1
|
Oommen S, Cantero Peral S, Qureshi MY, Holst KA, Burkhart HM, Hathcock MA, Kremers WK, Brandt EB, Larsen BT, Dearani JA, Edwards BS, Maleszewski JJ, Nelson TJ. Autologous Umbilical Cord Blood-Derived Mononuclear Cell Therapy Promotes Cardiac Proliferation and Adaptation in a Porcine Model of Right Ventricle Pressure Overload. Cell Transplant 2022; 31:9636897221120434. [PMID: 36086821 PMCID: PMC9465577 DOI: 10.1177/09636897221120434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital heart diseases, including single ventricle circulations, are clinically challenging due to chronic pressure overload and the inability of the myocardium to compensate for lifelong physiological demands. To determine the clinical relevance of autologous umbilical cord blood-derived mononuclear cells (UCB-MNCs) as a therapy to augment cardiac adaptation following surgical management of congenital heart disease, a validated model system of right ventricular pressure overload due to pulmonary artery banding (PAB) in juvenile pigs has been employed. PAB in a juvenile porcine model and intramyocardial delivery of UCB-MNCs was evaluated in three distinct 12-week studies utilizing serial cardiac imaging and end-of-study pathology evaluations. PAB reproducibly induced pressure overload leading to chronic right ventricular remodeling including significant myocardial fibrosis and elevation of heart failure biomarkers. High-dose UCB-MNCs (3 million/kg) delivered into the right ventricular myocardium did not cause any detectable safety issues in the context of arrhythmias or abnormal cardiac physiology. In addition, this high-dose treatment compared with placebo controls demonstrated that UCB-MNCs promoted a significant increase in Ki-67-positive cardiomyocytes coupled with an increase in the number of CD31+ endothelium. Furthermore, the incorporation of BrdU-labeled cells within the myocardium confirmed the biological potency of the high-dose UCB-MNC treatment. Finally, the cell-based treatment augmented the physiological adaptation compared with controls with a trend toward increased right ventricular mass within the 12 weeks of the follow-up period. Despite these adaptations, functional changes as measured by echocardiography and magnetic resonance imaging did not demonstrate differences between cohorts in this surgical model system. Therefore, this randomized, double-blinded, placebo-controlled pre-clinical trial establishes the safety of UCB-MNCs delivered via intramyocardial injections in a dysfunctional right ventricle and validates the induction of cardiac proliferation and angiogenesis as transient paracrine mechanisms that may be important to optimize long-term outcomes for surgically repaired congenital heart diseases.
Collapse
Affiliation(s)
- Saji Oommen
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Susana Cantero Peral
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kimberly A. Holst
- Department of Cardiovascular Surgery,
Mayo Clinic, Rochester, MN, USA
| | - Harold M. Burkhart
- Pediatric Cardiothoracic Surgery, The
University of Oklahoma, Oklahoma City, OK, USA
| | | | - Walter K. Kremers
- Biomedical Statistics and Informatics,
Mayo Clinic, Rochester, MN, USA
| | - Emma B. Brandt
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph A. Dearani
- Department of Cardiovascular Surgery,
Mayo Clinic, Rochester, MN, USA
| | | | | | - Timothy J. Nelson
- Division of Cardiovascular Diseases,
Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
2
|
Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, Ratner E, Dyikanov D, Menshikov M, Ovchinnikov A, Ageev F, Parfyonova Y. C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3536854. [PMID: 30046593 PMCID: PMC6036839 DOI: 10.1155/2018/3536854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 01/16/2023]
Abstract
The adult heart contains small populations of multipotent cardiac progenitor cells (CPC) that present a convenient and efficient resource for treatment of myocardial infarction. Several clinical studies of direct CPC delivery by injection have already been performed but showed low engraftment rate that limited beneficial effects of procedure. «Cell sheet» technology has been developed to facilitate longer retention of grafted cells and show new directions for cell-based therapy using this strategy. In this study we hypothesized that СPC-based cell sheet transplantation could improve regeneration after myocardial infarction. We demonstrated that c-kit+ CPC were able to form cell sheets on temperature-responsive surfaces. Cell sheet represented a well-organized structure, in which CPC survived, retained ability to proliferate, expressed progenitor cell marker Gata-4 formed connexin-43+ gap junctions, and were surrounded by significant amount of extracellular matrix proteins. Transplantation of cell sheets after myocardial infarction resulted in CPC engraftment as well as their proliferation, migration, and differentiation; cell sheets also stimulated neovascularization and cardiomyocyte proliferation in underlining myocardium and ameliorated left ventricular remodeling. Obtained data strongly supported potential use of CPC sheet transplantation for repair of damaged heart.
Collapse
Affiliation(s)
- K. Dergilev
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - Z. Tsokolaeva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - P. Makarevich
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Therapy, Institute of Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - I. Beloglazova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - E. Zubkova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M. Boldyreva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - E. Ratner
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - D. Dyikanov
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M. Menshikov
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - A. Ovchinnikov
- Consultative and Diagnostic Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - F. Ageev
- Consultative and Diagnostic Department, National Medical Research Center of Cardiology, Moscow, Russia
| | - Ye. Parfyonova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Dueñas A, Aranega AE, Franco D. More than Just a Simple Cardiac Envelope; Cellular Contributions of the Epicardium. Front Cell Dev Biol 2017; 5:44. [PMID: 28507986 PMCID: PMC5410615 DOI: 10.3389/fcell.2017.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
The adult pumping heart is formed by distinct tissue layers. From inside to outside, the heart is composed by an internal endothelial layer, dubbed the endocardium, a thick myocardial component which supports the pumping capacity of the heart and exteriorly covered by a thin mesothelial layer named the epicardium. Cardiac insults such as coronary artery obstruction lead to ischemia and thus to an irreversible damage of the myocardial layer, provoking in many cases heart failure and death. Thus, searching for new pathways to regenerate the myocardium is an urgent biomedical need. Interestingly, the capacity of heart regeneration is present in other species, ranging from fishes to neonatal mammals. In this context, several lines of evidences demonstrated a key regulatory role for the epicardial layer. In this manuscript, we provide a state-of-the-art review on the developmental process leading to the formation of the epicardium, the distinct pathways controlling epicardial precursor cell specification and determination and current evidences on the regenerative potential of the epicardium to heal the injured heart.
Collapse
Affiliation(s)
- Angel Dueñas
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Amelia E Aranega
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| |
Collapse
|