1
|
Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling. Sci Rep 2016; 6:23416. [PMID: 27079272 PMCID: PMC4832198 DOI: 10.1038/srep23416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) oxidation controls excitability and viability. While hydrogen peroxide (H2O2) affects Ca2+-activated CaMKII in vitro, Angiotensin II (Ang II)-induced CaMKIIδ signaling in cardiomyocytes is Ca2+ independent and requires NADPH oxidase-derived superoxide, but not its dismutation product H2O2. To better define the biological regulation of CaMKII activation and signaling by Ang II, we evaluated the potential for peroxynitrite (ONOO−) to mediate CaMKII activation and downstream Kv4.3 channel mRNA destabilization by Ang II. In vitro experiments show that ONOO− oxidizes and modestly activates pure CaMKII in the absence of Ca2+/CaM. Remarkably, this apokinase stimulation persists after mutating known oxidation targets (M281, M282, C290), suggesting a novel mechanism for increasing baseline Ca2+-independent CaMKII activity. The role of ONOO− in cardiac and neuronal responses to Ang II was then tested by scavenging ONOO− and preventing its formation by inhibiting nitric oxide synthase. Both treatments blocked Ang II effects on Kv4.3, tyrosine nitration and CaMKIIδ oxidation and activation. Together, these data show that ONOO− participates in Ang II-CaMKII signaling. The requirement for ONOO− in transducing Ang II signaling identifies ONOO−, which has been viewed as a reactive damaging byproduct of superoxide and nitric oxide, as a mediator of GPCR-CaMKII signaling.
Collapse
|
2
|
Pratt CP, He J, Wang Y, Barth AL, Bruchez MP. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression. Bioconjug Chem 2015; 26:1963-71. [PMID: 26301573 PMCID: PMC4576318 DOI: 10.1021/acs.bioconjchem.5b00409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
regulation of surface levels of protein is critical for proper
cell function and influences properties including cell adhesion, ion
channel contributions to current flux, and the sensitivity of surface
receptors to ligands. Here we demonstrate a two-color labeling system
in live cells using a single fluorogen activating peptide (FAP) based
fusion tag, which enables the rapid and simultaneous quantification
of surface and internal proteins. In the nervous system, BK channels
can regulate neural excitability and neurotransmitter release, and
the surface trafficking of BK channels can be modulated by signaling
cascades and assembly with accessory proteins. Using this labeling
approach, we examine the dynamics of BK channel surface expression
in HEK293 cells. Surface pools of the pore-forming BKα subunit
were stable, exhibiting a plasma membrane half-life of >10 h. Long-term
activation of adenylyl cyclase by forskolin reduced BKα surface
levels by 30%, an effect that could not be attributed to increased
bulk endocytosis of plasma membrane proteins. This labeling approach
is compatible with microscopic imaging and flow cytometry, providing
a solid platform for examining protein trafficking in living cells.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianjun He
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alison L Barth
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Spencer NY, Engelhardt JF. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 2014; 53:1551-64. [PMID: 24555469 PMCID: PMC3985689 DOI: 10.1021/bi401719r] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Redox
reactions have been established as major biological players
in many cellular signaling pathways. Here we review mechanisms of
redox signaling with an emphasis on redox-active signaling endosomes.
Signals are transduced by relatively few reactive oxygen species (ROS),
through very specific redox modifications of numerous proteins and
enzymes. Although ROS signals are typically associated with cellular
injury, these signaling pathways are also critical for maintaining
cellular health at homeostasis. An important component of ROS signaling
pertains to localization and tightly regulated signal transduction
events within discrete microenvironments of the cell. One major aspect
of this specificity is ROS compartmentalization within membrane-enclosed
organelles such as redoxosomes (redox-active endosomes) and the nuclear
envelope. Among the cellular proteins that produce superoxide are
the NADPH oxidases (NOXes), transmembrane proteins that are implicated
in many types of redox signaling. NOXes produce superoxide on only
one side of a lipid bilayer; as such, their orientation dictates the
compartmentalization of ROS and the local control of signaling events
limited by ROS diffusion and/or movement through channels associated
with the signaling membrane. NOX-dependent ROS signaling pathways
can also be self-regulating, with molecular redox sensors that limit
the local production of ROS required for effective signaling. ROS
regulation of the Rac-GTPase, a required co-activator of many NOXes,
is an example of this type of sensor. A deeper understanding of redox
signaling pathways and the mechanisms that control their specificity
will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion
injury, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Department of Anatomy and Cell Biology, The University of Iowa , Iowa City, Iowa 52242-1009, United States
| | | |
Collapse
|