1
|
Sevrieva IR, Kampourakis T, Irving M. Structural changes in troponin during activation of skeletal and heart muscle determined in situ by polarised fluorescence. Biophys Rev 2024; 16:753-772. [PMID: 39830118 PMCID: PMC11735716 DOI: 10.1007/s12551-024-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnCN) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy. We show that the orientations of the IT arm determined by the two approaches are essentially the same and that this region acts as an almost rigid scaffold for regulatory changes in the more mobile regions of troponin. However, the TnCN orientations determined by the two methods are clearly distinct in both low- and high-calcium conditions. We discuss the implications of these results for the role of TnCN in mediating the multiple signalling pathways acting through troponin in heart muscle cells and the general advantages and limitations of FISS and cryo-EM for determining protein domain orientations in cells and multiprotein complexes.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| | - Thomas Kampourakis
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| |
Collapse
|
2
|
Solaro RJ, Goldspink PH, Wolska BM. Emerging Concepts of Mechanisms Controlling Cardiac Tension: Focus on Familial Dilated Cardiomyopathy (DCM) and Sarcomere-Directed Therapies. Biomedicines 2024; 12:999. [PMID: 38790961 PMCID: PMC11117855 DOI: 10.3390/biomedicines12050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Novel therapies for the treatment of familial dilated cardiomyopathy (DCM) are lacking. Shaping research directions to clinical needs is critical. Triggers for the progression of the disorder commonly occur due to specific gene variants that affect the production of sarcomeric/cytoskeletal proteins. Generally, these variants cause a decrease in tension by the myofilaments, resulting in signaling abnormalities within the micro-environment, which over time result in structural and functional maladaptations, leading to heart failure (HF). Current concepts support the hypothesis that the mutant sarcomere proteins induce a causal depression in the tension-time integral (TTI) of linear preparations of cardiac muscle. However, molecular mechanisms underlying tension generation particularly concerning mutant proteins and their impact on sarcomere molecular signaling are currently controversial. Thus, there is a need for clarification as to how mutant proteins affect sarcomere molecular signaling in the etiology and progression of DCM. A main topic in this controversy is the control of the number of tension-generating myosin heads reacting with the thin filament. One line of investigation proposes that this number is determined by changes in the ratio of myosin heads in a sequestered super-relaxed state (SRX) or in a disordered relaxed state (DRX) poised for force generation upon the Ca2+ activation of the thin filament. Contrasting evidence from nanometer-micrometer-scale X-ray diffraction in intact trabeculae indicates that the SRX/DRX states may have a lesser role. Instead, the proposal is that myosin heads are in a basal OFF state in relaxation then transfer to an ON state through a mechano-sensing mechanism induced during early thin filament activation and increasing thick filament strain. Recent evidence about the modulation of these mechanisms by protein phosphorylation has also introduced a need for reconsidering the control of tension. We discuss these mechanisms that lead to different ideas related to how tension is disturbed by levels of mutant sarcomere proteins linked to the expression of gene variants in the complex landscape of DCM. Resolving the various mechanisms and incorporating them into a unified concept is crucial for gaining a comprehensive understanding of DCM. This deeper understanding is not only important for diagnosis and treatment strategies with small molecules, but also for understanding the reciprocal signaling processes that occur between cardiac myocytes and their micro-environment. By unraveling these complexities, we can pave the way for improved therapeutic interventions for managing DCM.
Collapse
Affiliation(s)
- R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Beata M. Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Barry ME, Rynkiewicz MJ, Pavadai E, Viana A, Lehman W, Moore JR. Glutamate 139 of tropomyosin is critical for cardiac thin filament blocked-state stabilization. J Mol Cell Cardiol 2024; 188:30-37. [PMID: 38266978 PMCID: PMC11654406 DOI: 10.1016/j.yjmcc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.
Collapse
Affiliation(s)
- Meaghan E Barry
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Elumalai Pavadai
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Alex Viana
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America.
| |
Collapse
|
4
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Dowrick JM, Taberner AJ, Han JC, Tran K. Methods for assessing cardiac myofilament calcium sensitivity. Front Physiol 2023; 14:1323768. [PMID: 38116581 PMCID: PMC10728676 DOI: 10.3389/fphys.2023.1323768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Myofilament calcium (Ca2+) sensitivity is one of several mechanisms by which force production of cardiac muscle is modulated to meet the ever-changing demands placed on the heart. Compromised Ca2+ sensitivity is associated with pathologies, which makes it a parameter of interest for researchers. Ca2+ Sensitivity is the ratio of the association and dissociation rates between troponin C (TnC) and Ca2+. As it is not currently possible to measure these rates in tissue preparations directly, methods have been developed to infer myofilament sensitivity, typically using some combination of force and Ca2+ measurements. The current gold-standard approach constructs a steady-state force-Ca2+ relation by exposing permeabilised muscle samples to a range of Ca2+ concentrations and uses the half-maximal concentration as a proxy for sensitivity. While a valuable method for steady-state investigations, the permeabilisation process makes the method unsuitable when examining dynamic, i.e., twitch-to-twitch, changes in myofilament sensitivity. The ability of the heart to transiently adapt to changes in load is an important consideration when evaluating the impact of disease states. Alternative methods have been proffered, including force-Ca2+ phase loops, potassium contracture, hybrid experimental-modelling and conformation-based fluorophore approaches. This review provides an overview of the mechanisms underlying myofilament Ca2+ sensitivity, summarises existing methods, and explores, with modelling, whether any of them are suited to investigating dynamic changes in sensitivity. We conclude that a method that equips researchers to investigate the transient change of myofilament Ca2+ sensitivity is still needed. We propose that such a method will involve simultaneous measurements of cytosolic Ca2+ and TnC activation in actively twitching muscle and a biophysical model to interpret these data.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Yang Z, Marston SB, Gould IR. Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8736-8748. [PMID: 37791815 PMCID: PMC10591477 DOI: 10.1021/acs.jpcb.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Adrenaline acts on β1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 μs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.
Collapse
Affiliation(s)
- Zeyu Yang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| | - Steven B. Marston
- National
Heart & Lung Institute, Imperial College
London, London W12 0NN, U.K.
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| |
Collapse
|
7
|
Bradshaw M, Squire JM, Morris E, Atkinson G, Richardson R, Lees J, Caputo M, Bigotti GM, Paul DM. Zebrafish as a model for cardiac disease; Cryo-EM structure of native cardiac thin filaments from Danio Rerio. J Muscle Res Cell Motil 2023; 44:179-192. [PMID: 37480427 PMCID: PMC10542308 DOI: 10.1007/s10974-023-09653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
Actin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease. Our structure of the zebrafish thin filament reveals the molecular interactions between the constituent proteins, showing that the fundamental organisation of the complex is the same as that reported in the human reconstituted thin filament. A reconstruction of zebrafish cardiac F-actin demonstrates no deviations from human cardiac actin over an extended length of 14 actin subunits. Modelling zebrafish homology models into our maps enabled us to compare, in detail, the similarity with human models. The structural similarities of troponin-T in particular, a region known to contain a hypertrophic cardiomyopathy 'hotspot', confirm the suitability of zebrafish to study these disease-causing mutations.
Collapse
Affiliation(s)
- Marston Bradshaw
- Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - John M Squire
- Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Edward Morris
- University of Glasgow, Glasgow, UK
- Institute of Cancer Research, London, UK
| | - Georgia Atkinson
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Rebecca Richardson
- Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Jon Lees
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Massimo Caputo
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Giulia M Bigotti
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Danielle M Paul
- Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Parijat P, Kondacs L, Alexandrovich A, Gautel M, Cobb AJA, Kampourakis T. High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chem Biol 2021; 16:225-235. [PMID: 33315370 DOI: 10.1021/acschembio.0c00908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current therapeutic interventions for both heart disease and heart failure are largely insufficient and associated with undesired side effects. Biomedical research has emphasized the role of sarcomeric protein function for the normal performance and energy efficiency of the heart, suggesting that directly targeting the contractile myofilaments themselves using small molecule effectors has therapeutic potential and will likely result in greater drug efficacy and selectivity. In this study, we developed a robust and highly reproducible fluorescence polarization-based high throughput screening (HTS) assay that directly targets the calcium-dependent interaction between cardiac troponin C (cTnC) and the switch region of cardiac troponin I (cTnISP), with the aim of identifying small molecule effectors of the cardiac thin filament activation pathway. We screened a commercially available small molecule library and identified several hit compounds with both inhibitory and activating effects. We used a range of biophysical and biochemical methods to characterize hit compounds and identified fingolimod, a sphingosin-1-phosphate receptor modulator, as a new troponin-based small molecule effector. Fingolimod decreased the ATPase activity and calcium sensitivity of demembranated cardiac muscle fibers in a dose-dependent manner, suggesting that the compound acts as a calcium desensitizer. We investigated fingolimod's mechanism of action using a combination of computational studies, biophysical methods, and synthetic chemistry, showing that fingolimod bound to cTnC repels cTnISP via mainly electrostatic repulsion of its positively charged tail. These results suggest that fingolimod is a potential new lead compound/scaffold for the development of troponin-directed heart failure therapeutics.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Laszlo Kondacs
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Sarcomere integrated biosensor detects myofilament-activating ligands in real time during twitch contractions in live cardiac muscle. J Mol Cell Cardiol 2020; 147:49-61. [PMID: 32791214 DOI: 10.1016/j.yjmcc.2020.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022]
Abstract
The sarcomere is the functional unit of cardiac muscle, essential for normal heart function. To date, it has not been possible to study, in real time, thin filament-based activation dynamics in live cardiac muscle. We report here results from a cardiac troponin C (TnC) FRET-based biosensor integrated into the cardiac sarcomere via stoichiometric replacement of endogenous TnC. The TnC biosensor provides, for the first time, evidence of multiple thin filament activating ligands, including troponin I interfacing with TnC and cycling myosin, during a cardiac twitch. Results show that the TnC FRET biosensor transient significantly precedes that of peak twitch force. Using small molecules and genetic modifiers known to alter sarcomere activation, independently of the intracellular Ca2+ transient, the data show that the TnC biosensor detects significant effects of the troponin I switch domain as a sarcomere-activating ligand. Interestingly, the TnC biosensor also detected the effects of load-dependent altered myosin cycling, as shown by a significant delay in TnC biosensor transient inactivation during the isometric twitch. In addition, the TnC biosensor detected the effects of myosin as an activating ligand during the twitch by using a small molecule that directly alters cross-bridge cycling, independently of the intracellular Ca2+ transient. Collectively, these results aid in illuminating the basis of cardiac muscle contractile activation with implications for gene, protein, and small molecule-based strategies designed to target the sarcomere in regulating beat-to-beat heart performance in health and disease.
Collapse
|
11
|
Marston S, Zamora JE. Troponin structure and function: a view of recent progress. J Muscle Res Cell Motil 2019; 41:71-89. [PMID: 31030382 PMCID: PMC7109197 DOI: 10.1007/s10974-019-09513-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The molecular mechanism by which Ca2+ binding and phosphorylation regulate muscle contraction through Troponin is not yet fully understood. Revealing the differences between the relaxed and active structure of cTn, as well as the conformational changes that follow phosphorylation has remained a challenge for structural biologists over the years. Here we review the current understanding of how Ca2+, phosphorylation and disease-causing mutations affect the structure and dynamics of troponin to regulate the thin filament based on electron microscopy, X-ray diffraction, NMR and molecular dynamics methodologies.
Collapse
Affiliation(s)
- Steven Marston
- NHLI and Chemistry Departments, Imperial College London, W12 0NN, London, UK.
| | - Juan Eiros Zamora
- NHLI and Chemistry Departments, Imperial College London, W12 0NN, London, UK
| |
Collapse
|
12
|
Solís C, Kim GH, Moutsoglou ME, Robinson JM. Ca 2+ and Myosin Cycle States Work as Allosteric Effectors of Troponin Activation. Biophys J 2018; 115:1762-1769. [PMID: 30249400 DOI: 10.1016/j.bpj.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022] Open
Abstract
In cardiac muscle, troponin (Tn) and tropomyosin inhibit actin and myosin interactions through the steric blocking of myosin binding to F-actin. Ca2+ binding to Tn C modulates this inhibition. Thin filaments become activated upon Ca2+ binding, which enables strong binding of myosin with a concomitant release of ATP hydrolysis products and level arm swinging responsible for force generation. Despite this level of description, the current cross-bridge cycle model does not fully define the structural events that take place within Tn during combinatorial myosin and Ca2+ interventions. Here, we studied conformational changes within Tn bound to F-actin and tropomyosin by fluorescence lifetime imaging combined with Förster resonance energy transfer. Fluorescent dye molecules covalently bound to the Tn C C-lobe and Tn I C-terminal domain report Ca2+- and myosin-induced activation of Tn. Reconstituted thin filaments were deposited on a myosin-coated surface similar to an in vitro motility assay setup without filament sliding involved. Under all the tested conditions, Ca2+ was responsible for the most significant changes in Tn activation. Rigor myosin activated Tn at subsaturated Ca2+ conditions but not to the degree seen in thin filaments with Ca2+. ATP-γ-S did not affect Tn activation significantly; however, blebbistatin induced significant activation at subsaturating Ca2+ levels. The relation between the extent of Tn activation and its conformational flexibility suggests that active/inactive Tn states coexist in different proportions that depend on the combination of effectors. These results satisfy an allosteric activation model of the thin filament as a function of Ca2+ and the myosin catalytic cycle state.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota.
| | - Giho H Kim
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota
| | - Maria E Moutsoglou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota
| | - John M Robinson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
13
|
Kampourakis T, Ponnam S, Sun YB, Sevrieva I, Irving M. Structural and functional effects of myosin-binding protein-C phosphorylation in heart muscle are not mimicked by serine-to-aspartate substitutions. J Biol Chem 2018; 293:14270-14275. [PMID: 30082313 PMCID: PMC6139572 DOI: 10.1074/jbc.ac118.004816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/06/2018] [Indexed: 11/15/2022] Open
Abstract
Myosin-binding protein-C (cMyBP-C) is a key regulator of contractility in heart muscle, and its regulatory function is controlled in turn by phosphorylation of multiple serines in its m-domain. The structural and functional effects of m-domain phosphorylation have often been inferred from those of the corresponding serine-to-aspartate (Ser–Asp) substitutions, in both in vivo and in vitro studies. Here, using a combination of in vitro binding assays and in situ structural and functional assays in ventricular trabeculae of rat heart and the expressed C1mC2 region of cMyBP-C, containing the m-domain flanked by domains C1 and C2, we tested whether these substitutions do in fact mimic the effects of phosphorylation. In situ changes in thin and thick filament structure were determined from changes in polarized fluorescence from bifunctional probes attached to troponin C or myosin regulatory light chain, respectively. We show that both the action of exogenous C1mC2 to activate contraction in the absence of calcium and the accompanying change in thin filament structure are abolished by tris-phosphorylation of the m-domain, but unaffected by the corresponding Ser–Asp substitutions. The latter produced an intermediate change in thick filament structure. Both tris-phosphorylation and Ser–Asp substitutions abolished the interaction between C1mC2 and myosin sub-fragment 2 (myosin S2) in vitro, but yielded different effects on thin filament binding. These results suggest that some previous inferences from the effects of Ser–Asp substitutions in cMyBP-C should be reconsidered and that the distinct effects of tris-phosphorylation and Ser–Asp substitutions on cMyBP-C may provide a useful basis for future studies.
Collapse
Affiliation(s)
- Thomas Kampourakis
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Saraswathi Ponnam
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Yin-Biao Sun
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Ivanka Sevrieva
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Irving
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
14
|
Bai Y, Guo SD, Liu Y, Ma CS, Lip GYH. Relationship of troponin to incident atrial fibrillation occurrence, recurrence after radiofrequency ablation and prognosis: a systematic review, meta-analysis and meta-regression. Biomarkers 2018; 23:512-517. [PMID: 29631448 DOI: 10.1080/1354750x.2018.1463562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ying Bai
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Shi-Dong Guo
- Emergency Department of China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chang-Sheng Ma
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Gregory Y. H. Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Kampourakis T, Zhang X, Sun YB, Irving M. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. J Physiol 2017; 596:31-46. [PMID: 29052230 PMCID: PMC5746517 DOI: 10.1113/jp275050] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023] Open
Abstract
Key points Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease.
Abstract Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin‐containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules – omecamtiv mecarbil (OM) and blebbistatin (BS) – that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small‐molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin‐myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin‐myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co‐operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Xuemeng Zhang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| |
Collapse
|
16
|
Stevens CM, Rayani K, Singh G, Lotfalisalmasi B, Tieleman DP, Tibbits GF. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca 2+-sensitizing mutations. J Biol Chem 2017; 292:11915-11926. [PMID: 28533433 DOI: 10.1074/jbc.m116.770776] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/07/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca2+ TnC binding Ca2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnISW). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca2+ and TnISW Surprisingly the Ca2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca2+-binding site of cTnC.
Collapse
Affiliation(s)
- Charles M Stevens
- Cardiovascular Sciences, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kaveh Rayani
- Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gurpreet Singh
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bairam Lotfalisalmasi
- Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Glen F Tibbits
- Cardiovascular Sciences, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Departments of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
17
|
Paul DM, Squire JM, Morris EP. Relaxed and active thin filament structures; a new structural basis for the regulatory mechanism. J Struct Biol 2017; 197:365-371. [PMID: 28161413 PMCID: PMC5367448 DOI: 10.1016/j.jsb.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
The structures of muscle thin filaments reconstituted using skeletal actin and cardiac troponin and tropomyosin have been determined with and without bound Ca2+ using electron microscopy and reference-free single particle analysis. The resulting density maps have been fitted with atomic models of actin, tropomyosin and troponin showing that: (i) the polarity of the troponin complex is consistent with our 2009 findings, with large shape changes in troponin between the two states; (ii) without Ca2+ the tropomyosin pseudo-repeats all lie at almost equivalent positions in the 'blocked' position on actin (over subdomains 1 and 2); (iii) in the active state the tropomyosin pseudo-repeats are all displaced towards subdomains 3 and 4 of actin, but the extent of displacement varies within the regulatory unit depending upon the axial location of the pseudo-repeats with respect to troponin. Individual pseudo-repeats with Ca2+ bound to troponin can be assigned either to the 'closed' state, a partly activated conformation, or the 'M-state', a fully activated conformation which has previously been thought to occur only when myosin heads bind. These results lead to a modified view of the steric blocking model of thin filament regulation in which cooperative activation is governed by troponin-mediated local interactions of the pseudo-repeats of tropomyosin with actin.
Collapse
Affiliation(s)
- Danielle M Paul
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| | - John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
18
|
Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M, Sun YB. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife 2017; 6. [PMID: 28229860 PMCID: PMC5365314 DOI: 10.7554/elife.24081] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/02/2022] Open
Abstract
The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure. DOI:http://dx.doi.org/10.7554/eLife.24081.001 The heart needs to pump out the same volume of blood that enters it. This is not as simple as it sounds, as changes in heart rate – for example, in response to exercise – alter how hard the heart must pump. When blood flows into the heart it stretches the heart muscle, which consists of units called sarcomeres. Sarcomeres contain two types of protein filament, known as thick filaments and thin filaments. When a heartbeat is triggered by calcium ions flowing into the heart muscle cells, the thick filaments slide over the thin filaments. This causes the heart muscle cell to contract. The Frank–Starling mechanism helps to regulate the contraction of the heart. This mechanism has two aspects. Firstly, as the sarcomere lengthens, its protein filaments are able to contract with more force for a given high level of calcium ions. Secondly, the lengthening of the sarcomere makes the filaments more sensitive to calcium ions, which again causes the heart to contract more forcefully. However, the molecular mechanisms that underlie these effects were not clear. Zhang et al. have now studied rat heart muscle cells using a new fluorescence-based method that can detect structural changes in the thick and thin filaments. The results show that the increased force that is generated when sarcomeres are stretched can be accounted for by changes in the structure of the thick filament. In contrast, the increase in calcium sensitivity that occurs as the sarcomere lengthens is largely due to structural alterations in the thin filament. These two processes can be controlled independently, but work together in the Frank–Starling mechanism. Now that we better understand the molecular basis of the Frank–Starling mechanism, further work could investigate new strategies for designing and testing treatments for heart disease. DOI:http://dx.doi.org/10.7554/eLife.24081.002
Collapse
Affiliation(s)
- Xuemeng Zhang
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ivanka Sevrieva
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Badr MA, Pinto JR, Davidson MW, Chase PB. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. PLoS One 2016; 11:e0164222. [PMID: 27736894 PMCID: PMC5063504 DOI: 10.1371/journal.pone.0164222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC’s N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.
Collapse
Affiliation(s)
- Myriam A. Badr
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
20
|
Order-Disorder Transitions in the Cardiac Troponin Complex. J Mol Biol 2016; 428:2965-77. [PMID: 27395017 DOI: 10.1016/j.jmb.2016.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
The troponin complex is a molecular switch that ties shifting intracellular calcium concentration to association and dissociation of actin and myosin, effectively allowing excitation-contraction coupling in striated muscle. Although there is a long history of muscle biophysics and structural biology, many of the mechanistic details that enable troponin's function remain incompletely understood. This review summarizes the current structural understanding of the troponin complex on the muscle thin filament, focusing on conformational changes in flexible regions of the troponin I subunit. In particular, we focus on order-disorder transitions in the C-terminal domain of troponin I, which have important implications in cardiac disease and could also have potential as a model system for the study of coupled binding and folding.
Collapse
|
21
|
Fusi L, Huang Z, Irving M. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation. Biophys J 2016; 109:783-92. [PMID: 26287630 PMCID: PMC4547144 DOI: 10.1016/j.bpj.2015.06.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 11/05/2022] Open
Abstract
In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads.
Collapse
Affiliation(s)
- Luca Fusi
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
| | - Zhe Huang
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
22
|
The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. J Mol Cell Cardiol 2015; 87:257-69. [PMID: 26341255 PMCID: PMC4640586 DOI: 10.1016/j.yjmcc.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/23/2015] [Indexed: 01/02/2023]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca2 +-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca2 +-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca2 +-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation. The cTnC L29Q mutation causes a small change in the NMR structure of site 1 in cTnC. L29Q reduces the cooperativity of Ca2 +-dependent structural changes in cTnC in situ. L29Q removes the impact of force-generating myosin heads on cTnC structural changes.
Collapse
|
23
|
Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 2015; 571:153-66. [PMID: 26232335 DOI: 10.1016/j.gene.2015.07.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca(2+) or Mg(2+) under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|