1
|
Wang L, Liu J, Tang J, Dang Y, Sun L, Liu B, Li H, He X, Shuai Q, Peng Z, Huang T, Sun Y, Feng Y, Xie J. Development of a quinic acid-induced CRISPR/Cas9 genome editing system and its application for the activation of ilicicolin H biosynthesis in Trichoderma reesei. Int J Biol Macromol 2024; 279:135339. [PMID: 39245126 DOI: 10.1016/j.ijbiomac.2024.135339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
The CRISPR/Cas9 genome editing tool has been extensively utilized in filamentous fungi, including Trichoderma reesei. However, most existing systems employ constitutive promoters for the expression of Cas9 protein within the cells or directly introduce Cas9 protein into the cells, which often leads to continuous expression of Cas9 resulting in undesired phenotypes or increased operational cost. In this study, we identified a quinic acid (QA)-induced qai5 promoter and employed it to express Cas9, thereby establishing an inducible genome editing system in T. reesei. By utilizing this system, we successfully edited the ypr1 gene and the silent gene cluster involved in ilicicolin H synthesis using donor DNA labeling 41-bp homology arm (HA), resulting in an editing efficiency ranging from 29.2 % to 46.7 %. Consequently, biosynthesis of ilicicolin H was achieved in T. reesei. To summarize, this study presents a novel form of CRISPR/Cas9 genome editing system that enables efficient and controllable genetic modifications in T. reesei.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, Shanxi, China.
| | - Jialong Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jiaxin Tang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yaqi Dang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Luyan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Haoyang Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiyue He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Qizhi Shuai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhiwei Peng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yaojun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
2
|
Gu S, Wu T, Zhao J, Sun T, Zhao Z, Zhang L, Li J, Tian C. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila. Microb Biotechnol 2024; 17:e14410. [PMID: 38298109 PMCID: PMC10884987 DOI: 10.1111/1751-7915.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Although a high titre of malic acid is achieved by filamentous fungi, by-product succinic acid accumulation leads to a low yield of malic acid and is unfavourable for downstream processing. Herein, we conducted a series of metabolic rewiring strategies in a previously constructed Myceliophthora thermophila to successfully improve malate production and abolish succinic acid accumulation. First, a pyruvate carboxylase CgPYC variant with increased activity was obtained using a high-throughput system and introduced to improve malic acid synthesis. Subsequently, shifting metabolic flux to malate synthesis from mitochondrial metabolism by deleing mitochondrial carriers of pyruvate and malate, led to a 53.7% reduction in succinic acid accumulation. The acceleration of importing cytosolic succinic acid into the mitochondria for consumption further decreased succinic acid formation by 53.3%, to 2.12 g/L. Finally, the importer of succinic acid was discovered and used to eliminate by-product accumulation. In total, malic acid production was increased by 26.5%, relative to the start strain JG424, to 85.23 g/L and 89.02 g/L on glucose and Avicel, respectively, in the flasks. In a 5-L fermenter, the titre of malic acid reached 182.7 g/L using glucose and 115.8 g/L using raw corncob, without any by-product accumulation. This study would accelerate the industrial production of biobased malic acid from renewable plant biomass.
Collapse
Affiliation(s)
- Shuying Gu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Taju Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
- School of Life Science, Bengbu Medical CollegeBengbuChina
| | - Junqi Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Tao Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Zhen Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Lu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Jingen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| |
Collapse
|
3
|
Naderi A, Vakilchap F, Motamedian E, Mousavi SM. Regulatory-systemic approach in Aspergillus niger for bioleaching improvement by controlling precipitation. Appl Microbiol Biotechnol 2023; 107:7331-7346. [PMID: 37736792 DOI: 10.1007/s00253-023-12776-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
In the context of e-waste recycling by fungal bioleaching, nickel and cobalt precipitate as toxic metals by oxalic acid, whereas organic acids, such as citric, act as a high-performance chelating agent in dissolving these metals. Oxalic acid elimination requires an excess and uneconomical carbon source concentration in culture media. To resolve this issue, a novel and straightforward systems metabolic engineering method was devised to switch metabolic flux from oxalic acid to citric acid. In this technique, the genome-scale metabolic model of Aspergillus niger was applied to predicting flux variability and key reactions through the calculation of multiple optimal solutions for cellular regulation. Accordingly, BRENDA regulators and a novel molecular docking-oriented approach were defined a regulatory medium for this end. Then, ligands were evaluated in fungal culture to assess their impact on organic acid production for bioleaching of copper and nickel from waste telecommunication printed circuit boards. The protein structure of oxaloacetate hydrolase was modeled based on homology modeling for molecular docking. Metformin, glutathione, and sodium fluoride were found to be effective as inhibitors of oxalic acid production, enabling the production of 8100 ppm citric acid by controlling cellular metabolism. Indirect bioleaching demonstrated that nickel did not precipitate, and the bioleaching efficiency of copper and nickel increased from 40% and 24% to 61% and 100%, respectively. Bioleaching efficiency was evaluated qualitatively by FE-SEM, EDX, mapping, and XRD analysis. KEY POINTS: • A regulatory-systemic procedure for controlling cellular metabolism was introduced • Metformin inhibited oxalic acid, leading to 8100 ppm citric acid production • Bioleaching of copper and nickel in TPCBs improved by 21% and 76.
Collapse
Affiliation(s)
- Ali Naderi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Farzane Vakilchap
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
- Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Liu J, Zhang S, Li W, Wang G, Xie Z, Cao W, Gao W, Liu H. Engineering a Phosphoketolase Pathway to Supplement Cytosolic Acetyl-CoA in Aspergillus niger Enables a Significant Increase in Citric Acid Production. J Fungi (Basel) 2023; 9:jof9050504. [PMID: 37233215 DOI: 10.3390/jof9050504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Citric acid is widely used in the food, chemical and pharmaceutical industries. Aspergillus niger is the workhorse used for citric acid production in industry. A canonical citrate biosynthesis that occurred in mitochondria was well established; however, some research suggested that the cytosolic citrate biosynthesis pathway may play a role in this chemical production. Here, the roles of cytosolic phosphoketolase (PK), acetate kinase (ACK) and acetyl-CoA synthetase (ACS) in citrate biosynthesis were investigated by gene deletion and complementation in A. niger. The results indicated that PK, ACK and ACS were important for cytosolic acetyl-CoA accumulation and had significant effects on citric acid biosynthesis. Subsequently, the functions of variant PKs and phosphotransacetylase (PTA) were evaluated, and their efficiencies were determined. Finally, an efficient PK-PTA pathway was reconstructed in A. niger S469 with Ca-PK from Clostridium acetobutylicum and Ts-PTA from Thermoanaerobacterium saccharolyticum. The resultant strain showed an increase of 96.4% and 88% in the citrate titer and yield, respectively, compared with the parent strain in the bioreactor fermentation. These findings indicate that the cytosolic citrate biosynthesis pathway is important for citric acid biosynthesis, and increasing the cytosolic acetyl-CoA level can significantly enhance citric acid production.
Collapse
Affiliation(s)
- Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shanshan Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenhao Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guanyi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin 300457, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
6
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
7
|
Abstract
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, but most of them also represent natural metabolites produced by many cells. They are the products, by-products or co-products of many primary metabolic processes of microbial cells. Thanks to the potential of microbial cell factories and to the development of industrial biotechnology, from the last decades of the previous century, the microbial-based production of these molecules has started to approach the market. This was possible because of a joint effort of microbial biotechnologists and biochemical and process engineers that boosted natural production up to the titer, yield and productivity needed to be industrially competitive. More recently, the possibility to utilize renewable residual biomasses as feedstock not only for biofuels, but also for organic acids production is further augmenting the sustainability of their production, in a logic of circular bioeconomy. In this review, we briefly present the latest updates regarding the production of some industrially relevant organic acids (citric fumaric, itaconic, lactic and succinic acid), discussing the challenges and possible future developments of successful production.
Collapse
|
8
|
Behera BC, Mishra R, Mohapatra S. Microbial citric acid: Production, properties, application, and future perspectives. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Bikash Chandra Behera
- School of Biological Sciences National Institute of Science Education and Research Bhubaneswar India
| | | | - Sonali Mohapatra
- Department of Biotechnology College of Engineering & Technology Bhubaneswar India
| |
Collapse
|
9
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang L, Henriksen MM, Hansen RS, Lübeck M, Vang J, Andersen JE, Bille S, Lübeck PS. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:206. [PMID: 33317620 PMCID: PMC7737382 DOI: 10.1186/s13068-020-01850-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. RESULTS With a ribonucleoprotein (RNP)-based CRISPR-Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. CONCLUSIONS In this study, we have successfully applied the RNP-based CRISPR-Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark.
| | - Mikkel Møller Henriksen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Rasmus Syrach Hansen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Jesper Vang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
- Disease Data Intelligence, Department of Health Technology Bioinformatics, Technical University of Denmark, Bldg. 208, 2800, KemitorvetKgs. Lyngby, Denmark
| | - Julie Egelund Andersen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Signe Bille
- Section of Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| |
Collapse
|
11
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
12
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
13
|
Abstract
Microbial citric acid has high economic importance and widely used in beverage, food, detergents, cosmetics and pharmaceutical industries. The filamentous fungus Aspergillus niger is a work horse and important cell factory in industry for the production of citric acid. Although in-depth literatures and reviews have been published to explain the biochemistry, biotechnology and genetic engineering study of citric acid production by Aspergillus niger separately but the present review compiled, all the aspects with upto date brief summary of the subject describing microorganisms, substrates and their pre-treatment, screening, fermentation techniques, metabolic engineering, biochemistry, product recovery and numerous biotechnological application of citric acid for simple understanding of microbial citric acid production. The availability of genome sequence of this organism has facilitated numerous studies in gene function, gene regulation, primary and secondary metabolism. An attempt has been also made to address the molecular mechanisms and application of recent advanced techniques such as CRISPR/Cas9 systems in enhancement of citric acid production.
Collapse
Affiliation(s)
- Bikash Chandra Behera
- School of Biological sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Cao W, Yan L, Li M, Liu X, Xu Y, Xie Z, Liu H. Identification and engineering a C4-dicarboxylate transporter for improvement of malic acid production in Aspergillus niger. Appl Microbiol Biotechnol 2020; 104:9773-9783. [DOI: 10.1007/s00253-020-10932-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
15
|
Yang L, Linde T, Hossain AH, Lübeck M, Punt PJ, Lübeck PS. Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production. BMC Biotechnol 2019; 19:72. [PMID: 31684928 PMCID: PMC6829807 DOI: 10.1186/s12896-019-0572-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. RESULTS In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. CONCLUSION A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Tore Linde
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.,Present address: AGC Biologics, Vandtaarnsvej 83B, DK-2860, Soeborg, Copenhagen, Denmark
| | - Abeer H Hossain
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Mette Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Peter J Punt
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Peter S Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.
| |
Collapse
|
16
|
Davy AM, Kildegaard HF, Andersen MR. Cell Factory Engineering. Cell Syst 2019; 4:262-275. [PMID: 28334575 DOI: 10.1016/j.cels.2017.02.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories.
Collapse
Affiliation(s)
- Anne Mathilde Davy
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Tong Z, Zheng X, Tong Y, Shi YC, Sun J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact 2019; 18:28. [PMID: 30717739 PMCID: PMC6362574 DOI: 10.1186/s12934-019-1064-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 11/11/2022] Open
Abstract
Citric acid is the world’s largest consumed organic acid and is widely used in beverage, food and pharmaceutical industries. Aspergillus niger is the main industrial workhorse for citric acid production. Since the release of the genome sequence, extensive multi-omic data are being rapidly obtained, which greatly boost our understanding of the citric acid accumulation mechanism in A. niger to a molecular and system level. Most recently, the rapid development of CRISPR/Cas9 system facilitates highly efficient genome-scale genetic perturbation in A. niger. In this review, we summarize the impact of systems biology on the citric acid molecular regulatory mechanisms, the advances in metabolic engineering strategies for enhancing citric acid production and discuss the development and application of CRISPR/Cas9 systems for genome editing in A. niger. We believe that future systems metabolic engineering efforts will redesign and engineer A. niger as a highly optimized cell factory for industrial citric acid production.
Collapse
Affiliation(s)
- Zhenyu Tong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yi Tong
- COFCO Biochemical (Anhui) Co. Ltd, Bengbu, 233000, People's Republic of China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
18
|
Hou L, Liu L, Zhang H, Zhang L, Zhang L, Zhang J, Gao Q, Wang D. Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Appl Microbiol Biotechnol 2018; 102:7981-7995. [DOI: 10.1007/s00253-018-9197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
19
|
Gu S, Li J, Chen B, Sun T, Liu Q, Xiao D, Tian C. Metabolic engineering of the thermophilic filamentous fungus Myceliophthora thermophila to produce fumaric acid. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:323. [PMID: 30534201 PMCID: PMC6278111 DOI: 10.1186/s13068-018-1319-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/22/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Fumaric acid is widely used in food and pharmaceutical industries and is recognized as a versatile industrial chemical feedstock. Increasing concerns about energy and environmental problems have resulted in a focus on fumaric acid production by microbial fermentation via bioconversion of renewable feedstocks. Filamentous fungi are the predominant microorganisms used to produce organic acids, including fumaric acid, and most studies to date have focused on Rhizopus species. Thermophilic filamentous fungi have many advantages for the production of compounds by industrial fermentation. However, no previous studies have focused on fumaric acid production by thermophilic fungi. RESULTS We explored the feasibility of producing fumarate by metabolically engineering Myceliophthora thermophila using the CRISPR/Cas9 system. Screening of fumarases suggested that the fumarase from Candida krusei was the most suitable for efficient production of fumaric acid in M. thermophila. Introducing the C. krusei fumarase into M. thermophila increased the titer of fumaric acid by threefold. To further increase fumarate production, the intracellular fumarate digestion pathway was disrupted. After deletion of the two fumarate reductase and the mitochondrial fumarase genes of M. thermophila, the resulting strain exhibited a 2.33-fold increase in fumarate titer. Increasing the pool size of malate, the precursor of fumaric acid, significantly increased the final fumaric acid titer. Finally, disruption of the malate-aspartate shuttle increased the intracellular malate content by 2.16-fold and extracellular fumaric acid titer by 42%, compared with that of the parental strain. The strategic metabolic engineering of multiple genes resulted in a final strain that could produce up to 17 g/L fumaric acid from glucose in a fed-batch fermentation process. CONCLUSIONS This is the first metabolic engineering study on the production of fumaric acid by the thermophilic filamentous fungus M. thermophila. This cellulolytic fungal platform provides a promising method for the sustainable and efficient-cost production of fumaric acid from lignocellulose-derived carbon sources in the future.
Collapse
Affiliation(s)
- Shuying Gu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Bingchen Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
20
|
Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. BIORESOURCE TECHNOLOGY 2017; 239:412-421. [PMID: 28538198 DOI: 10.1016/j.biortech.2017.04.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Odoni DI, Tamayo-Ramos JA, Sloothaak J, van Heck RGA, Martins Dos Santos VAP, de Graaff LH, Suarez-Diez M, Schaap PJ. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ 2017; 5:e3133. [PMID: 28382234 PMCID: PMC5376114 DOI: 10.7717/peerj.3133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Juan A Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jasper Sloothaak
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmBH, Berlin, Germany
| | - Leo H de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
22
|
Overexpression of a C 4-dicarboxylate transporter is the key for rerouting citric acid to C 4-dicarboxylic acid production in Aspergillus carbonarius. Microb Cell Fact 2017; 16:43. [PMID: 28288640 PMCID: PMC5348913 DOI: 10.1186/s12934-017-0660-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background C4-dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C4-dicarboxylic acids have been with limited success. Results In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C4-dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C4-dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C4-dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. Conclusions This study demonstrates that the key to change the citric acid production into production of C4-dicarboxylic acids in A. carbonarius is the C4-dicarboxylate transporter. Furthermore it shows that the C4-dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C4-dicarboxylic acid production.
Collapse
|
23
|
P gas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger. Appl Environ Microbiol 2017; 83:AEM.03222-16. [PMID: 28087530 DOI: 10.1128/aem.03222-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/30/2016] [Indexed: 11/20/2022] Open
Abstract
The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, Pgas, which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger, an excellent platform for the production of organic acids, and we found that the promoter Pgas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein (sGFP) was successfully expressed by Pgas at pH 2.0, verifying the results of the transcriptional analysis. Next, Pgas was used to express the cis-aconitate decarboxylase (cad) gene of Aspergillus terreus in A. niger, allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that Pgas strength was independent of acid type and acid ion concentration, showing dependence on pH only.IMPORTANCE The promoter Pgas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering.
Collapse
|
24
|
Alekseev KV, Dubina MV, Komov VP. Molecular-genetic and biochemical characteristics of citrate synthase from the citric-acid producing fungus Aspergillus niger. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816090027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Enhancement of succinate yield by manipulating NADH/NAD + ratio and ATP generation. Appl Microbiol Biotechnol 2017; 101:3153-3161. [PMID: 28108762 DOI: 10.1007/s00253-017-8127-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD+ ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD+ ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD+ ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD+ ratio and ATP level is an efficient strategy for succinate production.
Collapse
|
26
|
Yang L, Lübeck M, Lübeck PS. Aspergillus as a versatile cell factory for organic acid production. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Upton DJ, McQueen-Mason SJ, Wood AJ. An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:258. [PMID: 29151887 PMCID: PMC5679502 DOI: 10.1186/s13068-017-0950-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/01/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. Traditional strain development of this organism was achieved through random mutagenesis, but advances in genomics have enabled the development of genome-scale metabolic modelling that can be used to make predictive improvements in fermentation performance. The parent citric acid-producing strain of A. niger, ATCC 1015, has been described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we report the development of a novel double optimisation modelling approach that generates time-dependent citric acid fermentation using dynamic flux balance analysis. RESULTS The output from this model shows a good match with empirical fermentation data. Our studies suggest that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate. CONCLUSIONS The calibrated time-course model reflects observed metabolic events and generates reliable in silico data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our approach can be used as a powerful tool for predictive metabolic engineering.
Collapse
Affiliation(s)
- Daniel J. Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | | | - A. Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
28
|
Kirimura K, Kobayashi K, Ueda Y, Hattori T. Phenotypes of gene disruptants in relation to a putative mitochondrial malate–citrate shuttle protein in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 2016; 80:1737-46. [DOI: 10.1080/09168451.2016.1164583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The mitochondrial citrate transport protein (CTP) functions as a malate–citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.
Collapse
Affiliation(s)
- Kohtaro Kirimura
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Keiichi Kobayashi
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Yuka Ueda
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Takasumi Hattori
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| |
Collapse
|
29
|
Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab Eng 2016; 35:95-104. [DOI: 10.1016/j.ymben.2016.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 01/05/2023]
|
30
|
Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 2016; 39:1289-96. [PMID: 27100721 DOI: 10.1007/s00449-016-1607-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L(-1), CA concentration formed by the transformant PG86 was 34.02 g L(-1), leading to a CA yield of 0.57 g g(-1) of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L(-1), the yield was 0.89 g g(-1) of glucose, the productivity was 0.42 g L(-1) h(-1) and only 5.93 g L(-1) reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.
Collapse
|
31
|
Panda SK, Mishra SS, Kayitesi E, Ray RC. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. ENVIRONMENTAL RESEARCH 2016; 146:161-172. [PMID: 26761593 DOI: 10.1016/j.envres.2015.12.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed.
Collapse
Affiliation(s)
- Sandeep K Panda
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, Johannesburg, South Africa.
| | - Swati S Mishra
- Department of Biodiversity and Conservation of Natural Resources, Central University of Orissa, Koraput 764020, India
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - Ramesh C Ray
- ICAR-Regional Center of Central Tuber Crops Research Institute, Bhubaneswar 751019, India
| |
Collapse
|
32
|
Wang B, Chen J, Li H, Sun F, Li Y, Shi G. Efficient production of citric acid in segmented fermentation using Aspergillus niger based on recycling of a pellet-dispersion strategy. RSC Adv 2016. [DOI: 10.1039/c6ra13648f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Segmentation recycling fermentation based on a pellet-dispersion strategy to reconstruct the traditional citric acid batch fermentation process is reported.
Collapse
Affiliation(s)
- Baoshi Wang
- National Engineering Laboratory for Cereal Fermentation Technology
- Wuxi 214122
- PR China
- School of Biotechology
- Jiangnan University
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology
- Wuxi 214122
- PR China
| | - Hua Li
- National Engineering Laboratory for Cereal Fermentation Technology
- Wuxi 214122
- PR China
| | - Fuxin Sun
- Jiangsu Guoxin Union Energy Co., Ltd
- Wuxi 214203
- PR China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology
- Wuxi 214122
- PR China
- School of Biotechology
- Jiangnan University
| | - Guiyang Shi
- National Engineering Laboratory for Cereal Fermentation Technology
- Wuxi 214122
- PR China
- School of Biotechology
- Jiangnan University
| |
Collapse
|
33
|
Yin X, Li J, Shin HD, Du G, Liu L, Chen J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol Adv 2015; 33:830-41. [DOI: 10.1016/j.biotechadv.2015.04.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/15/2023]
|
34
|
Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. Appl Microbiol Biotechnol 2015; 100:1799-1809. [PMID: 26521243 DOI: 10.1007/s00253-015-7086-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus.
Collapse
|
35
|
Alekseev KV, Dubina MV, Komov VP. Metabolic characteristics of citric acid synthesis by the fungus Aspergillus niger. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815090021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Yang L, Lübeck M, Lübeck PS. Effects of heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase on organic acid production in Aspergillus carbonarius. J Ind Microbiol Biotechnol 2015; 42:1533-45. [PMID: 26403577 PMCID: PMC4607725 DOI: 10.1007/s10295-015-1688-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
Abstract
Aspergillus carbonarius has a potential as a cell factory for production of various organic acids. In this study, the organic acid profile of A. carbonarius was investigated under different cultivation conditions. Moreover, two heterologous genes, pepck and ppc, which encode phosphoenolpyruvate carboxykinase in Actinobacillus succinogenes and phosphoenolpyruvate carboxylase in Escherichia coli, were inserted individually and in combination in A. carbonarius to enhance the carbon flux toward the reductive TCA branch. Results of transcription analysis and measurement of enzyme activities of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase in the corresponding single and double transformants demonstrated that the two heterologous genes were successfully expressed in A. carbonarius. The production of citric acid increased in all the transformants in both glucose- and xylose-based media at pH higher than 3 but did not increase in the pH non-buffered cultivation compared with the wild type.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark.
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark.
| | - Peter S Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark.
| |
Collapse
|
37
|
|
38
|
Yang L, Lübeck M, Lübeck PS. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius. AMB Express 2014; 4:54. [PMID: 25401063 PMCID: PMC4230901 DOI: 10.1186/s13568-014-0054-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/02/2022] Open
Abstract
Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.
Collapse
|
39
|
Linde T, Hansen N, Lübeck M, Lübeck P. Fermentation in 24-well plates is an efficient screening platform for filamentous fungi. Lett Appl Microbiol 2014; 59:224-30. [DOI: 10.1111/lam.12268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 11/26/2022]
Affiliation(s)
- T. Linde
- Section for Sustainable Biotechnology; Aalborg University; Copenhagen SV Denmark
| | - N.B. Hansen
- Section for Sustainable Biotechnology; Aalborg University; Copenhagen SV Denmark
| | - M. Lübeck
- Section for Sustainable Biotechnology; Aalborg University; Copenhagen SV Denmark
| | - P.S. Lübeck
- Section for Sustainable Biotechnology; Aalborg University; Copenhagen SV Denmark
| |
Collapse
|
40
|
Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol 2014; 98:3517-27. [DOI: 10.1007/s00253-013-5465-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/11/2023]
|
41
|
|
42
|
Workman M, Andersen MR, Thykaer J. Integrated Approaches for Assessment of Cellular Performance in Industrially Relevant Filamentous Fungi. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mhairi Workman
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Mikael R. Andersen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Jette Thykaer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
43
|
Hansen NB, Lübeck M, Lübeck PS. Advancing USER cloning into simpleUSER and nicking cloning. J Microbiol Methods 2013; 96:42-9. [PMID: 24184309 DOI: 10.1016/j.mimet.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/15/2022]
Abstract
The two novel methods for DNA cloning presented here have been developed for the rapid construction of vectors used for insertion of genes in filamentous fungi. The current study shows that both simpleUSER cloning and nicking cloning can substitute USER cloning for insertion of single PCR fragments into plasmids. The simpleUSER cloning method proposed in this paper varies from USER cloning by substituting the dual enzymatic plasmid preparation step with a single enzymatic step. The other method further abolishes the use of USER™ enzyme mix and PfuTurbo Cx polymerase, and is referred to as nicking cloning. We show that both simpleUSER cloning and nicking cloning can substitute USER cloning for insertion of single PCR fragments into plasmids, and that the combination of these two methods works efficiently for the construction of selective plasmids and plasmids for co-transformation. This strategy was applied to genetically modify the filamentous fungus Aspergillus carbonarius. The two methods simplify DNA cloning by reducing time and complexity associated with cloning in filamentous fungi.
Collapse
Affiliation(s)
- Niels Bjørn Hansen
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, Copenhagen, SV DK-2450, Denmark.
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, Copenhagen, SV DK-2450, Denmark.
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, Copenhagen, SV DK-2450, Denmark.
| |
Collapse
|
44
|
Blumhoff ML, Steiger MG, Mattanovich D, Sauer M. Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 2013; 19:26-32. [DOI: 10.1016/j.ymben.2013.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/10/2013] [Accepted: 05/22/2013] [Indexed: 11/27/2022]
|
45
|
Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 2013; 97:8903-12. [DOI: 10.1007/s00253-013-5132-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/25/2023]
|
46
|
Liu XY, Chi Z, Liu GL, Madzak C, Chi ZM. Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:26-36. [PMID: 22562483 DOI: 10.1007/s10126-012-9452-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
In this study, some of the ATP-citrate lyase genes (ACL1) were deleted and the copy number of the iso-citrate lyase gene (ICL1) was increased in the marine-derived yeast Yarrowia lipolytica SWJ-1b displaying the recombinant inulinase. It was found that lipid content and iso-citric acid in the transformant 30 obtained were greatly reduced and citric acid production was greatly enhanced. It was also found that the ACL1 gene expression and ATP-citrate lyase activity in the transformant 30 were declined and the ICL1 gene expression and iso-citrate lyase activity were promoted. During the 2-l fermentation, 84.0 g/l of citric acid and 1.8 g/l of iso-citric acid in the fermented medium were attained from 10.0 % of inulin by the transformant 30 within 214 h. The results showed that only 0.36 % of the residual reducing sugar and 1.0 % of the residual total sugar were left in the fermented medium, suggesting that 89.6 % of the total sugar was used for citric acid production and cell growth by the transformant 30.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Unesco Chinese Center of Marine Biotechnology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | | | | | | | | |
Collapse
|
47
|
Overproduction of Polygalacturonase by Penicillium griseoroseum Recombinant Strains and Functional Analysis by Targeted Disruption of the pgg2 Gene. Appl Biochem Biotechnol 2013; 169:1965-77. [DOI: 10.1007/s12010-013-0121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
48
|
Abstract
Biochemical systems theory (BST) is the foundation for a set of analytical andmodeling tools that facilitate the analysis of dynamic biological systems. This paper depicts major developments in BST up to the current state of the art in 2012. It discusses its rationale, describes the typical strategies and methods of designing, diagnosing, analyzing, and utilizing BST models, and reviews areas of application. The paper is intended as a guide for investigators entering the fascinating field of biological systems analysis and as a resource for practitioners and experts.
Collapse
|
49
|
Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger. PLoS One 2012; 7:e50596. [PMID: 23251373 PMCID: PMC3520943 DOI: 10.1371/journal.pone.0050596] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/25/2012] [Indexed: 01/17/2023] Open
Abstract
Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis.
Collapse
|
50
|
Li A, Pfelzer N, Zuijderwijk R, Punt P. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 2012; 12:57. [PMID: 22925689 PMCID: PMC3472327 DOI: 10.1186/1472-6750-12-57] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 08/20/2012] [Indexed: 11/15/2022] Open
Abstract
Background Aspergillus niger was selected as a host for producing itaconic acid due to its versatile and tolerant character in various growth environments, and its extremely high capacity of accumulating the precursor of itaconic acid: citric acid. Expressing the CAD gene from Aspergillus terreus opened the metabolic pathway towards itaconic acid in A. niger. In order to increase the production level, we continued by modifying its genome and optimizing cultivation media. Results Based on the results of previous transcriptomics studies and research from other groups, two genes : gpdA encoding the glyceraldehyde −3-dehydrogenase (GPD) and hbd1 encoding a flavohemoglobin domain (HBD) were overexpressed in A. niger. Besides, new media were designed based on a reference medium for A. terreus. To analyze large numbers of cultures, we developed an approach for screening both fungal transformants and various media in 96-well micro-titer plates. The hbd1 transformants (HBD 2.2/2.5) did not improve itaconic acid titer while the gpdA transformant (GPD 4.3) decreased the itaconic acid production. Using 20 different media, copper was discovered to have a positive influence on itaconic acid production. Effects observed in the micro-titer plate screening were confirmed in controlled batch fermentation. Conclusions The performance of gpdA and hbd1 transformants was found not to be beneficial for itaconic acid production using the tested cultivation conditions. Medium optimization showed that, copper was positively correlated with improved itaconic acid production. Interestingly, the optimal conditions for itaconic acid clearly differ from conditions optimal for citric- and oxalic acid production.
Collapse
Affiliation(s)
- An Li
- TNO Microbiology and Systems biology, PO Box 360, 3700 AJ Zeist, The Netherlands.
| | | | | | | |
Collapse
|