1
|
Park JH, Shin MJ, Youn GS, Yeo HJ, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Cho YJ, Lee SH, Jung HY, Kim DW, Eum WS, Choi SY. PEP-1-PIN1 Promotes Hippocampal Neuronal Cell Survival by Inhibiting Cellular ROS and MAPK Phosphorylation. Biomedicines 2024; 12:2352. [PMID: 39457664 PMCID: PMC11504513 DOI: 10.3390/biomedicines12102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The peptidyl-prolyl isomerase (PIN1) plays a vital role in cellular processes, including intracellular signaling and apoptosis. While oxidative stress is considered one of the primary mechanisms of pathogenesis in brain ischemic injury, the precise function of PIN1 in this disease remains to be elucidated. Objective: We constructed a cell-permeable PEP-1-PIN1 fusion protein and investigated PIN1's function in HT-22 hippocampal cells as well as in a brain ischemic injury gerbil model. Methods: Transduction of PEP-1-PIN1 into HT-22 cells and signaling pathways were determined by Western blot analysis. Intracellular reactive oxygen species (ROS) production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. Protective effects of PEP-1-PIN1 against ischemic injury were examined using immunohistochemistry. Results: PEP-1-PIN1, when transduced into HT-22 hippocampal cells, inhibited cell death in H2O2-treated cells and markedly reduced DNA fragmentation and ROS production. This fusion protein also reduced phosphorylation of mitogen-activated protein kinase (MAPK) and modulated expression levels of apoptosis-signaling proteins in HT-22 cells. Furthermore, PEP-1-PIN1 was distributed in gerbil hippocampus neuronal cells after passing through the blood-brain barrier (BBB) and significantly protected against neuronal cell death and also decreased activation of microglia and astrocytes in an ischemic injury gerbil model. Conclusions: These results indicate that PEP-1-PIN1 can inhibit ischemic brain injury by reducing cellular ROS levels and regulating MAPK and apoptosis-signaling pathways, suggesting that PIN1 plays a protective role in H2O2-treated HT-22 cells and ischemic injury gerbil model.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea;
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
- Genesen Inc., Teheran-ro, Gangnam-gu, Seoul 06181, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| |
Collapse
|
2
|
Kuveljic J, Djordjevic A, Zivotic I, Dekleva M, Kolakovic A, Zivkovic M, Stankovic A, Djuric T. Expression of HMGB1, TGF-β1, BIRC3, ADAM17, CDKN1A, and FTO in Relation to Left Ventricular Remodeling in Patients Six Months after the First Myocardial Infarction: A Prospective Study. Genes (Basel) 2024; 15:1296. [PMID: 39457420 PMCID: PMC11507197 DOI: 10.3390/genes15101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: After myocardial infarction (MI), adverse left ventricular (LV) remodeling may occur. This is followed by LV hypertrophy and eventually heart failure. The remodeling process is complex and goes through multiple phases. The aim of this study was to investigate the expression of HMGB1, TGF-β1, BIRC3, ADAM17, CDKN1A, and FTO, each involved in a specific step of LV remodeling, in association with the change in the echocardiographic parameters of LV structure and function used to assess the LV remodeling process in the peripheral blood mononuclear cells (PBMCs) of patients six months after the first MI. The expression of selected genes was also determined in PBMCs of controls. Methods: The study group consisted of 99 MI patients, who were prospectively followed-up for 6 months, and 25 controls. Cardiac parameters, measured via conventional 2D echocardiography, were evaluated at two time points: 3-5 days and 6 months after MI. The mRNA expression six-months-post-MI was detected using TaqMan® technology (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). Results:HMGB1 mRNA was significantly higher in patients with adverse LV remodeling six-months-post-MI than in patients without adverse LV remodeling (p = 0.04). HMGB1 mRNA was significantly upregulated in patients with dilated LV end-diastolic diameter (LVEDD) (p = 0.03); dilated LV end-diastolic volume index (LVEDVi) (p = 0.03); severely dilated LV end-systolic volume index (LVESVi) (p = 0.006); impaired LV ejection fraction (LVEF) (p = 0.01); and LV enlargement (p = 0.03). It was also significantly upregulated in PBMCs from patients compared to controls (p = 0.005). TGF-β1 and BIRC3 mRNA were significantly lower in patients compared to controls (p = 0.02 and p = 0.05, respectively). Conclusions: Our results suggest that HMGB1 is involved in adverse LV remodeling six-months-post-MI, even on the mRNA level. Further research and validation are needed.
Collapse
Affiliation(s)
- Jovana Kuveljic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Ivan Zivotic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Milica Dekleva
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Kolakovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.K.); (I.Z.); (A.K.); (M.Z.); (A.S.); (T.D.)
| |
Collapse
|
3
|
Yang Y, Hao Z, An N, Han Y, Miao W, Storey KB, Lefai E, Liu X, Wang J, Liu S, Xie M, Chang H. Integrated transcriptomics and metabolomics reveal protective effects on heart of hibernating Daurian ground squirrels. J Cell Physiol 2023; 238:2724-2748. [PMID: 37733616 DOI: 10.1002/jcp.31123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Hibernating mammals are natural models of resistance to ischemia, hypoxia-reperfusion injury, and hypothermia. Daurian ground squirrels (spermophilus dauricus) can adapt to endure multiple torpor-arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin-eosin (HE) staining, Masson staining, echocardiography, and enzyme-linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin-proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine-phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio-protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio-protection mechanisms in mammalian hibernators.
Collapse
Affiliation(s)
- Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziwei Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuo Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
4
|
Titus AS, Venugopal H, Ushakumary MG, Wang M, Cowling RT, Lakatta EG, Kailasam S. Discoidin Domain Receptor 2 Regulates AT1R Expression in Angiotensin II-Stimulated Cardiac Fibroblasts via Fibronectin-Dependent Integrin-β1 Signaling. Int J Mol Sci 2021; 22:ijms22179343. [PMID: 34502259 PMCID: PMC8431251 DOI: 10.3390/ijms22179343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
This study probed the largely unexplored regulation and role of fibronectin in Angiotensin II-stimulated cardiac fibroblasts. Using gene knockdown and overexpression approaches, Western blotting, and promoter pull-down assay, we show that collagen type I-activated Discoidin Domain Receptor 2 (DDR2) mediates Angiotensin II-dependent transcriptional upregulation of fibronectin by Yes-activated Protein in cardiac fibroblasts. Furthermore, siRNA-mediated fibronectin knockdown attenuated Angiotensin II-stimulated expression of collagen type I and anti-apoptotic cIAP2, and enhanced cardiac fibroblast susceptibility to apoptosis. Importantly, an obligate role for fibronectin was observed in Angiotensin II-stimulated expression of AT1R, the Angiotensin II receptor, which would link extracellular matrix (ECM) signaling and Angiotensin II signaling in cardiac fibroblasts. The role of fibronectin in Angiotensin II-stimulated cIAP2, collagen type I, and AT1R expression was mediated by Integrin-β1-integrin-linked kinase signaling. In vivo, we observed modestly reduced basal levels of AT1R in DDR2-null mouse myocardium, which were associated with the previously reported reduction in myocardial Integrin-β1 levels. The role of fibronectin, downstream of DDR2, could be a critical determinant of cardiac fibroblast-mediated wound healing following myocardial injury. In summary, our findings suggest a complex mechanism of regulation of cardiac fibroblast function involving two major ECM proteins, collagen type I and fibronectin, and their receptors, DDR2 and Integrin-β1.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Harikrishnan Venugopal
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mereena George Ushakumary
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Randy T. Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
- Correspondence:
| |
Collapse
|
5
|
Titus AS, V H, Kailasam S. Coordinated regulation of cell survival and cell cycle pathways by DDR2-dependent SRF transcription factor in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2020; 318:H1538-H1558. [PMID: 32412792 DOI: 10.1152/ajpheart.00740.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relative resistance to apoptosis and the ability to proliferate and produce a collagen-rich scar determine the critical role of cardiac fibroblasts in wound healing and tissue remodeling following myocardial injury. Identification of cardiac fibroblast-specific factors and mechanisms underlying these aspects of cardiac fibroblast function is therefore of considerable scientific and clinical interest. In the present study, gene knockdown and overexpression approaches and promoter binding assays showed that discoidin domain receptor 2 (DDR2), a mesenchymal cell-specific collagen receptor tyrosine kinase localized predominantly in fibroblasts in the heart, acts via ERK1/2 MAPK-activated serum response factor (SRF) transcription factor to enhance the expression of antiapoptotic cIAP2 in cardiac fibroblasts, conferring resistance against oxidative injury. Furthermore, DDR2 was found to act via ERK1/2 MAPK-activated SRF to transcriptionally upregulate Skp2 that in turn facilitated post-translational degradation of p27, the cyclin-dependent kinase inhibitor that causes cell cycle arrest, to promote G1-S transition, as evidenced by Rb phosphorylation, increased proliferating cell nuclear antigen (PCNA) levels, and flow cytometry. DDR2-dependent ERK1/2 MAPK activation also suppressed forkhead box O 3a (FoxO3a)-mediated transcriptional induction of p27. Inhibition of the binding of collagen type I to DDR2 using WRG-28 indicated the obligate role of collagen type I in the activation of DDR2 and its regulatory role in cell survival and cell cycle protein expression. Notably, DDR2 levels positively correlated with SRF, cIAP2, and PCNA levels in cardiac fibroblasts from spontaneously hypertensive rats. To conclude, DDR2-mediated ERK1/2 MAPK activation facilitates coordinated regulation of cell survival and cell cycle progression in cardiac fibroblasts via SRF.NEW & NOTEWORTHY Relative resistance to apoptosis and the ability to proliferate and produce a collagen-rich scar enable cardiac fibroblasts to play a central role in myocardial response to injury. This study reports novel findings that mitogen-stimulated cardiac fibroblasts exploit a common regulatory mechanism involving collagen receptor (DDR2)-dependent activation of ERK1/2 MAPK and serum response factor to achieve coordinated regulation of apoptosis resistance and cell cycle progression, which could facilitate their survival and function in the injured myocardium.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
6
|
Tat-Biliverdin Reductase A Exerts a Protective Role in Oxidative Stress-Induced Hippocampal Neuronal Cell Damage by Regulating the Apoptosis and MAPK Signaling. Int J Mol Sci 2020; 21:ijms21082672. [PMID: 32290442 PMCID: PMC7215548 DOI: 10.3390/ijms21082672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on H2O2-induced HT-22 cell death and in an animal ischemia model were investigated. Transduced Tat-BLVRA markedly inhibited cell death, DNA fragmentation, and generation of ROS. Transduced Tat-BLVRA inhibited the apoptosis and mitogen activated protein kinase (MAPK) signaling pathway and it passed through the blood-brain barrier (BBB) and significantly prevented hippocampal cell death in an ischemic model. These results suggest that Tat-BLVRA provides a possibility as a therapeutic molecule for ischemia.
Collapse
|
7
|
V H, Titus AS, Cowling RT, Kailasam S. Collagen receptor cross-talk determines α-smooth muscle actin-dependent collagen gene expression in angiotensin II-stimulated cardiac fibroblasts. J Biol Chem 2019; 294:19723-19739. [PMID: 31699892 DOI: 10.1074/jbc.ra119.009744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive collagen deposition by myofibroblasts during adverse cardiac remodeling leads to myocardial fibrosis that can compromise cardiac function. Unraveling the mechanisms underlying collagen gene expression in cardiac myofibroblasts is therefore an important clinical goal. The collagen receptors, discoidin domain receptor 2 (DDR2), a collagen-specific receptor tyrosine kinase, and integrin-β1, are reported to mediate tissue fibrosis. Here, we probed the role of DDR2-integrin-β1 cross-talk in the regulation of collagen α1(I) gene expression in angiotensin II (Ang II)-stimulated cardiac fibroblasts. Results from gene silencing/overexpression approaches, electrophoretic mobility shift assays, and ChIP revealed that DDR2 acts via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK)-dependent transforming growth factor-β1 (TGF-β1) signaling to activate activator protein-1 (AP-1) that in turn transcriptionally enhances the expression of collagen-binding integrin-β1 in Ang II-stimulated cardiac fibroblasts. The DDR2-integrin-β1 link was also evident in spontaneously hypertensive rats and DDR2-knockout mice. Further, DDR2 acted via integrin-β1 to regulate α-smooth muscle actin (α-SMA) and collagen type I expression in Ang II-exposed cardiac fibroblasts. Downstream of the DDR2-integrin-β1 axis, α-SMA was found to regulate collagen α1(I) gene expression via the Ca2+ channel, transient receptor potential cation channel subfamily C member 6 (TRPC6), and the profibrotic transcription factor, Yes-associated protein (YAP). This finding indicated that fibroblast-to-myofibroblast conversion is mechanistically coupled to collagen expression. The observation that collagen receptor cross-talk underlies α-SMA-dependent collagen type I expression in cardiac fibroblasts expands our understanding of the complex mechanisms involved in collagen gene expression in the heart and may be relevant to cardiac fibrogenesis.
Collapse
Affiliation(s)
- Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| |
Collapse
|
8
|
Yeo HJ, Shin MJ, Yeo EJ, Choi YJ, Kim DW, Kim DS, Eum WS, Choi SY. Tat-CIAPIN1 inhibits hippocampal neuronal cell damage through the MAPK and apoptotic signaling pathways. Free Radic Biol Med 2019; 135:68-78. [PMID: 30818058 DOI: 10.1016/j.freeradbiomed.2019.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/26/2023]
Abstract
Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein is widely expressed in the brain and it is known that this protein is involved in cell survival including dopaminergic neuronal cells. Oxidative stress is known as one of the major causes of degenerative diseases including ischemia. In this study, we investigated the effect of CIAPIN1 protein on hippocampal neuronal (HT-22) cell damage induced by hydrogen peroxide (H2O2) and in an animal model of ischemia using Tat-CIAPIN1 fusion protein which can transduce into cells. Tat-CIAPIN1 protein transduced into HT-22 cells and significantly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation. Also, Tat-CIAPIN1 protein enhances cell survival via the regulation of Akt, MAPK, NF-κB and apoptotic signaling pathways in the H2O2 treated cells. In an ischemic animal model, Tat-CIAPIN1 protein transduced into the brain and protected neuronal cell death of hippocampal CA1 region induced by ischemic insult. In conclusion, we demonstrated that Tat-CIAPIN1 protein has protective effects against hippocampal neuronal cell damage induced by ischemic injury, suggesting that Tat-CIAPIN1 protein may provide a potential therapeutic agent for ischemia.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, 31538, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
9
|
Feng A, Ling C, Xin-Duo L, Bing W, San-Wu W, Yu Z, Yu-Lan H, You-En Z. Hydrogen Sulfide Protects Human Cardiac Fibroblasts Against H 2O 2-induced Injury Through Regulating Autophagy-Related Proteins. Cell Transplant 2018; 27:1222-1234. [PMID: 30022684 PMCID: PMC6434465 DOI: 10.1177/0963689718779361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autophagy, an intracellular bulk degradation process of proteins and organelles, can be induced by myocardial ischemia in the heart. However, the causative role of autophagy in the survival of human cardiac fibroblasts and the underlying mechanisms are incompletely understood. Oxidative stress can induce autophagy in cultured cells upon hydrogen peroxide (H2O2) exposure. Because hydrogen sulfide (H2S) regulates reactive oxygen species (ROS) and apoptosis, we hypothesize that H2S may have a cardioprotective function. To examine our hypothesis, we investigated the regulation of autophagy by the H2S donor sodium hydrosulfide (NaHS), using a cell model of human cardiac fibroblasts from adult ventricles (HCF-av) that suffered from endoplasmic reticulum (ER) stress by H2O2. In the present study, we found that the apoptosis and autophagy were induced along with ER stress by H2O2 in the primary cultured HCF-av cells. In contrast, H2S suppressed HCF-av cell apoptosis and autophagic flux, in part directly by inhibiting ROS production and preserving mitochondrial functions.
Collapse
Affiliation(s)
- Ao Feng
- 1 Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Chen Ling
- 2 Department of Cardiology, Jinzhou Medical University, Shiyan, China
| | - Lin Xin-Duo
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wu Bing
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wu San-Wu
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhan Yu
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Huang Yu-Lan
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhang You-En
- 3 Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,4 Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
10
|
Bai J, Yu N, Mu H, Dong L, Zhang X. Histidine protects human lens epithelial cells against H
2
O
2
‐induced oxidative stress injury through the NF‐кB pathway. J Cell Biochem 2017; 119:1637-1645. [PMID: 28776724 DOI: 10.1002/jcb.26323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Bai
- Key Laboratory of Harbin Medical University Eye Center, Eye Hospital, First Affiliated HospitalHarbin Medical UniversityHarbinP.R. China
| | - Nannan Yu
- Key Laboratory of Harbin Medical University Eye Center, Eye Hospital, First Affiliated HospitalHarbin Medical UniversityHarbinP.R. China
| | - Hua Mu
- Key Laboratory of Harbin Medical University Eye Center, Eye Hospital, First Affiliated HospitalHarbin Medical UniversityHarbinP.R. China
| | - Li Dong
- Key Laboratory of Harbin Medical University Eye Center, Eye Hospital, First Affiliated HospitalHarbin Medical UniversityHarbinP.R. China
| | - Xiaomei Zhang
- Key Laboratory of Harbin Medical University Eye Center, Eye Hospital, First Affiliated HospitalHarbin Medical UniversityHarbinP.R. China
| |
Collapse
|
11
|
Jo HS, Kim DS, Ahn EH, Kim DW, Shin MJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Yeo HJ, Chung CSY, Cho SW, Han KH, Park J, Eum WS, Choi SY. Protective effects of Tat-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals. BMB Rep 2017; 49:617-622. [PMID: 27616357 PMCID: PMC5346322 DOI: 10.5483/bmbrep.2016.49.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress is closely associated with various diseases and is considered to be a major factor in ischemia. NAD(P)H:quinone oxidoreductase 1 (NQO1) protein is a known antioxidant protein that plays a protective role in various cells against oxidative stress. We therefore investigated the effects of cell permeable Tat-NQO1 protein on hippocampal HT-22 cells, and in an animal ischemia model. The Tat-NQO1 protein transduced into HT-22 cells, and significantly inhibited against hydrogen peroxide (H2O2)-induced cell death and cellular toxicities. Tat-NQO1 protein inhibited the Akt and mitogen activated protein kinases (MAPK) activation as well as caspase-3 expression levels, in H2O2 exposed HT-22 cells. Moreover, Tat-NQO1 protein transduced into the CA1 region of the hippocampus of the animal brain and drastically protected against ischemic injury. Our results indicate that Tat-NQO1 protein exerts protection against neuronal cell death induced by oxidative stress, suggesting that Tat-NQO1 protein may potentially provide a therapeutic agent for neuronal diseases. [BMB Reports 2016; 49(11): 617-622].
Collapse
Affiliation(s)
- Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Christine Seok Young Chung
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
12
|
Pollard HB, Shivakumar C, Starr J, Eidelman O, Jacobowitz DM, Dalgard CL, Srivastava M, Wilkerson MD, Stein MB, Ursano RJ. "Soldier's Heart": A Genetic Basis for Elevated Cardiovascular Disease Risk Associated with Post-traumatic Stress Disorder. Front Mol Neurosci 2016; 9:87. [PMID: 27721742 PMCID: PMC5033971 DOI: 10.3389/fnmol.2016.00087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/05/2016] [Indexed: 11/13/2022] Open
Abstract
"Soldier's Heart," is an American Civil War term linking post-traumatic stress disorder (PTSD) with increased propensity for cardiovascular disease (CVD). We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks. We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1) and Tumor Necrosis Factor alpha (TNFA). We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher's Exact Test (P = 3 × 10-54). We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher's Exact Test (P = 1.8 × 10-16). Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation.
Collapse
Affiliation(s)
- Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Chittari Shivakumar
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Joshua Starr
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - David M. Jacobowitz
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Matthew D. Wilkerson
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California, San DiegoSan Diego, CA, USA
| | - Robert J. Ursano
- Department of Psychiatry Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
- Center for the Study of Traumatic stress, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
13
|
Anupama V, George M, Dhanesh SB, Chandran A, James J, Shivakumar K. Molecular mechanisms in H2O2-induced increase in AT1 receptor gene expression in cardiac fibroblasts: A role for endogenously generated Angiotensin II. J Mol Cell Cardiol 2016; 97:295-305. [PMID: 27208880 DOI: 10.1016/j.yjmcc.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 01/11/2023]
Abstract
The AT1 receptor (AT1R) mediates the manifold actions of angiotensin II in the cardiovascular system. This study probed the molecular mechanisms that link altered redox status to AT1R expression in cardiac fibroblasts. Real-time PCR and western blot analysis showed that H2O2 enhances AT1R mRNA and protein expression via NADPH oxidase-dependent reactive oxygen species induction. Activation of NF-κB and AP-1, demonstrated by electrophoretic mobility shift assay, abolition of AT1R expression by their inhibitors, Bay-11-7085 and SR11302, respectively, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of AT1R by NF-κB and AP-1 in H2O2-treated cells. Further, inhibition of ERK1/2, p38 MAPK and c-Jun N-terminal kinase (JNK) using chemical inhibitors or by RNA interference attenuated AT1R expression. Inhibition of the MAPKs showed that while ERK1/2 and p38 MAPK suffice for NF-κB activation, all three kinases are required for AP-1 activation. H2O2 also increased collagen type I mRNA and protein expression. Interestingly, the AT1R antagonist, candesartan, attenuated H2O2-stimulated AT1R and collagen mRNA and protein expression, suggesting that H2O2 up-regulates AT1R and collagen expression via local Angiotensin II generation, which was confirmed by real-time PCR and ELISA. To conclude, oxidative stress enhances AT1R gene expression in cardiac fibroblasts by a complex mechanism involving the redox-sensitive transcription factors NF-κB and AP-1 that are activated by the co-ordinated action of ERK1/2, p38 MAPK and JNK. Importantly, by causally linking oxidative stress to Angiotensin II and AT1R up-regulation in cardiac fibroblasts, this study offers a novel perspective on the pathogenesis of cardiovascular diseases associated with oxidative stress.
Collapse
Affiliation(s)
- V Anupama
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Mereena George
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum 695014, Kerala, India
| | - Aneesh Chandran
- Bacterial and Parasite Disease Biology, Tropical Disease Biology, Rajiv Gandhi Center for Biotechnology, Trivandrum 695014, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum 695014, Kerala, India
| | - K Shivakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| |
Collapse
|
14
|
George M, Vijayakumar A, Dhanesh SB, James J, Shivakumar K. Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts. J Mol Cell Cardiol 2015; 90:59-69. [PMID: 26674152 DOI: 10.1016/j.yjmcc.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Delineation of mechanisms underlying the regulation of fibrosis-related genes in the heart is an important clinical goal as cardiac fibrosis is a major cause of myocardial dysfunction. This study probed the regulation of Discoidin Domain Receptor 2 (DDR2) gene expression and the regulatory links between Angiotensin II, DDR2 and collagen in Angiotensin II-stimulated cardiac fibroblasts. Real-time PCR and western blot analyses showed that Angiotensin II enhances DDR2 mRNA and protein expression in rat cardiac fibroblasts via NADPH oxidase-dependent reactive oxygen species induction. NF-κB activation, demonstrated by gel shift assay, abolition of DDR2 expression upon NF-κB inhibition, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of DDR2 by NF-κB in Angiotensin II-treated cells. Inhibitors of Phospholipase C and Protein kinase C prevented Angiotensin II-dependent p38 MAPK phosphorylation that in turn blocked NF-κB activation. Angiotensin II also enhanced collagen gene expression. Importantly, the stimulatory effects of Angiotensin II on DDR2 and collagen were inter-dependent as siRNA-mediated silencing of one abolished the other. Angiotensin II promoted ERK1/2 phosphorylation whose inhibition attenuated Angiotensin II-stimulation of collagen but not DDR2. Furthermore, DDR2 knockdown prevented Angiotensin II-induced ERK1/2 phosphorylation, indicating that DDR2-dependent ERK1/2 activation enhances collagen expression in cells exposed to Angiotensin II. DDR2 knockdown was also associated with compromised wound healing response to Angiotensin II. To conclude, Angiotensin II promotes NF-κB activation that up-regulates DDR2 transcription. A reciprocal regulatory relationship between DDR2 and collagen, involving cross-talk between the GPCR and RTK pathways, is central to Angiotensin II-induced increase in collagen expression in cardiac fibroblasts.
Collapse
Affiliation(s)
- Mereena George
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India
| | - Anupama Vijayakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - K Shivakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India.
| |
Collapse
|
15
|
Joshi S, Wei J, Bishopric NH. A cardiac myocyte-restricted Lin28/let-7 regulatory axis promotes hypoxia-mediated apoptosis by inducing the AKT signaling suppressor PIK3IP1. Biochim Biophys Acta Mol Basis Dis 2015; 1862:240-51. [PMID: 26655604 DOI: 10.1016/j.bbadis.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE The let-7 family of microRNAs (miRs) regulates critical cell functions, including survival signaling, differentiation, metabolic control and glucose utilization. These functions may be important during myocardial ischemia. MiR-let-7 expression is under tight temporal and spatial control through multiple redundant mechanisms that may be stage-, isoform- and tissue-specific. OBJECTIVE To determine the mechanisms and functional consequences of miR-let-7 regulation by hypoxia in the heart. METHODS AND RESULTS MiR-let-7a, -7c and -7g were downregulated in the adult mouse heart early after coronary occlusion, and in neonatal rat ventricular myocytes subjected to hypoxia. Let-7 repression did not require glucose depletion, and occurred at a post-transcriptional level. Hypoxia also induced the RNA binding protein Lin28, a negative regulator of let-7. Hypoxia ineither induced Lin28 nor repressed miR-let-7 in cardiac fibroblasts. Both changes were abrogated by treatment with the histone deacetylase inhibitor trichostatin A. Restoration of let-7g to hypoxic myocytes and to ischemia-reperfused mouse hearts in vivo via lentiviral transduction potentiated the hypoxia-induced phosphorylation and activation of Akt, and prevented hypoxia-dependent caspase activation and death. Mechanistically, phosphatidyl inositol 3-kinase interacting protein 1 (Pik3ip1), a negative regulator of PI3K, was identified as a novel target of miR-let-7 by a crosslinking technique showing that miR-let-7g specifically targets Pik3ip1 to the cardiac myocyte Argonaute complex RISC. Finally, in non-failing and failing human myocardium, we found specific inverse relationships between Lin28 and miR-let-7g, and between miR-let-7g and PIK3IP1. CONCLUSION A conserved hypoxia-responsive Lin28-miR-let-7-Pik3ip1 regulatory axis is specific to cardiac myocytes and promotes apoptosis during myocardial ischemic injury.
Collapse
Affiliation(s)
- Shaurya Joshi
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianqin Wei
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nanette H Bishopric
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
16
|
Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell survival. J Neurol Sci 2015; 358:226-35. [DOI: 10.1016/j.jns.2015.08.1549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023]
|
17
|
Foppoli C, De Marco F, Cini C, Perluigi M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim Biophys Acta Gen Subj 2014; 1850:1622-32. [PMID: 25534611 DOI: 10.1016/j.bbagen.2014.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cervical cancer is the second most common neoplastic disease among women worldwide. The initiating event of such cancer is the infection with certain types of human papillomavirus (HPV), a very common condition in the general population. However, the majority of HPV infections is subclinical and transitory and is resolved spontaneously. Intriguingly, viral oncogene expression, although necessary, is not per se sufficient to promote cervical cancer and other factors are involved in the progression of infected cells to the full neoplastic phenotype. In this perspective it has been suggested that the redox balance and the oxidative stress (OS) may represent interesting and under-explored candidates as promoting factors in HPV-initiated carcinogenesis. SCOPE OF THE REVIEW The current review discusses the possible interplay between the viral mechanisms modulating cell homeostasis and redox sensitive mechanisms. Experimental data and indirect evidences are presented on the activity of viral dependent functions on i) the regulation of enzymes and compounds involved in OS; ii) the protection from oxidation of detoxifying/antiapoptotic enzymes and redox-sensitive transcription factors; iii) the suppression of apoptosis; and iv) the modulation of host microRNAs regulating genes associated with antioxidant defense. MAJOR CONCLUSIONS The resulting tangled scenario suggests that viral hosting cells adapt their metabolisms in order to support their growth and survival in the increasingly oxidant micro-environment associated with HPV tumor initiation and progression. GENERAL SIGNIFICANCE HPV can modulate the host cell redox homeostasis in order to favor infection and possibly tumor transformation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Cesira Foppoli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Federico De Marco
- Laboratory of Virology, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - M Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
18
|
Carbocisteine attenuates hydrogen peroxide-induced inflammatory injury in A549 cells via NF-κB and ERK1/2 MAPK pathways. Int Immunopharmacol 2014; 24:306-313. [PMID: 25533503 DOI: 10.1016/j.intimp.2014.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022]
Abstract
Carbocisteine is a mucolytic drug with anti-oxidative effect, we had previously proved that carbocisteine remarkably reduced the rate of acute exacerbations and improved the quality of life in patients with chronic obstructive pulmonary disease (COPD), however, very little is known about its mechanisms. In this study, we aimed to investigate the anti-inflammatory effects of carbocisteine against hydrogen peroxide (H2O2). A549 cells were cultured in vitro and treated with H2O2 as damaged cell models, carbocisteine was administered 24h prior to or after H2O2 exposure, and the protective effects of carbocisteine were determined by MTT, qRT-PCR, ELISA, western blot and immunofluorescence assays. The results showed that carbocisteine could increase cell viability and decrease LDH, IL-6 and IL-8 levels in the supernatant. Additionally, carbocisteine decreased IL-6, IL-8, TNF-α, IP-10 and MIP-1β mRNA in a dose-dependent manner. Moreover, carbocisteine could attenuate phosphorylation of NF-κB p65 and ERK1/2 and inhibit the nuclear translocation of pNF-κB p65 induced by H2O2. In conclusion, carbocisteine inhibited H2O2-induced inflammatory injury in A549 cells, NF-κB and ERK1/2 MAPK were the target pathways.
Collapse
|
19
|
Pramod S, Shivakumar K. Mechanisms in cardiac fibroblast growth: an obligate role for Skp2 and FOXO3a in ERK1/2 MAPK-dependent regulation of p27kip1. Am J Physiol Heart Circ Physiol 2014; 306:H844-55. [DOI: 10.1152/ajpheart.00933.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblast hyperplasia associated with enhanced matrix deposition is a major determinant of tissue remodeling in several disease states of the heart. However, mechanisms controlling cell cycle progression in cardiac fibroblasts remain unexplored. Identification of cell cycle regulatory elements in these cells is important to develop strategies to check adverse cardiac remodeling under pathological conditions. This study sought to probe the mechanisms underlying ERK1/2-mediated p27Kip1 regulation in mitogenically stimulated cardiac fibroblasts. Addition of 10% fetal calf serum to quiescent cultures of adult rat cardiac fibroblasts promoted ERK1/2 activation, as evidenced by its phosphorylation status. Reduction in [3H]thymidine incorporation into DNA increased population doubling time, flow cytometry, and Western blot analysis showing reduced levels of cyclins D and A, p27Kip1 induction, and retinoblastoma protein (Rb) hypophosphorylation in ERK1/2-inhibited cells indicated ERK1/2 dependence of G1-S transition in cardiac fibroblasts. Lack of p27Kip1 protein in serum-stimulated, ERK1/2-active cells was associated with increased levels of Skp2, an E3 ubiquitin ligase for p27Kip1, whose knockdown by RNA interference induced p27Kip1 expression. Further, forced expression of Skp2 in ERK1/2-inhibited cells downregulated p27Kip1. Transcriptional upregulation of p27Kip1 mRNA in ERK1/2-inhibited cells, demonstrated by real-time PCR, correlated with forkhead box O 3a (FOXO3a) transcription factor activation, shown by gel shift assay. FOXO3a knockdown attenuated p27Kip1 mRNA and protein expression in ERK1/2-inhibited cells. We provide evidence for the first time that, in cardiac fibroblasts, activated ERK1/2 regulates p27Kip1 expression transcriptionally and posttranslationally via FOXO3a- and Skp2-dependent mechanisms. Additionally, this study uncovers interesting interactions between critical cell cycle regulatory elements that are only beginning to be understood.
Collapse
Affiliation(s)
- S. Pramod
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - K. Shivakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|