 36:620-625. [PMID: 32233812 DOI: 10.1080/09513590.2020.1742688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) increases its prevalence during menopausal period and there is no appropriate marker for screening before the cardiovascular damage begun. This study aims to find the diagnostic accuracy and the appropriate cutoff level of serum adiponectin for the screening of MetS in peri- and postmenopausal women. Women aged at least 40 years old attending health checkup clinic were recruited. Anthropometric measurements, blood pressure, MENQOL, and blood chemistry (glucose, adiponectin, HDL-C, LDL-C, and TG) were recorded. MetS was defined by JIS 2009 criteria. 290 peri-and postmenopausal women mean age 54.25 ± 8.6 years were recruited. 66% was postmenopause and 21.4% of them has MetS. The socioeconomic and lifestyle factors seem similar among women with and without MetS. In the participants with MetS, the prevalence of abdominal obesity was higher (96.8% vs 49.6%, p < .001, respectively) and more prevalence of android fat distribution pattern was observed (76.2% vs 36%, p < .001, respectively). Serum adiponectin was significantly lower in women with MetS (6.0 ± 4.6 vs 9.2 ± 5.2 μg/mL, p < .001 in MetS and non-MetS, respectively). Serum adiponectin is a good biomarker for MetS and we recommend the cutoff level of serum adiponectin lower than 7.15 μg/mL for screening of MetS (AUC (95% CI) of = 0.72 (0.64-0.79), p < .001).
Collapse
Affiliation(s)
- Puntabut Wattanapol
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Patsama Vichinsartvichai
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Prirayapak Sakoonwatanyoo
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| |
Collapse
|
25
|
Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, Duncker DJ, Eringa EC, Koller A, Tousoulis D, Trifunovic D, Vavlukis M, de Wit C, Badimon L. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovasc Res 2020; 116:741-755. [PMID: 32034397 PMCID: PMC7825482 DOI: 10.1093/cvr/cvaa003] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Although myocardial ischaemia usually manifests as a consequence of atherosclerosis-dependent obstructive epicardial coronary artery disease, a significant percentage of patients suffer ischaemic events in the absence of epicardial coronary artery obstruction. Experimental and clinical evidence highlight the abnormalities of the coronary microcirculation as a main cause of myocardial ischaemia in patients with 'normal or near normal' coronary arteries on angiography. Coronary microvascular disturbances have been associated with early stages of atherosclerosis even prior to any angiographic evidence of epicardial coronary stenosis, as well as to other cardiac pathologies such as myocardial hypertrophy and heart failure. The main objectives of the manuscript are (i) to provide updated evidence in our current understanding of the pathophysiological consequences of microvascular dysfunction in the heart; (ii) to report on the current knowledge on the relevance of cardiovascular risk factors and comorbid conditions for microcirculatory dysfunction; and (iii) to evidence the relevance of the clinical consequences of microvascular dysfunction. Highlighting the clinical importance of coronary microvascular dysfunction will open the field for research and the development of novel strategies for intervention will encourage early detection of subclinical disease and will help in the stratification of cardiovascular risk in agreement with the new concept of precision medicine.
Collapse
Affiliation(s)
- Teresa Padro
- Cardiovascular Program-ICCC, Research Institute Hospital Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Research Chair, Autonomous University Barcelona (UAB), Barcelona, Spain
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - John Canty
- Division of Cardiology, Department of Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giuseppe De Luca
- Division of Cardiology, Maggiore della Carità Hospital, Eastern Piedmont University, Novara, Italy
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Science Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Akos Koller
- Department of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Danijela Trifunovic
- Department of Cardiology, University Clinical Center of Serbia; and School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Vavlukis
- University Clinic of Cardiology, Medical Faculty, Ss' Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute Hospital Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Research Chair, Autonomous University Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
26
|
Sorop O, van de Wouw J, Merkus D, Duncker DJ. Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Increased coronary arteriolar contraction to serotonin in juvenile pigs with metabolic syndrome. Mol Cell Biochem 2019; 461:57-64. [PMID: 31352610 PMCID: PMC6790190 DOI: 10.1007/s11010-019-03589-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/13/2019] [Indexed: 02/03/2023]
Abstract
Metabolic syndrome (MetS) is associated with alterations in coronary vascular smooth muscle and endothelial function. The current study examined the contractile response of the isolated coronary arterioles to serotonin in pigs with and without MetS and investigated the signaling pathways responsible for serotonin-induced vasomotor tone. The MetS pigs (8-weeks old) were fed with a hyper-caloric, fat/cholesterol diet and the control animals (lean) were fed with a regular diet for 12 weeks (n = 6/group). The coronary arterioles (90–180 μm in diameter) were dissected from the harvested pig myocardial tissues and the in vitro coronary arteriolar response to serotonin was measured in the presence of pharmacological inhibitors. The protein expressions of phospholipase A2 (PLA2), TXA2 synthase, and the thromboxane-prostanoid (TP) receptor in the pigs’ left ventricular tissue samples were measured using Western blotting. Serotonin (10−9–10−5 M) induced dose-dependent contractions of coronary-resistant arterioles in both non-MetS control (lean) and MetS pigs. This effect was more pronounced in the MetS vessels compared with those of non-MetS controls (lean, P < 0.05]. Serotonin-induced contraction of the MetS vessels was significantly inhibited in the presence of the selective PLA2 inhibitor quinacrine (10−6 M), the COX inhibitor indomethacin (10−5 M), and the TP receptor antagonist SQ29548 (10−6 M), respectively (P < 0.05). MetS exhibited significant increases in tissue levels of TXA2 synthase and TP receptors (P < 0.05 vs. lean), respectively. MetS is associated with increased contractile response of porcine coronary arterioles to serotonin, which is in part via upregulation/activation of PLA2, COX, and subsequent TXA2, suggesting that alteration of vasomotor function may occur at an early stage of MetS and juvenile obesity.
Collapse
|
28
|
Nishijima Y, Korishettar A, Chabowski DS, Cao S, Zheng X, Gutterman DD, Zhang DX. Shaker-related voltage-gated K + channel expression and vasomotor function in human coronary resistance arteries. Microcirculation 2018; 25. [PMID: 29161755 DOI: 10.1111/micc.12431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES KV channels are important regulators of vascular tone, but the identity of specific KV channels involved and their regulation in disease remain less well understood. We determined the expression of KV 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. METHODS HCAs from patients with and without CAD were assessed for mRNA and protein expression of KV 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. RESULTS Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of KV 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general KV blocker 4-AP and the selective KV 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive KV channels. CONCLUSIONS KV 1.5, as a major 4-AP-sensitive KV 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive KV channel function.
Collapse
Affiliation(s)
- Yoshinori Nishijima
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ankush Korishettar
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dawid S Chabowski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sheng Cao
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaodong Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
29
|
Ranucci M, Aloisio T, Dedda UD, La Rovere MT, De Arroyabe BML, Baryshnikova E. Platelet reactivity in overweight and obese patients undergoing cardiac surgery. Platelets 2018; 30:608-614. [PMID: 29985729 DOI: 10.1080/09537104.2018.1492108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Body mass index (BMI) and specifically overweight and obesity have been associated with an increased platelet reactivity in different series of patients. This information is derived by different laboratory platelet function tests (PFTs) like mean platelet volume (MPV), platelet microparticles, thromboxane B2 metabolites, and others. Point-of-care PFT, which are often used in cardiac surgery, are rarely addressed. The present study aims to verify platelet reactivity using multiple-electrode aggregometry (MEA) as a function of BMI in cardiac surgery patients. One-hundred ninety-eight cardiac surgery patients free from the effects of drugs acting on the P2Y12 receptor and undergoing cardiac surgery received MEA-PFT immediately before surgery. Platelet reactivity was compared between normal weight and overweight-obese subjects. There were 99 underweight/normal (BMI < 25), 60 overweight (BMI ≥ 25) and 39 obese (BMI ≥ 30) patients. Overweight-obese patients did not show higher platelet counts nor a clear platelet hyper-reactivity, when tested with MPV and MEA ADP test. At TRAPtest, the overweight/obese patients had a significantly (P = 0.011) higher platelet reactivity (median 118, interquartile range 106-136) than controls (median 112, interquartile range 101-123) and a higher rate of platelet hyper-reactivity (odds ratio 2.19, 95% confidence interval 1.15-4.16, P = 0.016) in a multivariable model. A minor association was found between the BMI and platelet reactivity at TRAPtest, with a higher degree of activity for increasing BMI. The BMI determines an increased thrombin-dependent platelet reactivity in cardiac surgery patients. Thrombin is extensively formed during cardiac surgery, and this may explain the lower postoperative bleeding observed in obese patients in previous studies.
Collapse
Affiliation(s)
- Marco Ranucci
- a Department of Cardiothoracic-Vascular Anesthesia and Intensive Care , IRCCS Policlinico San Donato, Milan, Italy
| | - Tommaso Aloisio
- a Department of Cardiothoracic-Vascular Anesthesia and Intensive Care , IRCCS Policlinico San Donato, Milan, Italy
| | - Umberto Di Dedda
- a Department of Cardiothoracic-Vascular Anesthesia and Intensive Care , IRCCS Policlinico San Donato, Milan, Italy
| | - Maria Teresa La Rovere
- b Department of Cardiology, Fondazione Salvatore Maugeri , IRCCS Istituto Scientifico di Montescano , Montescano , Italy
| | | | - Ekaterina Baryshnikova
- a Department of Cardiothoracic-Vascular Anesthesia and Intensive Care , IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
30
|
Cañon-Montañez W, Santos AB, Nunes LA, Pires JC, Freire CM, Ribeiro AL, Mill JG, Bessel M, Duncan BB, Schmidt MI, Foppa M. La obesidad central es el componente clave en la asociación del síndrome metabólico con el deterioro del strain longitudinal global del ventrículo izquierdo. Rev Esp Cardiol 2018. [DOI: 10.1016/j.recesp.2017.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
32
|
Central Obesity is the Key Component in the Association of Metabolic Syndrome With Left Ventricular Global Longitudinal Strain Impairment. ACTA ACUST UNITED AC 2017; 71:524-530. [PMID: 29146481 DOI: 10.1016/j.rec.2017.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES Subclinical systolic dysfunction is one of the proposed mechanisms for increased cardiovascular risk associated with metabolic syndrome (MS). This study investigated the association between MS and impaired left ventricular global longitudinal strain (GLS) and the role of each MS criteria in this association. METHODS We analyzed a random sample of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) after excluding participants with prevalent heart disease. RESULTS Among the 1055 participants fulfilling the inclusion criteria (53% women; 52±9 years), 444 (42%) had MS. Those with MS had worse GLS (-18.0%±2.5%) than those without (-19.0%±2.4%; P<.0001). In multiple linear regression models, MS was associated with worse GLS after adjustment for various risk factors (GLS difference=0.86%; P <.0001), even after inclusion of body mass index. Adjusted PR for impaired GLS as assessed by 3 cutoffs (1, 1.5, and 2 standard deviations) were higher among participants with than without MS: GLS -16.1% (PR, 1.76; 95%CI, 1.30-2.39); GLS -14.8% (PR, 2.35; 95%CI, 1.45-3.81); and GLS -13.5% (PR, 2.07; 95%CI, 0.97-4.41). After inclusion of body mass index in the models, these associations were attenuated, suggesting that they may, at least in part, be mediated by obesity. In quantile regression analyses, elevated waist circumference was the only MS component found to be independently associated with GLS across the whole range of values. CONCLUSIONS Metabolic syndrome is independently associated with impaired GLS. Among the MS criteria, central obesity best depicted the link between metabolic derangement and cardiac function.
Collapse
|
33
|
Badimon L, Bugiardini R, Cenko E, Cubedo J, Dorobantu M, Duncker DJ, Estruch R, Milicic D, Tousoulis D, Vasiljevic Z, Vilahur G, de Wit C, Koller A. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J 2017; 38:1951-1958. [PMID: 28873951 DOI: 10.1093/eurheartj/ehx181] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni M Claret 167, 08025 Barcelona, Spain
- Cardiovascular Research Chair UAB, Barcelona, Spain
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Maria Dorobantu
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila" of Bucharest, Emergency Clinical Hospital of Bucharest, 8, Calea Floreasca, Sector 1, 014461 Bucuresti, Romania
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Ramón Estruch
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain
- CIBER Obesity and Nutrition, Instituto de Salud Carlos III, Spain
| | - Davor Milicic
- Department for Cardiovascular Diseases, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, HR-10000 Zagreb, Croatia
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Vasilissis Sofias 114, TK 115 28 Athens, Greece
| | - Zorana Vasiljevic
- Clinical Center of Serbia, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrumfür Herz-Kreislauf-Forschung (DZHK) e.V., partner site: Hamburg/Kiel/Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Akos Koller
- Institute of Natural Sciences, University of Physical Education, Alkotas street, 44, 1123 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
34
|
Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, Merkus D. The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res 2017; 113:1035-1045. [DOI: 10.1093/cvr/cvx093] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
|
35
|
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183:57-70. [PMID: 28130064 PMCID: PMC5393930 DOI: 10.1016/j.trsl.2017.01.001] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Kieren J Mather
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind; Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
36
|
Nishijima Y, Cao S, Chabowski DS, Korishettar A, Ge A, Zheng X, Sparapani R, Gutterman DD, Zhang DX. Contribution of K V1.5 Channel to Hydrogen Peroxide-Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease. Circ Res 2016; 120:658-669. [PMID: 27872049 DOI: 10.1161/circresaha.116.309491] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating large-conductance Ca2+-activated K+ channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) when compared with those with CAD remain unknown. OBJECTIVE We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. METHODS AND RESULTS H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a large-conductance Ca2+-activated K+ channel blocker, and by 4-aminopyridine, a voltage-gated K+ (KV) channel blocker. Assays of mRNA transcripts, protein expression, and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells and is abundantly localized on the plasma membrane. The selective KV1.5 blocker diphenylphosphine oxide-1 and the KV1.3/1.5 blocker 5-(4-phenylbutoxy)psoralen reduced H2O2-elicited dilation to a similar extent as 4-aminopyridine, but the selective KV1.3 blocker phenoxyalkoxypsoralen-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced, and this dilation was inhibited by paxilline but not by 4-aminopyridine, diphenylphosphine oxide-1, or 5-(4-phenylbutoxy)psoralen. KV1.5 cell membrane localization and diphenylphosphine oxide-1-sensitive K+ currents were markedly reduced in isolated vascular smooth muscle cells from CAD arterioles, although mRNA or total cellular protein expression was largely unchanged. CONCLUSIONS In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined large-conductance Ca2+-activated K+- and KV (KV1.5)-mediated vasodilation toward a large-conductance Ca2+-activated K+-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases.
Collapse
Affiliation(s)
- Yoshinori Nishijima
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Sheng Cao
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Dawid S Chabowski
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Ankush Korishettar
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Alyce Ge
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Xiaodong Zheng
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - Rodney Sparapani
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - David D Gutterman
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI
| | - David X Zhang
- From the Department of Medicine (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Cardiovascular Center (Y.N., S.C., D.S.C., A.K., A.G., X.Z., D.D.G., D.X.Z.), Department of Pharmacology and Toxicology (D.S.C., A.K.), Division of Biostatistics (R.S.), Medical College of Wisconsin, and Zablocki Veterans Affairs Medical Center (D.D.G.), Milwaukee, WI.
| |
Collapse
|
37
|
Sassoon DJ, Goodwill AG, Noblet JN, Conteh AM, Herring BP, McClintick JN, Tune JD, Mather KJ. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism. Basic Res Cardiol 2016; 111:43. [PMID: 27234258 DOI: 10.1007/s00395-016-0563-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion.
Collapse
Affiliation(s)
- Daniel J Sassoon
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
| | - Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
| | - Abass M Conteh
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
| | - B Paul Herring
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
| | - Kieren J Mather
- Department of Medicine, Indiana University School of Medicine, 1120 W. Michigan St., Suite CL365, Indianapolis, IN, 46202, USA.
| |
Collapse
|
38
|
Noblet JN, Goodwill AG, Sassoon DJ, Kiel AM, Tune JD. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway. Basic Res Cardiol 2016; 111:25. [PMID: 26975316 PMCID: PMC5126981 DOI: 10.1007/s00395-016-0545-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 10/24/2022]
Abstract
Leptin has been implicated as a key upstream mediator of pathways associated with coronary vascular dysfunction and disease. The purpose of this investigation was to test the hypothesis that leptin modifies the coronary artery proteome and promotes increases in coronary smooth muscle contraction and proliferation via influences on Rho kinase signaling. Global proteomic assessment of coronary arteries from lean swine cultured with obese concentrations of leptin (30 ng/mL) for 3 days revealed significant alterations in the coronary artery proteome (68 proteins) and identified an association between leptin treatment and calcium signaling/contraction (four proteins) and cellular growth and proliferation (35 proteins). Isometric tension studies demonstrated that both acute (30 min) and chronic (3 days, serum-free media) exposure to obese concentrations of leptin potentiated depolarization-induced contraction of coronary arteries. Inhibition of Rho kinase significantly reduced leptin-mediated increases in coronary artery contractions. The effects of leptin on the functional expression of Rho kinase were time-dependent, as acute treatment increased Rho kinase activity while chronic (3 day) exposure was associated with increases in Rho kinase protein abundance. Proliferation assays following chronic leptin administration (8 day, serum-containing media) demonstrated that leptin augmented coronary vascular smooth muscle proliferation and increased Rho kinase activity. Inhibition of Rho kinase significantly reduced these effects of leptin. Taken together, these findings demonstrate that leptin promotes increases in coronary vasoconstriction and smooth muscle proliferation and indicate that these phenotypic effects are associated with alterations in the coronary artery proteome and dynamic effects on the Rho kinase pathway.
Collapse
Affiliation(s)
- Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Daniel J Sassoon
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
39
|
Obesity Related Coronary Microvascular Dysfunction: From Basic to Clinical Practice. Cardiol Res Pract 2016; 2016:8173816. [PMID: 27092288 PMCID: PMC4820617 DOI: 10.1155/2016/8173816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/06/2016] [Indexed: 11/30/2022] Open
Abstract
Obesity related coronary microvascular disease is a medical entity which is not yet fully elucidated. The pathophysiological basis of coronary microcirculatory dysfunction consists of a heterogeneous group of disorders with individual morphologic/functional/clinical presentation and prognosis. Coronary microcirculatory changes include mechanisms connected with vascular dysfunction, as well as extravascular and vasostructural changes in responses to neural, mechanical, and metabolic factors. Cardiometabolic changes that include obesity, dyslipidemia, diabetes mellitus type II, and hypertension are associated with atherosclerosis of epicardial coronary arteries and/or microvascular coronary dysfunction, with incompletely understood underlying mechanisms. In obesity, microvascular disease is mediated via adipokines/cytokines causing chronic, subclinical inflammation with (a) reduced NO-mediated dilatation, (b) changed endothelial- and smooth muscle-dependent vasoregulating mechanisms, (c) altered vasomotor control with increased sympathetic activity, and (d) obesity related hypertension with cardiomyocytes hypertrophy and impaired cardiac vascular adaptation to metabolic needs. From a clinical point of view it can present itself in acute or chronic form with different prognosis, as a practice problem for real-life diagnosis and treatment.
Collapse
|
40
|
Pang L, Cai Y, Tang EHC, Irwin MG, Ma H, Xia Z. Prostaglandin E Receptor Subtype 4 Signaling in the Heart: Role in Ischemia/Reperfusion Injury and Cardiac Hypertrophy. J Diabetes Res 2016; 2016:1324347. [PMID: 27190998 PMCID: PMC4846751 DOI: 10.1155/2016/1324347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an endogenous lipid mediator, produced from the metabolism of arachidonic acids, upon the sequential actions of phospholipase A2, cyclooxygenases, and prostaglandin E synthases. The various biological functions governed by PGE2 are mediated through its four distinct prostaglandin E receptors (EPs), designated as EP1, EP2, EP3, and EP4, among which the EP4 receptor is the one most widely distributed in the heart. The availability of global or cardiac-specific EP4 knockout mice and the development of selective EP4 agonists/antagonists have provided substantial evidence to support the role of EP4 receptor in the heart. However, like any good drama, activation of PGE2-EP4 signaling exerts both protective and detrimental effects in the ischemic heart disease. Thus, the primary object of this review is to provide a comprehensive overview of the current progress of the PGE2-EP4 signaling in ischemic heart diseases, including cardiac hypertrophy and myocardial ischemia/reperfusion injury. A better understanding of PGE2-EP4 signaling should promote the development of more effective therapeutic approaches to treat the ischemic heart diseases without triggering unwanted side effects.
Collapse
Affiliation(s)
- Lei Pang
- Department of Anesthesiology, The First Hospital, Jilin University, Jilin 130021, China
| | - Yin Cai
- Department of Anesthesiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Eva Hoi Ching Tang
- Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael G. Irwin
- Department of Anesthesiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital, Jilin University, Jilin 130021, China
- *Haichun Ma:
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
41
|
Yan Y, Chang Q, Li Q, Li L, Wang S, Du R, Hu X. Identification of plasma vascular endothelia-cadherin as a biomarker for coronary artery disease in Type 2 diabetes mellitus patients. Int J Clin Exp Med 2015; 8:19466-19470. [PMID: 26770593 PMCID: PMC4694493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTS To examine how vascular endothelia (VE)-cadherin plasma levels are correlated with parameters associated with endothelial function such as endothelin-1, nitric oxide, nitric oxide synthase and HbA1c in type 2 diabetic patients with coronary artery disease. METHODS VE-cadherin levels were analyzed by enzyme-linked immunosorbent assays. Spearman's correlation and multiple stepwise regression analyses were used to examine the relationship between plasma VE-cadherin and other factors. RESULTS By univariate correlation analysis, plasma VE-cadherin levels were significantly associated with age, total cholesterol, triglyceride, hemoglobin A1c, and endothelin-1. Multiple regression analysis (adjusted for age, total cholesterol, and triglyceride) showed that plasma VE-cadherin levels were independently and significantly associated with HbA1c and ET-1. Plasma VE-cadherin levels were significantly highest in patients with diabetes mellitus and coronary artery disease. While patients with diabetes mellitus had higher levels of VE-cadherin compared with healthy subjects. CONCLUSIONS This study found that VE-cadherin levels might be a biomarker for some endothelial dysfunction associated with coronary artery disease in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| | - Qingqing Chang
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| | - Quanmin Li
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| | - Lin Li
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| | - Shuang Wang
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| | - Ruiqin Du
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| | - Xiaoqiang Hu
- Department of Endocrinology, The Second Artillary General Hospital of Chinese People's Liberation Army Beijing 100088, China
| |
Collapse
|
42
|
Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels. Arterioscler Thromb Vasc Biol 2015; 35:1393-400. [PMID: 25838427 DOI: 10.1161/atvbaha.115.305500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. APPROACH AND RESULTS Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited K(Ca) and KV7, but not KATP channel-mediated dilation in lean arteries. In the absence of PVAT, vasodilation to K(Ca) and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on K(Ca) or KV7 channel-mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel-mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or K(ATP) channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not in obese arteries. CONCLUSIONS These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K(+) channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation or progression of smooth muscle dysfunction in obesity.
Collapse
Affiliation(s)
- Jillian N Noblet
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Meredith K Owen
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Adam G Goodwill
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Daniel J Sassoon
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Johnathan D Tune
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.).
| |
Collapse
|
43
|
Duncker DJ, Koller A, Merkus D, Canty JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 2014; 57:409-22. [PMID: 25475073 DOI: 10.1016/j.pcad.2014.12.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major factors determining myocardial perfusion and oxygen delivery have been elucidated over the past several decades, and this knowledge has been incorporated into the management of patients with ischemic heart disease (IHD). The basic understanding of the fluid mechanical behavior of coronary stenoses has also been translated to the cardiac catheterization laboratory where measurements of coronary pressure distal to a stenosis and coronary flow are routinely obtained. However, the role of perturbations in coronary microvascular structure and function, due to myocardial hypertrophy or coronary microvascular dysfunction, in IHD is becoming increasingly recognized. Future studies should therefore be aimed at further improving our understanding of the integrated coronary microvascular mechanisms that control coronary blood flow, and of the underlying causes and mechanisms of coronary microvascular dysfunction. This knowledge will be essential to further improve the treatment of patients with IHD.
Collapse
Affiliation(s)
- Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical School, Rotterdam, The Netherlands.
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School, University of Pécs, Hungary; Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical School, Rotterdam, The Netherlands
| | - John M Canty
- Division of Cardiovascular Medicine, University at Buffalo and the Western New York Department of Veterans Affairs Health System, Buffalo, NY, USA
| |
Collapse
|
44
|
|
45
|
Berwick ZC, Dick GM, O'Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical coupling between Kv and Ca v1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 2013; 108:370. [PMID: 23856709 DOI: 10.1007/s00395-013-0370-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Previous investigations indicate that diminished functional expression of voltage-dependent K(+) (KV) channels impairs control of coronary blood flow in obesity/metabolic syndrome. The goal of this investigation was to test the hypothesis that KV channels are electromechanically coupled to CaV1.2 channels and that coronary microvascular dysfunction in obesity is related to subsequent increases in CaV1.2 channel activity. Initial studies revealed that inhibition of KV channels with 4-aminopyridine (4AP, 0.3 mM) increased intracellular [Ca(2+)], contracted isolated coronary arterioles and decreased coronary reactive hyperemia. These effects were reversed by blockade of CaV1.2 channels. Further studies in chronically instrumented Ossabaw swine showed that inhibition of CaV1.2 channels with nifedipine (10 μg/kg, iv) had no effect on coronary blood flow at rest or during exercise in lean swine. However, inhibition of CaV1.2 channels significantly increased coronary blood flow, conductance, and the balance between coronary flow and metabolism in obese swine (P < 0.05). These changes were associated with a ~50 % increase in inward CaV1.2 current and elevations in expression of the pore-forming subunit (α1c) of CaV1.2 channels in coronary smooth muscle cells from obese swine. Taken together, these findings indicate that electromechanical coupling between KV and CaV1.2 channels is involved in the regulation of coronary vasomotor tone and that increases in CaV1.2 channel activity contribute to coronary microvascular dysfunction in the setting of obesity.
Collapse
Affiliation(s)
- Zachary C Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moberly SP, Mather KJ, Berwick ZC, Owen MK, Goodwill AG, Casalini ED, Hutchins GD, Green MA, Ng Y, Considine RV, Perry KM, Chisholm RL, Tune JD. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol 2013; 108:365. [PMID: 23764734 DOI: 10.1007/s00395-013-0365-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/21/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine. GLP-1 significantly augmented myocardial glucose uptake under resting conditions in lean humans, but this effect was impaired in T2DM. This observation was confirmed and extended in swine, where GLP-1 effects to augment myocardial glucose uptake during exercise were seen in lean but not in obese swine. GLP-1 did not increase myocardial oxygen consumption or blood flow in humans or in swine. Impaired myocardial responsiveness to GLP-1 in obesity was not associated with any apparent alterations in myocardial or coronary GLP1-R expression. No evidence for GLP-1-mediated activation of cAMP/PKA or AMPK signaling in lean or obese hearts was observed. GLP-1 treatment augmented p38-MAPK activity in lean, but not obese cardiac tissue. Taken together, these data provide novel evidence indicating that the cardiometabolic effects of GLP-1 are attenuated in obesity and T2DM, via mechanisms that may involve impaired p38-MAPK signaling.
Collapse
Affiliation(s)
- Steven P Moberly
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koller A, Balasko M, Bagi Z. Endothelial regulation of coronary microcirculation in health and cardiometabolic diseases. Intern Emerg Med 2013; 8 Suppl 1:S51-4. [PMID: 23494539 PMCID: PMC3676666 DOI: 10.1007/s11739-013-0910-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiometabolic disorders have been shown to impair coronary microvascular functions leading to diminished cardiac performance and increased mortality. In this review, we focus on the molecular pathomechanisms of impaired endothelium-dependent and flow-induced dysregulation of coronary vasomotor tone in cardiometabolic disorders such as obesity, diabetes mellitus or hyperhomocysteinemia based on animal experiments and human studies. We also briefly summarize the relationship among key signaling mechanisms that contribute to the development of coronary dysfunctions in these disorders, which may help develop new targets for efficient cardiometabolic prevention and treatments.
Collapse
Affiliation(s)
- Akos Koller
- Department of Pathophysiology and Gerontology, Medical School, J. Szentagothai Res. Centre, University of Pecs, 12. Szigeti Str, 7624, Pecs, Hungary.
| | | | | |
Collapse
|
48
|
Cullen A, Ferguson A. Perioperative management of the severely obese patient: a selective pathophysiological review. Can J Anaesth 2012; 59:974-96. [DOI: 10.1007/s12630-012-9760-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/12/2012] [Indexed: 12/15/2022] Open
|
49
|
Trask AJ, Katz PS, Kelly AP, Galantowicz ML, Cismowski MJ, West TA, Neeb ZP, Berwick ZC, Goodwill AG, Alloosh M, Tune JD, Sturek M, Lucchesi PA. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J Appl Physiol (1985) 2012; 113:1128-40. [PMID: 22837170 DOI: 10.1152/japplphysiol.00604.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 10(6) ± 0.7 × 10(6) and 1.1 × 10(6) ± 0.2 × 10(6) dyn/cm(2) in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS.
Collapse
Affiliation(s)
- Aaron J Trask
- Center for Cardiovascular and Pulmonary Research, The Heart Center, The Research Institute at Nationwide Children's Hospital, 700 Children’s Drive, Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Influence of obesity and metabolic dysfunction on the endothelial control in the coronary circulation. J Mol Cell Cardiol 2011; 52:840-7. [PMID: 21889942 DOI: 10.1016/j.yjmcc.2011.08.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 02/07/2023]
Abstract
Diseases of the coronary circulation remain the leading cause of death in Western society despite impressive advances in diagnosis, pharmacotherapy and post-event management. Part of this statistic likely stems from a parallel increase in the prevalence of obesity and metabolic dysfunction, both significant risk factors for coronary disease. Obesity and diabetes pose unique challenges for the heart and their impact on the coronary vasculature remains incompletely understood. The vascular endothelium is a major interface between arterial function and the physical and chemical components of blood flow. Proper function of the endothelium is necessary to preserve hemostasis, maintain vascular tone and limit the extent of vascular diseases such as atherosclerosis. Given its central role in vascular health, endothelial dysfunction has been the source of considerable research interest in diabetes and obesity. In the current review, we will examine the pathologic impact of obesity and diabetes on coronary function and the extent to which these two factors impact endothelial function. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
|