1
|
Chen S, Wang Y, Gao Q, Cui J, Shen W. Bleomycin induces endothelial cell pyroptosis and regulates fibrosis by activating the NLRP3/caspase-1/GSDMD pathway: a possible mechanism contributing to the sclerotherapy of venous malformations. J Mol Histol 2024; 55:1239-1250. [PMID: 39343855 DOI: 10.1007/s10735-024-10264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Venous malformations (VMs) are slow-flow vascular anomalies that pose significant health challenges. Bleomycin (BLM) is frequently used in Sclerotherapy for VMs, but its mechanism, particularly through pyroptosis, remains poorly understood. This study explores the role of BLM-induced endothelial cell pyroptosis in VMs sclerotherapy and its regulatory effects on fibrosis via the NLRP3/caspase-1/GSDMD pathway. Using a combination of TUNEL staining, Western blotting, and immunohistochemistry, we investigated the effects of BLM on VMs and endothelial cells in vitro. Pyroptosis and fibrosis were quantified, and the involvement of the NLRP3/caspase-1/GSDMD pathway was assessed. BLM treatment significantly increased pyroptosis and fibrosis in VMs tissues and cultured endothelial cells. Activation of the NLRP3/caspase-1/GSDMD pathway was crucial for these effects, which could be mitigated by pathway inhibition. BLM regulates fibrosis and induces pyroptosis through the NLRP3/caspase-1/GSDMD pathway in VMs. Understanding this mechanism could enhance the effectiveness and safety of Sclerotherapy in clinical settings.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yuan Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Qingwen Gao
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Jie Cui
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Jia Q, Wang H, Wang Y, Xue W, Jiang Q, Wang J, Ning F, Zhu Z, Tian L. Investigation of the mechanism of silica-induced pulmonary fibrosis: The role of lung microbiota dysbiosis and the LPS/TLR4 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168948. [PMID: 38048996 DOI: 10.1016/j.scitotenv.2023.168948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
The widespread manufacture of silica and its extensive use, and potential release of silica into the environment pose a serious human health hazard. Silicosis, a severe global public health issue, is caused by exposure to silica, leading to persistent inflammation and fibrosis of the lungs. The underlying pathogenic mechanisms of silicosis remain elusive. Lung microbiota dysbiosis is associated with the development of inflammation and fibrosis. However, limited information is currently available regarding the role of lung microbiota in silicosis. The study therefore is designed to conduct a comprehensive analysis of the role of lung microbiota dysbiosis and establish a basis for future investigations into the potential mechanisms underlying silicosis. Here, the pathological and biochemical parameters were used to systematically assessed the degree of inflammation and fibrosis following silica exposure and treatment with combined antibiotics. The underlying mechanisms were studied via integrative multi-omics analyses of the transcriptome and microbiome. Analysis of 16S ribosomal DNA revealed dysbiosis of the microbial community in silicosis, characterized by a predominance of gram-negative bacteria. Exposure to silica has been shown to trigger lung inflammation and fibrosis, leading to an increased concentration of lipopolysaccharides in the bronchoalveolar lavage fluid. Furthermore, Toll-like receptor 4 was identified as a key molecule in the lung microbiota dysbiosis associated with silica-induced lung fibrosis. All of these outcomes can be partially controlled through combined antibiotic administration. The study findings demonstrate that the dysbiosis of lung microbiota enhances silica-induced fibrosis associated with the lipopolysaccharides/Toll-like receptor 4 pathway and provided a promising target for therapeutic intervention of silicosis.
Collapse
Affiliation(s)
- Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial cell SMAD6 balances Alk1 function to regulate adherens junctions and hepatic vascular development. Development 2023; 150:dev201811. [PMID: 37787089 PMCID: PMC10629679 DOI: 10.1242/dev.201811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BMP signaling is crucial to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here, we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo. At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. Mechanistically, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial cell junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a 'Goldilocks' pathway in vascular biology that requires a certain signaling amplitude, regulated by SMAD6, to function properly.
Collapse
Affiliation(s)
- Molly R. Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria L. Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Chan HY, Tran HM, Breen J, Schjenken JE, Robertson SA. The endometrial transcriptome transition preceding receptivity to embryo implantation in mice. BMC Genomics 2023; 24:590. [PMID: 37794337 PMCID: PMC10552439 DOI: 10.1186/s12864-023-09698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Receptivity of the uterus is essential for embryo implantation and progression of mammalian pregnancy. Acquisition of receptivity involves major molecular and cellular changes in the endometrial lining of the uterus from a non-receptive state at ovulation, to a receptive state several days later. The precise molecular mechanisms underlying this transition and their upstream regulators remain to be fully characterized. Here, we aimed to generate a comprehensive profile of the endometrial transcriptome in the peri-ovulatory and peri-implantation states, to define the genes and gene pathways that are different between these states, and to identify new candidate upstream regulators of this transition, in the mouse. RESULTS High throughput RNA-sequencing was utilized to identify genes and pathways expressed in the endometrium of female C57Bl/6 mice at estrus and on day 3.5 post-coitum (pc) after mating with BALB/c males (n = 3-4 biological replicates). Compared to the endometrium at estrus, 388 genes were considered differentially expressed in the endometrium on day 3.5 post-coitum. The transcriptional changes indicated substantial modulation of uterine immune and vascular systems during the pre-implantation phase, with the functional terms Angiogenesis, Chemotaxis, and Lymphangiogenesis predominating. Ingenuity Pathway Analysis software predicted the activation of several upstream regulators previously shown to be involved in the transition to receptivity including various cytokines, ovarian steroid hormones, prostaglandin E2, and vascular endothelial growth factor A. Our analysis also revealed four candidate upstream regulators that have not previously been implicated in the acquisition of uterine receptivity, with growth differentiation factor 2, lysine acetyltransferase 6 A, and N-6 adenine-specific DNA methyltransferase 1 predicted to be activated, and peptidylprolyl isomerase F predicted to be inhibited. CONCLUSIONS This study confirms that the transcriptome of a receptive uterus is vastly different to the non-receptive uterus and identifies several genes, regulatory pathways, and upstream drivers not previously associated with implantation. The findings will inform further research to investigate the molecular mechanisms of uterine receptivity.
Collapse
Affiliation(s)
- Hon Yeung Chan
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Ha M Tran
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - James Breen
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - John E Schjenken
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, NSW, 2305, Australia
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sarah A Robertson
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
5
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial Cell SMAD6 Balances ACVRL1/Alk1 Function to Regulate Adherens Junctions and Hepatic Vascular Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534007. [PMID: 36993438 PMCID: PMC10055411 DOI: 10.1101/2023.03.23.534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BMP signaling is critical to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1/ACVRL1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo . At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. At the mechanistic level, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a "Goldilocks" pathway in vascular biology regulated by SMAD6.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Victoria L Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
6
|
Zhang L, Shen Y, Wang Z, Li X, Xia W, Fan X, Su L, Wang D. Comprehensive analysis of exosomal circRNA, lncRNA, and mRNA profiles to identify the potential RNAs involved in the pathogenesis of venous malformation. J Oral Pathol Med 2023. [PMID: 36807323 DOI: 10.1111/jop.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Venous malformation (VM) is a kind of congenital vascular anomaly with a high incidence of recurrence, detailed pathogenesis and standard treatment of VM still lack now. Increasing evidence showed exosomal RNA plays a pivotal role in various diseases. However, the underlying mechanism of VM based on the potential differentially exosomal RNAs remains unclear. METHODS Comparative high-throughput sequencing with serum exosomes from three VM patients and three healthy donors was used to explore differentially expressed (DE) circRNAs, DE lncRNAs, and DE mRNAs involving the formation of VM. We identified and verified DE circRNAs, DE lncRNAs, and DE mRNAs via qRT-PCR assay. We explored the potential functions of these exosomal DE non-coding RNAs via performing further Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Besides, circRNA/lncRNA-miRNA-mRNA linkages were also constructed to find their potential relationships in VM. RESULTS A total of 121 circRNAs, 53 lncRNAs, and 42 mRNAs (|log2 FC| ≥ 2.0, FDR <0.05, n = 3) were determined to be differentially expressed. QRT-PCR validated that these top-changed DE circRNAs, lncRNAs, and mRNAs had significant expression changes. Functional studies demonstrated that DE circRNAs play a pivotal role in thyroid hormone signaling pathway, DE lncRNAs function as a key regulator in MAPK signaling pathway and DE miRNAs participate in the process of hepatocellular carcinoma mostly. CONCLUSION Our study comprehensively depicted exosomal DE non-coding RNAs networks related to the pathogenesis of VM which can provide new insight into, a novel target for treating VM.
Collapse
Affiliation(s)
- Liming Zhang
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Shen
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Wang
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xindong Fan
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixin Su
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Fengcheng Hospital of Feng Xian District, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deming Wang
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Eisa-Beygi S, Burrows PE, Link BA. Endothelial cilia dysfunction in pathogenesis of hereditary hemorrhagic telangiectasia. Front Cell Dev Biol 2022; 10:1037453. [PMID: 36438574 PMCID: PMC9686338 DOI: 10.3389/fcell.2022.1037453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 09/09/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is associated with defective capillary network, leading to dilated superficial vessels and arteriovenous malformations (AVMs) in which arteries connect directly to the veins. Loss or haploinsufficiency of components of TGF-β signaling, ALK1, ENG, SMAD4, and BMP9, have been implicated in the pathogenesis AVMs. Emerging evidence suggests that the inability of endothelial cells to detect, transduce and respond to blood flow, during early development, is an underpinning of AVM pathogenesis. Therefore, components of endothelial flow detection may be instrumental in potentiating TGF-β signaling in perfused blood vessels. Here, we argue that endothelial cilium, a microtubule-based and flow-sensitive organelle, serves as a signaling hub by coupling early flow detection with potentiation of the canonical TGF-β signaling in nascent endothelial cells. Emerging evidence from animal models suggest a role for primary cilia in mediating vascular development. We reason, on recent observations, that endothelial cilia are crucial for vascular development and that embryonic loss of endothelial cilia will curtail TGF-β signaling, leading to associated defects in arteriovenous development and impaired vascular stability. Loss or dysfunction of endothelial primary cilia may be implicated in the genesis of AVMs due, in part, to inhibition of ALK1/SMAD4 signaling. We speculate that AVMs constitute part of the increasing spectrum of ciliopathy-associated vascular defects.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Patricia E. Burrows
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Li Y, Yang J, Huang Y, Ge S, Song X, Jia R, Wang Y. Cellular heterogeneity and immune microenvironment revealed by single-cell transcriptome in venous malformation and cavernous venous malformation. J Mol Cell Cardiol 2021; 162:130-143. [PMID: 34536440 DOI: 10.1016/j.yjmcc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
Venous malformation (VM) and cavernous venous malformation (CVM) are two types of vascular malformations. Even if the two diseases are similar in appearance and imaging, the distinct cellular components and signaling pathways between them might help distinguish the two from a molecular perspective. Here, we performed single-cell profiling of 35,245 cells from two VM samples and three CVM samples, with a focus on endothelial cells (ECs), smooth muscle cells (SMCs) and immune microenvironment (IME). Clustering analysis based on differential gene expression unveiled 11 specific cell types, and determined CVM had more SMCs. Re-clustering of ECs and SMCs indicated CVM was dominated by arterial components, while VM is dominated by venous components. Gene set variation analysis suggested the activation of inflammation-related pathways in VM ECs, and upregulation of myogenesis pathway in CVM SMCs. In IME analysis, immune cells were identified to accounted for nearly 30% of the total cell number, including macrophages, monocytes, NK cells, T cells and B cells. Notably, more macrophages and monocytes were discovered in VM, indicating innate immune responses might be more closely related to VM pathogenesis. In addition, angiogenesis pathway was highlighted among the significant pathways of macrophages & monocytes between CVM and VM. In VM, VEGFA was highly expressed in macrophages & monocytes, while its receptors were all abundantly present in ECs. The close interaction of VEGFA on macrophages with its receptors on ECs was also predicted by CellPhoneDB analysis. Our results document cellular composition, significant pathways, and critical IME in CVM and VM development.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yazhuo Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yefei Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
9
|
Song X, Zhou H, Wang Y, Yang M, Fang S, Li Y, Li Y, Fan X. In Search of Excellence: From a Small Clinical Unit to an Internationally Recognized Center for Orbital Diseases Research and Surgery at the Department of Ophthalmology, Shanghai Ninth People's Hospital, China. Asia Pac J Ophthalmol (Phila) 2021; 10:432-436. [PMID: 34524142 DOI: 10.1097/apo.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT "Where there is a will, there is a way." It is never easy to make progress and development but with full dedication and firm commitment, many aspirations can still be realized. We would like to share with the readers the story of how we develop our division of orbital diseases and surgery from scratch to strengths over a period of 2 decades at the Department of Ophthalmology of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
Collapse
Affiliation(s)
- Xuefei Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yi Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Muyue Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
10
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
11
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
12
|
Inhibiting Endothelial Cell Function in Normal and Tumor Angiogenesis Using BMP Type I Receptor Macrocyclic Kinase Inhibitors. Cancers (Basel) 2021; 13:cancers13122951. [PMID: 34204675 PMCID: PMC8231556 DOI: 10.3390/cancers13122951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023] Open
Abstract
Angiogenesis, i.e., the formation of new blood vessels from pre-existing endothelial cell (EC)-lined vessels, is critical for tissue development and also contributes to neovascularization-related diseases, such as cancer. Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are among many secreted cytokines that regulate EC function. While several pharmacological anti-angiogenic agents have reached the clinic, further improvement is needed to increase clinical efficacy and to overcome acquired therapy resistance. More insights into the functional consequences of targeting specific pathways that modulate blood vessel formation may lead to new therapeutic approaches. Here, we synthesized and identified two macrocyclic small molecular compounds termed OD16 and OD29 that inhibit BMP type I receptor (BMPRI)-induced SMAD1/5 phosphorylation and downstream gene expression in ECs. Of note, OD16 and OD29 demonstrated higher specificity against BMPRI activin receptor-like kinase 1/2 (ALK1/2) than the commonly used small molecule BMPRI kinase inhibitor LDN-193189. OD29, but not OD16, also potently inhibited VEGF-induced extracellular regulated kinase MAP kinase phosphorylation in ECs. In vitro, OD16 and OD29 exerted strong inhibition of BMP9 and VEGF-induced ECs migration, invasion and cord formation. Using Tg (fli:EGFP) zebrafish embryos, we found that OD16 and OD29 potently antagonized dorsal longitudinal anastomotic vessel (DLAV), intra segmental vessel (ISV), and subintestinal vessel (SIV) formation during embryonic development. Moreover, the MDA-MB-231 breast cancer cell-induced tumor angiogenesis in zebrafish embryos was significantly decreased by OD16 and OD29. Both macrocyclic compounds might provide a steppingstone for the development of novel anti-angiogenesis therapeutic agents.
Collapse
|
13
|
Chai P, Yu J, Wang X, Ge S, Jia R. BMP9 promotes cutaneous wound healing by activating Smad1/5 signaling pathways and cytoskeleton remodeling. Clin Transl Med 2021; 11:e271. [PMID: 33463047 PMCID: PMC7809598 DOI: 10.1002/ctm2.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xi Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|