1
|
Zhu LN, Chen D, He C. Metabolomics comparison of metabolites and functional pathways in the SH-SY5Y cell model of Parkinson's disease under PEMF exposure. Heliyon 2024; 10:e26540. [PMID: 38404789 PMCID: PMC10884933 DOI: 10.1016/j.heliyon.2024.e26540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Objective PEMF is an emerging technique in the treatment of Parkinson's disease (PD) due to its potential improvement of movement speed. The aim of this study was to investigate the metabolic profiles of pulsed electromagnetic fields (PEMFs) in an SH-SY5Y cell model of PD. Methods The SH-SY5Y cell model of PD was induced by 1-methyl-4-phenylpyridinium (MPP+). Liquid chromatography mass spectrometry (LC‒MS)-based untargeted metabolomics was performed to examine changes in the PD cell model with or without PEMF exposure. We conducted KEGG pathway enrichment analysis to explore the potentially related pathways of the differentially expressed metabolites. Results A total of 275 metabolites were annotated, and 27 significantly different metabolites were found between the PEMF treatment and control groups (VIP >1, P < 0.05), mainly including 4 amino acids and peptides, 4 fatty acid esters, 2 glycerophosphoethanolamines, 2 ceramides and 2 monoradylglycerols; among them, 12 metabolites were upregulated, and 15 were downregulated. The increased expression levels of glutamine, adenosine monophosphate and taurine were highly associated with PEMF stimulation in the PD model. The enrichment results of differentially abundant metabolite functional pathways showed that biological processes such as the mTOR signaling pathway, PI3K-Akt signaling pathway, and cAMP signaling pathway were significantly affected. Conclusion PEMFs affected glutamine, adenosine monophosphate and taurine as well as their functional pathways in an in vitro model of PD. Further functional studies regarding the biological effect of these changes are required to evaluate the clinical efficacy and safety of PEMF treatment in PD.
Collapse
Affiliation(s)
- Li-na Zhu
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Deng Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
2
|
Rodriguez ML, Werner TR, Becker B, Eschenhagen T, Hirt MN. A magnetics-based approach for fine-tuning afterload in engineered heart tissues. ACS Biomater Sci Eng 2019; 5:3663-3675. [PMID: 31637285 DOI: 10.1021/acsbiomaterials.8b01568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Afterload plays important roles during heart development and disease progression, however, studying these effects in a laboratory setting is challenging. Current techniques lack the ability to precisely and reversibly alter afterload over time. Here, we describe a magnetics-based approach for achieving this control and present results from experiments in which this device was employed to sequentially increase afterload applied to rat engineered heart tissues (rEHTs) over a 7-day period. The contractile properties of rEHTs grown on control posts marginally increased over the observation period. The average post deflection, fractional shortening, and twitch velocities measured for afterload-affected tissues initially followed this same trend, but fell below control tissue values at high magnitudes of afterload. However, the average force, force production rate, and force relaxation rate for these rEHTs were consistently up to 3-fold higher than in control tissues. Transcript levels of hypertrophic or fibrotic markers and cell size remained unaffected by afterload, suggesting that the increased force output was not accompanied by pathological remodeling. Accordingly, the increased force output was fully reversed to control levels during a stepwise decrease in afterload over 4 hours. Afterload application did not affect systolic or diastolic tissue lengths, indicating that the afterload system was likely not a source of changes in preload strain. In summary, the afterload system developed herein is capable of fine-tuning EHT afterload while simultaneously allowing optical force measurements. Using this system, we found that small daily alterations in afterload can enhance the contractile properties of rEHTs, while larger increases can have temporary undesirable effects. Overall, these findings demonstrate the significant role that afterload plays in cardiac force regulation. Future studies with this system may allow for novel insights into the mechanisms that underlie afterload-induced adaptations in cardiac force development.
Collapse
Affiliation(s)
- Marita L Rodriguez
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Tessa R Werner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Benjamin Becker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Pi Y, Liang H, Yu Q, Yin Y, Xu H, Lei Y, Han Z, Tian J. Low‑frequency pulsed electromagnetic field inhibits RANKL‑induced osteoclastic differentiation in RAW264.7 cells by scavenging reactive oxygen species. Mol Med Rep 2019; 19:4129-4136. [PMID: 30942408 PMCID: PMC6470919 DOI: 10.3892/mmr.2019.10079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Bone homeostasis is a dynamic balance maintained by bone formation and resorption. An increase in the number and activity of osteoclasts leads to excessive bone resorption, which in turn results in bone disease, including osteoporosis. Therefore, inhibiting the differentiation and activity of osteoclasts is important for maintaining bone mass. Several studies have revealed that the use of a low-frequency pulsed electromagnetic field (PEMF) is an effective method to treat osteoporosis. However, its exact mechanism remains to be fully clarified. Therefore, the present study was designed to examine the effects that PEMF exerts on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and intracellular reactive oxygen species (ROS) production in RAW264.7 cells. The viability of cells was determined using a Cell Counting Kit-8 assay, and gene and protein expression were investigated via reverse transcription-quantitative polymerase chain reaction and western blot analyses. Furthermore, microscopy was performed to detect the levels of intracellular ROS and tartrate-resistant acid phosphatase (TRAP). Following the culture of RAW264.7 cells with RANKL (50 ng/ml) for 4 days (3 h/day) under PEMF (75 Hz, 1 mt) exposure, it was observed that PEMF had an inhibitory effect on RANKL-induced osteoclastic differentiation. Multinucleated osteoclast formation, the activity of TRAP and the expression of osteoclastogenesis-associated genes, including cathepsin K, nuclear factor of activated T cells cytoplasmic 1 and TRAP, were significantly reduced by PEMF. Furthermore, PEMF effectively decreased the generation of intracellular ROS during osteoclastic differentiation. In addition, the results demonstrated that ROS are the key factor in osteoclast differentiation and formation. Reducing intracellular ROS with diphenylene-iodonium chloride significantly inhibited RANKL-induced osteoclast differentiation. Taken together, the results of the present study demonstrated that PEMF may inhibit RANKL-induced osteoclastogenesis by scavenging intracellular ROS. These results may provide the groundwork for future PEMF clinical applications in osteoclast-associated bone disease.
Collapse
Affiliation(s)
- Ying Pi
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Haifeng Liang
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Yu
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yukun Yin
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Xu
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yutian Lei
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongyu Han
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
4
|
Marrella A, Iafisco M, Adamiano A, Rossi S, Aiello M, Barandalla-Sobrados M, Carullo P, Miragoli M, Tampieri A, Scaglione S, Catalucci D. A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases. J R Soc Interface 2018; 15:20180236. [PMID: 29997259 PMCID: PMC6073647 DOI: 10.1098/rsif.2018.0236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
Alternative drug delivery approaches to treat cardiovascular diseases are currently under intense investigation. In this domain, the possibility to target the heart and tailor the amount of drug dose by using a combination of magnetic nanoparticles (NPs) and electromagnetic devices is a fascinating approach. Here, an electromagnetic device based on Helmholtz coils was generated for the application of low-frequency magnetic stimulations to manage drug release from biocompatible superparamagnetic Fe-hydroxyapatite NPs (FeHAs). Integrated with a fluidic circuit mimicking the flow of the cardiovascular environment, the device was efficient to trigger the release of a model drug (ibuprofen) from FeHAs as a function of the applied frequencies. Furthermore, the biological effects on the cardiac system of the identified electromagnetic exposure were assessed in vitro and in vivo by acute stimulation of isolated adult cardiomyocytes and in an animal model. The cardio-compatibility of FeHAs was also assessed in vitro and in an animal model. No alterations of cardiac electrophysiological properties were observed in both cases, providing the evidence that the combination of low-frequency magnetic stimulations and FeHAs might represent a promising strategy for controlled drug delivery to the failing heart.
Collapse
Affiliation(s)
- Alessandra Marrella
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), via de Marini 6, 16149 Genoa, Italy
| | - Michele Iafisco
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Faenza, Italy
| | - Alessio Adamiano
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Faenza, Italy
| | - Stefano Rossi
- CERT, Center of Excellence for Toxicological Research, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maurizio Aiello
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), via de Marini 6, 16149 Genoa, Italy
| | - Maria Barandalla-Sobrados
- National Research Council (CNR), Institute of Genetic and Biomedical Research UOS Milan (IRGB), Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pierluigi Carullo
- National Research Council (CNR), Institute of Genetic and Biomedical Research UOS Milan (IRGB), Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Michele Miragoli
- CERT, Center of Excellence for Toxicological Research, Department of Medicine and Surgery, University of Parma, Parma, Italy
- National Research Council (CNR), Institute of Genetic and Biomedical Research UOS Milan (IRGB), Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Anna Tampieri
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Faenza, Italy
| | - Silvia Scaglione
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), via de Marini 6, 16149 Genoa, Italy
| | - Daniele Catalucci
- National Research Council (CNR), Institute of Genetic and Biomedical Research UOS Milan (IRGB), Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
5
|
Model of Murine Ventricular Cardiac Tissue for In Vitro Kinematic-Dynamic Studies of Electromagnetic and β-Adrenergic Stimulation. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:4204085. [PMID: 29065600 PMCID: PMC5591919 DOI: 10.1155/2017/4204085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022]
Abstract
In a model of murine ventricular cardiac tissue in vitro, we have studied the inotropic effects of electromagnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and their combination. In particular, we have performed an image processing analysis to evaluate the kinematics and the dynamics of beating cardiac syncytia starting from the video registration of their contraction movement. We have found that the electromagnetic stimulation is able to counteract the β-adrenergic effect of isoproterenol and to elicit an antihypertrophic response.
Collapse
|
6
|
Kolanowski TJ, Antos CL, Guan K. Making human cardiomyocytes up to date: Derivation, maturation state and perspectives. Int J Cardiol 2017; 241:379-386. [DOI: 10.1016/j.ijcard.2017.03.099] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022]
|
7
|
Takahashi M, Saito A, Jimbo Y, Nakasono S. Evaluation of the effects of power-frequency magnetic fields on the electrical activity of cardiomyocytes differentiated from human induced pluripotent stem cells. J Toxicol Sci 2017; 42:223-231. [PMID: 28321048 DOI: 10.2131/jts.42.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although cardiac activity is known to differ between species in many respects, most evaluations of the cardiac effects of low-frequency electric and magnetic fields, which have a stimulant effect on electrically activated cells, have been performed in non-human experimental animals and cells, and the effects in humans have been assessed using theoretical models. In recent years, it has been verified that human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CM) are useful for evaluating human responses to various cardioactive compounds. In this study, we applied hiPSCMs for the first time to evaluate the human cardiac effects of power-frequency magnetic fields (MFs). After preparation of hiPS-CMs, we subjected a hiPS-CM monolayer formed on a multi-electrode array to short-term exposure to a 50 Hz MF at 400 mT with recording of the extracellular field potentials. The field potential duration of the hiPS-CMs did not differ significantly pre- and post-exposure, indicating that under these conditions, exposure to a 50 Hz MF at 400 mT does not affect the electrical activity of hiPSCMs.
Collapse
Affiliation(s)
- Masayuki Takahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI)
| | | | | | | |
Collapse
|