1
|
Qian M, Sun W, Cheng L, Wu Y, Wang L, Liu H. Transcriptome-based analysis reveals the toxic effects of perfluorononanoic acid by affecting the development of the cardiovascular system and lipid metabolism in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110108. [PMID: 39647647 DOI: 10.1016/j.cbpc.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid containing nine carbon chains, with an additional carbon‑fluorine bond that makes it more stable and toxic. Studies have shown that PFNA can harm the reproductive, immune, and nervous systems, as well as many organs, which can increase the risk of cancer. In this study, zebrafish embryos were treated with 0 and 100 μM PFNA for 72 and 96 hpf, and their angiogenesis and haematopoiesis were observed under laser confocal microscopy using Tg (fli1:EGFP) and Tg (gata1:DsRed) transgenic zebrafish. The data showed that PFNA exposure decreased heart rate and slowed blood flow in zebrafish. PFNA was found to inhibit erythropoiesis by O-dianisidine staining. RNA-seq analysis was used to compare gene expression changes in zebrafish from control and 100 μM PFNA-exposed groups at 72 hpf. KEGG results showed significant enrichment of PPAR signaling pathway, fatty acid metabolism, steroid biosynthesis and apoptosis. The RNA-seq results were validated by real-time fluorescence quantitative PCR (RT-qPCR). Oil red O staining and Filipin staining showed increased lipid accumulation after PFNA exposure, and TUNEL staining showed that PFNA exposure led to apoptosis. In conclusion, exposure to PFNA may cause toxic effects in zebrafish by affecting cardiovascular development, causing lipid accumulation and promoting apoptosis.
Collapse
Affiliation(s)
- Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Weiqiang Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
2
|
Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, Zhang M, Chen MY, Xu SC, Fan MQ, Li LL, Zhang H, Zhao N, Zeng ZX, Chen S, Zeng XF, Deng W, Tang QZ. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024; 149:684-706. [PMID: 37994595 DOI: 10.1161/circulationaha.123.065603] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Shi-Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Ke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Xi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Meng-Ya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Si-Chi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China (S.-c.X.)
| | - Meng-Qi Fan
- College of Life Sciences, Wuhan University, P.R. China (M.-q.F.)
| | - Lan-Lan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiaotong University, P.R. China (Z.-x.Z)
- Department of Cardiac Surgery, Changhai Hospital, Navy Medical University, Shanghai, P.R. China (Z.-x.Z)
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Xiao-Feng Zeng
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| |
Collapse
|
3
|
Lewandowski ED. Metabolic flux in the driver's seat during cardiac health and disease. J Mol Cell Cardiol 2023; 182:15-24. [PMID: 37451081 PMCID: PMC10529670 DOI: 10.1016/j.yjmcc.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Cardiac function is a dynamic process that must adjust efficiently to the immediate demands of physical state and activity. So too, the metabolic support of cardiac function is a dynamic process that must respond, in time, to the demands of cardiac function and viability. Flux through metabolic pathways provides chemical energy and generates signaling molecules that regulate activity among intracellular compartments to meet these demands. Thus, flux through metabolic pathways provides a dynamic mode of support of cardiomyocytes during physiological and pathophysiological challenges. Any inability of metabolic flux to keep pace with the demands of the cardiomyocyte results in progressive dysfunction that contributes to cardiac disease. Thus, the priority in maintaining and regulating flux through metabolic pathways in the cardiomyocyte cannot be understated. Great potential exists in current efforts to elucidate metabolic mechanisms as therapeutic targets for the diseased heart. As a consequence, detecting metabolic flux in the functioning myocardium of the heart, under normal and diseased conditions, is essential in elucidating the metabolic basis of contractile dysfunction. As a companion to the 2022 ISHR Research Achievement Award lecture, this review examines the use and applications of stable isotope kinetics to quantify metabolic flux through intermediary pathways and the exchange and transport of intermediates across the mitochondrial membrane and sarcolemma of intact functioning hearts in determining how these intracellular events are coordinated to support cardiac function and health. Finally, this work reviews recently demonstrated metabolic defects in diseased hearts and the potential for metabolic alleviation of heart disease.
Collapse
Affiliation(s)
- E Douglas Lewandowski
- Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
4
|
Chang Y, Tsai JF, Chen PJ, Huang YT, Liu BH. Thallium exposure interfered with heart development in embryonic zebrafish (Danio rerio): From phenotype to genotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162901. [PMID: 36948317 DOI: 10.1016/j.scitotenv.2023.162901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
Thallium (Tl) is a rare trace metal element but increasingly detected in wastewater produced by coal-burning, smelting, and more recently, high-tech manufacturing industries. However, the adverse effects of Tl, especially cardiotoxicity, on aquatic biota remain unclear. In this study, zebrafish model was used to elucidate the effects and mechanisms of Tl(I) cardiotoxicity in developing embryos. Exposure of embryonic zebrafish to low-dose Tl(I) (25-100 μg/L) decreased heart rate and blood flow activity, and subsequently impaired swim bladder inflation and locomotive behavior of larvae. Following high-level Tl(I) administration (200-800 μg/L), embryonic zebrafish exhibited pericardial edema, incorrect heart looping, and thinner myocardial layer. Based on RNA-sequencing, Tl(I) altered pathways responsible for protein folding and transmembrane transport, as well as negative regulation of heart rate and cardiac jelly development. The gene expression of nppa, nppb, ucp1, and ucp3, biomarkers of cardiac damage, were significantly upregulated by Tl(I). Our findings demonstrate that Tl(I) at environmentally relevant concentrations interfered with cardiac development with respect to anatomy, function, and transcriptomic alterations. The cardiotoxic mechanisms of Tl(I) provide valuable information in the assessment of Tl-related ecological risk in freshwater environment.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Maurya SK, Carley AN, Maurya CK, Lewandowski ED. Western Diet Causes Heart Failure With Reduced Ejection Fraction and Metabolic Shifts After Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic Transl Sci 2023; 8:422-435. [PMID: 37138801 PMCID: PMC10149654 DOI: 10.1016/j.jacbts.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/27/2023]
Abstract
Western diet (WD) impairs glucose tolerance and cardiac lipid dynamics, preceding heart failure with reduced ejection fraction (HFrEF) in mice. Unlike diabetic db/db mice with high cardiac triglyceride (TG) and rapid TG turnover, WD mice had high TG but slowed turnover, reducing lipolytic PPAR⍺ activation. WD deranged cardiac TG dynamics by imbalancing synthesis and lipolysis, with low cardiac TG lipase (ATGL), low ATGL co-activator, and high ATGL inhibitory peptide. By 24 weeks of WD, hearts shifted from diastolic dysfunction to diastolic dysfunction with HFrEF with decreases in GLUT4 and exogenous glucose oxidation and elevated β-hydroxybutyrate dehydrogenase 1 without increasing ketone oxidation.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Andrew N. Carley
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chandan K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - E. Douglas Lewandowski
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
6
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
7
|
mtDNA in the Pathogenesis of Cardiovascular Diseases. DISEASE MARKERS 2021; 2021:7157109. [PMID: 34795807 PMCID: PMC8595034 DOI: 10.1155/2021/7157109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
The incidence rate of cardiovascular disease (CVD) has been increasing year by year and has become the main cause for the increase of mortality. Mitochondrial DNA (mtDNA) plays a crucial role in the pathogenesis of CVD, especially in heart failure and ischemic heart diseases. With the deepening of research, more and more evidence showed that mtDNA is related to the occurrence and development of CVD. Current studies mainly focus on how mtDNA copy number, an indirect biomarker of mitochondrial function, contributes to CVD and its underlying mechanisms including mtDNA autophagy, the effect of mtDNA on cardiac inflammation, and related metabolic functions. However, no relevant studies have been conducted yet. In this paper, we combed the current research status of the mechanism related to the influence of mtDNA on the occurrence, development, and prognosis of CVD, so as to find whether these mechanisms have something in common, or is there a correlation between each mechanism for the development of CVD?
Collapse
|
8
|
Bai J, Liu C, Zhu P, Li Y. Novel Insights Into Molecular Mechanism of Mitochondria in Diabetic Cardiomyopathy. Front Physiol 2021; 11:609157. [PMID: 33536936 PMCID: PMC7849834 DOI: 10.3389/fphys.2020.609157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complication is one of the significant causes of death in diabetic mellitus (DM) in which diabetic cardiomyopathy, independent of hypertension, cardiac valvular disease, and coronary atherosclerosis, occupies an important position. Although the detailed pathogenesis of diabetic cardiomyopathy remains unclear currently, mitochondrial morphological abnormality and dysfunction were observed in diabetic cardiomyopathy animal models according to much research, suggesting that mitochondrial structural and functional impairment played an integral role in the formation of diabetic cardiomyopathy. Thus, we have summarized the effect of mitochondria on the process of diabetic cardiomyopathy, including abnormal mitochondrial morphology, mitochondrial energy metabolism disorder, enhanced mitochondrial oxidative stress, mitochondrial unbalanced calcium homeostasis, and mitochondrial autophagy. Based on the above mechanisms and the related evidence, more therapeutic strategies targeting mitochondria in diabetic cardiomyopathy have been and will be proposed to delay the progression of the disease.
Collapse
Affiliation(s)
- Jing Bai
- Medical School of Chinese PLA, Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chuanbin Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Medical School of Chinese PLA, Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Sharma S, Lalrohlui F, Sharma V, Sharma I, Sharma S, Parihar TJ, Zohmingthanga J, Singh V, Sharma S, Senthil Kumar N, Rai E. Candidate gene association study of UCP3 variant rs1800849 with T2D in Mizo population of Northeast India. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-020-00812-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Goldberg IJ, Reue K, Abumrad NA, Bickel PE, Cohen S, Fisher EA, Galis ZS, Granneman JG, Lewandowski ED, Murphy R, Olive M, Schaffer JE, Schwartz-Longacre L, Shulman GI, Walther TC, Chen J. Deciphering the Role of Lipid Droplets in Cardiovascular Disease: A Report From the 2017 National Heart, Lung, and Blood Institute Workshop. Circulation 2019; 138:305-315. [PMID: 30012703 DOI: 10.1161/circulationaha.118.033704] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are distinct and dynamic organelles that affect the health of cells and organs. Much progress has been made in understanding how these structures are formed, how they interact with other cellular organelles, how they are used for storage of triacylglycerol in adipose tissue, and how they regulate lipolysis. Our understanding of the biology of LDs in the heart and vascular tissue is relatively primitive in comparison with LDs in adipose tissue and liver. The National Heart, Lung, and Blood Institute convened a working group to discuss how LDs affect cardiovascular diseases. The goal of the working group was to examine the current state of knowledge on the cell biology of LDs, including current methods to study them in cells and organs and reflect on how LDs influence the development and progression of cardiovascular diseases. This review summarizes the working group discussion and recommendations on research areas ripe for future investigation that will likely improve our understanding of atherosclerosis and heart function.
Collapse
Affiliation(s)
| | - Karen Reue
- University of California, Los Angeles (K.R.)
| | | | - Perry E Bickel
- University of Texas Southwestern Medical Center, Dallas (P.E.B.)
| | - Sarah Cohen
- University of North Carolina at Chapel Hill (S.C.)
| | | | - Zorina S Galis
- National Institutes of Health/National, Heart, Lung, and Blood Institute, Bethesda, MD (Z.S.G., M.O., L.S.-L., J.C.)
| | | | | | | | - Michelle Olive
- National Institutes of Health/National, Heart, Lung, and Blood Institute, Bethesda, MD (Z.S.G., M.O., L.S.-L., J.C.)
| | | | - Lisa Schwartz-Longacre
- National Institutes of Health/National, Heart, Lung, and Blood Institute, Bethesda, MD (Z.S.G., M.O., L.S.-L., J.C.)
| | - Gerald I Shulman
- Yale University, Howard Hughes Medical Institute, New Haven, CT (G.I.S.)
| | - Tobias C Walther
- Harvard University, Howard Hughes Medical Institute, Boston, MA (T.C.W.)
| | - Jue Chen
- National Institutes of Health/National, Heart, Lung, and Blood Institute, Bethesda, MD (Z.S.G., M.O., L.S.-L., J.C.).
| |
Collapse
|
11
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
12
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
13
|
Fatty Acids Prevent Hypoxia-Inducible Factor-1α Signaling Through Decreased Succinate in Diabetes. JACC Basic Transl Sci 2018; 3:485-498. [PMID: 30175272 PMCID: PMC6115650 DOI: 10.1016/j.jacbts.2018.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
HIF-1α is activated following myocardial infarction, and is a critical transcription factor promoting survival in hypoxia. Type 2 diabetes blunts HIF-1α activation in ischemia and downstream adaptation to hypoxia. This effect is mediated by increased long-chain fatty acids, which prevent HIF-1α activation in hypoxia. Succinate promotes HIF-1α activation by inhibiting the regulatory HIF hydroxylases. Fatty acids decrease succinate concentrations in hypoxia, by blocking increased glycolysis and malate-aspartate shuttle activity. Pharmacologically activating HIF-1α or increasing succinate concentrations restores the hypoxic response and improves functional recovery post-ischemia in diabetes.
Hypoxia-inducible factor (HIF)-1α is essential following a myocardial infarction (MI), and diabetic patients have poorer prognosis post-MI. Could HIF-1α activation be abnormal in the diabetic heart, and could metabolism be causing this? Diabetic hearts had decreased HIF-1α protein following ischemia, and insulin-resistant cardiomyocytes had decreased HIF-1α-mediated signaling and adaptation to hypoxia. This was due to elevated fatty acid (FA) metabolism preventing HIF-1α protein stabilization. FAs exerted their effect by decreasing succinate concentrations, a HIF-1α activator that inhibits the regulatory HIF hydroxylase enzymes. In vivo and in vitro pharmacological HIF hydroxylase inhibition restored HIF-1α accumulation and improved post-ischemic functional recovery in diabetes.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DMF, dimethyl fumarate
- DMOG, dimethyloxalylglycine
- FA, fatty acid
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- HIF-1α
- IR, insulin resistance/resistant
- MI, myocardial infarction
- PHD, prolyl hydroxylase domain
- SSO, sulfo-N-succinimidyl oleate
- cardiovascular disease
- diabetes
- fatty acids
- hypoxia
- i.p., intraperitoneal
- metabolism
Collapse
|
14
|
Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken JJFP, Glatz JFC, Evans RD, Griffin JL, Tyler DJ, Clarke K, Heather LC. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc Res 2018; 113:737-748. [PMID: 28419197 PMCID: PMC5437367 DOI: 10.1093/cvr/cvx045] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress. Methods and results Hearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels. Conclusions Diabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Latt S Mansor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Maria da Luz Sousa Fialho
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Georgina Yea
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Will A Coumans
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - James A West
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Matthew Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
15
|
Smith TB, Patel K, Munford H, Peet A, Tennant DA, Jeeves M, Ludwig C. High-Speed Tracer Analysis of Metabolism (HS-TrAM). Wellcome Open Res 2018; 3:5. [PMID: 29503875 PMCID: PMC5811808 DOI: 10.12688/wellcomeopenres.13387.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
Tracing the fate of stable isotopically-enriched nutrients is a sophisticated method of describing and quantifying the activity of metabolic pathways. Nuclear Magnetic Resonance (NMR) spectroscopy offers high resolution data in terms of resolving metabolic pathway utilisation. Despite this, NMR spectroscopy is under-utilised due to length of time required to collect the data, quantification requiring multiple samples and complicated analysis. Here we present two techniques, quantitative spectral filters and enhancement of the splitting of
13C signals due to homonuclear
13C,
13C or heteronuclear
13C,
15N J-coupling in
1H,
13C-HSQC NMR spectra. Together, these allow the rapid collection of NMR spectroscopy data in a quantitative manner on a single sample. The reduced duration of HSQC spectra data acquisition opens up the possibility of real-time tracing of metabolism including the study of metabolic pathways
in vivo. We show how these techniques can be used to trace the fate of labelled nutrients in a whole organ model of kidney preservation prior to transplantation using a porcine kidney as a model organ. In addition, we show how the use of multiple nutrients, differentially labelled with
13C and
15N, can be used to provide additional information with which to profile metabolic pathways.
Collapse
Affiliation(s)
- Thomas Brendan Smith
- Institute of Metabolism and Systems Research, University of Birmingham, West Midlands, UK
| | - Kamlesh Patel
- Institute of Metabolism and Systems Research, University of Birmingham, West Midlands, UK
| | - Haydn Munford
- Institute of Metabolism and Systems Research, University of Birmingham, West Midlands, UK
| | - Andrew Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, West Midlands, UK.,Birmingham Children's Hospital NHS Foundation Trust, West Midlands, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, West Midlands, UK
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of Birmingham, West Midlands, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, West Midlands, UK
| |
Collapse
|
16
|
Liu W, Liu J, Xia J, Xue X, Wang H, Qi Z, Ji L. Leptin receptor knockout-induced depression-like behaviors and attenuated antidepressant effects of exercise are associated with STAT3/SOCS3 signaling. Brain Behav Immun 2017; 61:297-305. [PMID: 28069387 DOI: 10.1016/j.bbi.2017.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 01/16/2023] Open
Abstract
Relatively little has been known about pathophysiological mechanisms contributing to the development of neuropsychiatric symptoms in the context of metabolic syndrome. Impaired leptin signaling activation in db/db mice has been proposed as a potential link between behavioral and metabolic disorders. Our previous studies have shown that exercise has the beneficial effects on a depression-like and insulin-resistant state in mice. The present study aimed to determine whether and how leptin receptor knockout (db/db) induces depression-like behaviors, and to identify the antidepressant effects of swimming exercise in db/db mice. Our results support the validity of db/db mice as an animal model to study depression with metabolic abnormalities, but fail to confirm the improvement of exercise on depression. LepRb knockout-induced depression-like behaviors are associated with STAT3/SOCS3 signaling but independent of IKKβ/NFκB signaling. Our findings suggest the potential importance of LepRb as an exercise-regulated target for depression, also representing a new target underlying treatment-resistant depression.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jiatong Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Xiangli Xue
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Hongmei Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Liu Ji
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
17
|
Chong CR, Clarke K, Levelt E. Metabolic Remodeling in Diabetic Cardiomyopathy. Cardiovasc Res 2017; 113:422-430. [PMID: 28177068 PMCID: PMC5412022 DOI: 10.1093/cvr/cvx018] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fatty acid uptake results in accumulation of toxic metabolites, such as ceramide and diacylglycerol, activation of protein kinase C, and elevation of uncoupling protein-3. Insulin signalling and glucose uptake/oxidation become further impaired, and mitochondrial function and ATP production become compromised. Increased oxidative stress also impairs mitochondrial function and disrupts metabolic pathways. The diabetic heart relies on free fatty acids (FFA) as the major substrate for oxidative phosphorylation and is unable to increase glucose oxidation during ischaemia or hypoxia, thereby increasing myocardial injury, especially in ageing female diabetic animals. Pharmacological activation of PPARγ in adipose tissue may lower plasma FFA and improve recovery from myocardial ischaemic injury in diabetes. Not only is the diabetic heart energetically-impaired, it also has early diastolic dysfunction and concentric remodelling. The contractile function of the diabetic myocardium negatively correlates with epicardial adipose tissue, which secretes proinflammatory cytokines, resulting in interstitial fibrosis. Novel pharmacological strategies targeting oxidative stress seem promising in preventing progression of diabetic cardiomyopathy, although clinical evidence is lacking. Metabolic agents that lower plasma FFA or glucose, including PPARγ agonism and SGLT2 inhibition, may therefore be promising options.
Collapse
Affiliation(s)
- Cher-Rin Chong
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Kieran Clarke
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Eylem Levelt
- 2 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital
| |
Collapse
|
18
|
Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1098-1105. [PMID: 27593695 DOI: 10.1016/j.bbadis.2016.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction and associated oxidative stress are strongly linked to cardiovascular, neurodegenerative, and age associated disorders. More specifically cardiovascular diseases are common in patients with diabetes and significant contributor to the high mortality rates associated with diabetes. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the actual basis of the increased heart failure risk is multifactorial, increasing evidences suggest that imbalances in mitochondrial function and associated oxidative stress play an important role in this process. This review summarizes these abnormalities in mitochondrial function and discusses potential underlying mechanisms. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Suresh Kumar Verma
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | | | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
19
|
HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy. PPAR Res 2016; 2016:5938740. [PMID: 27446205 PMCID: PMC4944062 DOI: 10.1155/2016/5938740] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/04/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines.
Collapse
|
20
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
21
|
Carley AN, Lewandowski ED. Triacylglycerol turnover in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1492-9. [PMID: 26993578 DOI: 10.1016/j.bbalip.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
No longer regarded as physiologically inert the endogenous triacylglyceride (TAG) pool within the cardiomyocyte is now recognized to play a dynamic role in metabolic regulation. Beyond static measures of content, the relative rates of interconversion among acyl intermediates are more closely linked to dynamic processes of physiological function in normal and diseased hearts, with the potential for both adaptive and maladaptive contributions. Indeed, multiple inefficiencies in cardiac metabolism have been identified in the decompensated, hypertrophied and failing heart. Among the intracellular responses to physiological, metabolic and pathological stresses, TAG plays a central role in the balance of lipid handling and signaling mechanisms. TAG dynamics are profoundly altered from normal in both diabetic and pathologically stressed hearts. More than just expansion or contraction of the stored lipid pool, the turnover rates of TAG are sensitive to and compete against other enzymatic pathways, anabolic and catabolic, for reactive acyl-CoA units. The rates of TAG synthesis and lipolysis thusly affect multiple components of cardiomyocyte function, including energy metabolism, cell signaling, and enzyme activation, as well as the regulation of gene expression in both normal and diseased states. This review examines the multiple etiologies and metabolic consequences of the failing heart and the central role of lipid storage dynamics in the pathogenic process. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Andrew N Carley
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | | |
Collapse
|
22
|
Goldenberg JR, Wang X, Lewandowski ED. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice. J Mol Cell Cardiol 2016; 94:1-9. [PMID: 26995156 DOI: 10.1016/j.yjmcc.2016.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. OBJECTIVE To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. METHODS AND RESULTS (13)C NMR of intact, beating mouse hearts, supplied (13)C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (p<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. CONCLUSIONS ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones.
Collapse
Affiliation(s)
- Joseph R Goldenberg
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Xuerong Wang
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA
| | - E Douglas Lewandowski
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|
23
|
Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B, Scholey JW. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 2016; 91:11-22. [DOI: 10.1016/j.yjmcc.2015.12.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/15/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
24
|
Drosatos K, Pollak NM, Pol CJ, Ntziachristos P, Willecke F, Valenti MC, Trent CM, Hu Y, Guo S, Aifantis I, Goldberg IJ. Cardiac Myocyte KLF5 Regulates Ppara Expression and Cardiac Function. Circ Res 2015; 118:241-53. [PMID: 26574507 DOI: 10.1161/circresaha.115.306383] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Fatty acid oxidation is transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)α and under normal conditions accounts for 70% of cardiac ATP content. Reduced Ppara expression during sepsis and heart failure leads to reduced fatty acid oxidation and myocardial energy deficiency. Many of the transcriptional regulators of Ppara are unknown. OBJECTIVE To determine the role of Krüppel-like factor 5 (KLF5) in transcriptional regulation of Ppara. METHODS AND RESULTS We discovered that KLF5 activates Ppara gene expression via direct promoter binding. This is blocked in hearts of septic mice by c-Jun, which binds an overlapping site on the Ppara promoter and reduces transcription. We generated cardiac myocyte-specific Klf5 knockout mice that showed reduced expression of cardiac Ppara and its downstream fatty acid metabolism-related targets. These changes were associated with reduced cardiac fatty acid oxidation, ATP levels, increased triglyceride accumulation, and cardiac dysfunction. Diabetic mice showed parallel changes in cardiac Klf5 and Ppara expression levels. CONCLUSIONS Cardiac myocyte KLF5 is a transcriptional regulator of Ppara and cardiac energetics.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.).
| | - Nina M Pollak
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Christine J Pol
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Panagiotis Ntziachristos
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Florian Willecke
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Mesele-Christina Valenti
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Chad M Trent
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Yunying Hu
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Shaodong Guo
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Iannis Aifantis
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Ira J Goldberg
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| |
Collapse
|
25
|
Thoonen R, Ernande L, Cheng J, Nagasaka Y, Yao V, Miranda-Bezerra A, Chen C, Chao W, Panagia M, Sosnovik DE, Puppala D, Armoundas AA, Hindle A, Bloch KD, Buys ES, Scherrer-Crosbie M. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy. J Mol Cell Cardiol 2015; 84:202-11. [PMID: 25968336 DOI: 10.1016/j.yjmcc.2015.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/18/2015] [Accepted: 05/01/2015] [Indexed: 11/25/2022]
Abstract
Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Ernande
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; DHU Ageing Thorax Vessels Blood, Inserm Unit 955 Team 08, Faculté de Medecine de Créteil, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Juan Cheng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yasuko Nagasaka
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia and Critical Pain, Massachusetts General Hospital, Boston, MA, USA
| | - Vincent Yao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Chan Chen
- Department of Anesthesia and Critical Pain, Massachusetts General Hospital, Boston, MA, USA
| | - Wei Chao
- Department of Anesthesia and Critical Pain, Massachusetts General Hospital, Boston, MA, USA
| | - Marcello Panagia
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - David E Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dheeraj Puppala
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Allyson Hindle
- Department of Anesthesia and Critical Pain, Massachusetts General Hospital, Boston, MA, USA
| | - Kenneth D Bloch
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia and Critical Pain, Massachusetts General Hospital, Boston, MA, USA
| | - Emmanuel S Buys
- Department of Anesthesia and Critical Pain, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|