1
|
Sah-Teli SK, Pinkas M, Hynönen MJ, Butcher SJ, Wierenga RK, Novacek J, Venkatesan R. Structural basis for different membrane-binding properties of E. coli anaerobic and human mitochondrial β-oxidation trifunctional enzymes. Structure 2023; 31:812-825.e6. [PMID: 37192613 DOI: 10.1016/j.str.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Facultative anaerobic bacteria such as Escherichia coli have two α2β2 heterotetrameric trifunctional enzymes (TFE), catalyzing the last three steps of the β-oxidation cycle: soluble aerobic TFE (EcTFE) and membrane-associated anaerobic TFE (anEcTFE), closely related to the human mitochondrial TFE (HsTFE). The cryo-EM structure of anEcTFE and crystal structures of anEcTFE-α show that the overall assembly of anEcTFE and HsTFE is similar. However, their membrane-binding properties differ considerably. The shorter A5-H7 and H8 regions of anEcTFE-α result in weaker α-β as well as α-membrane interactions, respectively. The protruding H-H region of anEcTFE-β is therefore more critical for membrane-association. Mutational studies also show that this region is important for the stability of the anEcTFE-β dimer and anEcTFE heterotetramer. The fatty acyl tail binding tunnel of the anEcTFE-α hydratase domain, as in HsTFE-α, is wider than in EcTFE-α, accommodating longer fatty acyl tails, in good agreement with their respective substrate specificities.
Collapse
Affiliation(s)
- Shiv K Sah-Teli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Matyas Pinkas
- CEITEC Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Mikko J Hynönen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Sarah J Butcher
- Molecular & Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences & Helsinki Institute of Life Science-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Jiri Novacek
- CEITEC Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.
| |
Collapse
|
2
|
Butler ND, Anderson SR, Dickey RM, Nain P, Kunjapur AM. Combinatorial gene inactivation of aldehyde dehydrogenases mitigates aldehyde oxidation catalyzed by E. coli resting cells. Metab Eng 2023; 77:294-305. [PMID: 37100193 DOI: 10.1016/j.ymben.2023.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Aldehydes are attractive chemical targets both as end products in the flavors and fragrances industry and as intermediates due to their propensity for C-C bond formation. Here, we identify and address unexpected oxidation of a model collection of aromatic aldehydes, including many that originate from biomass degradation. When diverse aldehydes are supplemented to E. coli cells grown under aerobic conditions, as expected they are either reduced by the wild-type MG1655 strain or stabilized by a strain engineered for reduced aromatic aldehyde reduction (the E. coli RARE strain). Surprisingly, when these same aldehydes are supplemented to resting cell preparations of either E. coli strain, under many conditions we observe substantial oxidation. By performing combinatorial inactivation of six candidate aldehyde dehydrogenase genes in the E. coli genome using multiplexed automatable genome engineering (MAGE), we demonstrate that this oxidation can be substantially slowed, with greater than 50% retention of 6 out of 8 aldehydes when assayed 4 h after their addition. Given that our newly engineered strain exhibits reduced oxidation and reduction of aromatic aldehydes, we dubbed it the E. coli ROAR strain. We applied the new strain to resting cell biocatalysis for two kinds of reactions - the reduction of 2-furoic acid to furfural and the condensation of 3-hydroxy-benzaldehyde and glycine to form a beta hydroxylated non-standard amino acid. In each case, we observed substantial improvements in product titer 20 h after reaction initiation (9-fold and 10-fold, respectively). Moving forward, the use of this strain to generate resting cells should allow aldehyde product isolation, further enzymatic conversion, or chemical reactivity under cellular contexts that better accommodate aldehyde toxicity.
Collapse
Affiliation(s)
- Neil D Butler
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Shelby R Anderson
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Priyanka Nain
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA.
| |
Collapse
|
3
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Kim GB, Choi SY, Cho IJ, Ahn DH, Lee SY. Metabolic engineering for sustainability and health. Trends Biotechnol 2023; 41:425-451. [PMID: 36635195 DOI: 10.1016/j.tibtech.2022.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Bio-based production of chemicals and materials has attracted much attention due to the urgent need to establish sustainability and enhance human health. Metabolic engineering (ME) allows purposeful modification of cellular metabolic, regulatory, and signaling networks to achieve enhanced production of desired chemicals and degradation of environmentally harmful chemicals. ME has significantly progressed over the past 30 years through further integration of the strategies of synthetic biology, systems biology, evolutionary engineering, and data science aided by artificial intelligence. Here we review the field of ME from its emergence to the current state-of-the-art, highlighting its contribution to sustainable production of chemicals, health, and the environment through representative examples. Future challenges of ME and perspectives are also discussed.
Collapse
Affiliation(s)
- Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Da-Hee Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Valencia LE, Incha MR, Schmidt M, Pearson AN, Thompson MG, Roberts JB, Mehling M, Yin K, Sun N, Oka A, Shih PM, Blank LM, Gladden J, Keasling JD. Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production. Commun Biol 2022; 5:1363. [PMID: 36509863 PMCID: PMC9744835 DOI: 10.1038/s42003-022-04336-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum hydrolysate at titers greater than 300 mg/L. This work paves the road to produce high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host.
Collapse
Affiliation(s)
- Luis E. Valencia
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Matthew R. Incha
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Matthias Schmidt
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Allison N. Pearson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Mitchell G. Thompson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jacob B. Roberts
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Marina Mehling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Kevin Yin
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Asun Oka
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Patrick M. Shih
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Lars M. Blank
- grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - John Gladden
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Jay D. Keasling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720 USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark ,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
6
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
7
|
Liu Y, Khusnutdinova A, Chen J, Crisante D, Batyrova K, Raj K, Feigis M, Shirzadi E, Wang X, Dorakhan R, Wang X, Stogios PJ, Yakunin AF, Sargent EH, Mahadevan R. Systems engineering of Escherichia coli for n-butane production. Metab Eng 2022; 74:98-107. [DOI: 10.1016/j.ymben.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
|
8
|
Currie F, Twigg MS, Huddleson N, Simons KE, Marchant R, Banat IM. Biogenic propane production by a marine Photobacterium strain isolated from the Western English Channel. Front Microbiol 2022; 13:1000247. [DOI: 10.3389/fmicb.2022.1000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Propane is a major component of liquefied petroleum gas, a major energy source for off-grid communities and industry. The replacement of fossil fuel-derived propane with more sustainably derived propane is of industrial interest. One potential production route is through microbial fermentation. Here we report, for the first time, the isolation of a marine bacterium from sediment capable of natural propane biosynthesis. Propane production, both in mixed microbial cultures generated from marine sediment and in bacterial monocultures was detected and quantified by gas chromatography–flame ionization detection. Using DNA sequencing of multiple reference genes, the bacterium was shown to belong to the genus Photobacterium. We postulate that propane biosynthesis is achieved through inorganic carbonate assimilation systems. The discovery of this strain may facilitate synthetic biology routes for industrial scale production of propane via microbial fermentation.
Collapse
|
9
|
Studies on the Selectivity Mechanism of Wild-Type E. coli Thioesterase ‘TesA and Its Mutants for Medium- and Long-Chain Acyl Substrates. Catalysts 2022. [DOI: 10.3390/catal12091026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
E. coli thioesterase ‘TesA is an important enzyme in fatty acid production. Medium-chain fatty acids (MCFAs, C6-C10) are of great interest due to their similar physicochemical properties to petroleum-based oleo-chemicals. It has been shown that wild-type ‘TesA had better selectivity for long-chain acyl substrates (≥C16), while the two mutants ‘TesAE142D/Y145G and ‘TesAM141L/E142D/Y145G had better selectivity for medium-chain acyl substrates. However, it is difficult to obtain the selectivity mechanism of substrates for proteins by traditional experimental methods. In this study, in order to obtain more MCFAs, we analyzed the binding mode of proteins (‘TesA, ‘TesAE142D/Y145G and ‘TesAM141L/E142D/Y145G) and substrates (C16/C8-N-acetylcysteamine analogs, C16/C8-SNAC), the key residues and catalytic mechanisms through molecular docking, molecular dynamics simulations and the molecular mechanics Poisson–Boltzmann surface area (MM/PBSA). The results showed that several main residues related to catalysis, including Ser10, Asn73 and His157, had a strong hydrogen bond interaction with the substrates. The mutant region (Met141-Tyr146) and loop107–113 were mainly dominated by Van der Waals contributions to the substrates. For C16-SNAC, except for ‘TesAM141L/E142D/Y145G with large conformational changes, there were strong interactions at both head and tail ends that distorted the substrate into a more favorable high-energy conformation for the catalytic reaction. For C8-SNAC, the head and tail found it difficult to bind to the enzyme at the same time due to insufficient chain length, which made the substrate binding sites more variable, so ‘TesAM141L/E142D/Y145G with better binding sites had the strongest activity, and ‘TesA had the weakest activity, conversely. In short, the matching substrate chain and binding pocket length are the key factors affecting selectivity. This will be helpful for the further improvement of thioesterases.
Collapse
|
10
|
Stöber R, Mai F, Sebastian O, Körner A, Hutzler A, Schuehle P. A highly stable bimetallic transition metal phosphide catalyst for selective dehydrogenation of n‐heptane. ChemCatChem 2022. [DOI: 10.1002/cctc.202200371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert Stöber
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 Erlangen GERMANY
| | - Florian Mai
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Chemical Reaction Engineering GERMANY
| | - Oshin Sebastian
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 Erlangen GERMANY
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy: Helmholtz-Institut Erlangen-Nurnberg fur Erneuerbare Energien IEK-11 GERMANY
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy: Helmholtz-Institut Erlangen-Nurnberg fur Erneuerbare Energien IEK-11 Cauerstrasse 1 Erlangen GERMANY
| | - Patrick Schuehle
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chair for Chemical Reaction Engingeering Egerlandstraße 3 91058 Erlangen GERMANY
| |
Collapse
|
11
|
Hans S, Kumar N, Gohil N, Khambhati K, Bhattacharjee G, Deb SS, Maurya R, Kumar V, Reshamwala SMS, Singh V. Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microb Cell Fact 2022; 21:100. [PMID: 35643549 PMCID: PMC9148472 DOI: 10.1186/s12934-022-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.
Collapse
|
12
|
Tarasava K, Lee SH, Chen J, Köpke M, Jewett MC, Gonzalez R. Reverse β-oxidation pathways for efficient chemical production. J Ind Microbiol Biotechnol 2022; 49:6537408. [PMID: 35218187 PMCID: PMC9118988 DOI: 10.1093/jimb/kuac003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
Microbial production of fuels, chemicals, and materials has the potential to reduce greenhouse gas emissions and contribute to a sustainable bioeconomy. While synthetic biology allows readjusting of native metabolic pathways for the synthesis of desired products, often these native pathways do not support maximum efficiency and are affected by complex regulatory mechanisms. A synthetic or engineered pathway that allows modular synthesis of versatile bioproducts with minimal enzyme requirement and regulation while achieving high carbon and energy efficiency could be an alternative solution to address these issues. The reverse β-oxidation (rBOX) pathways enable iterative non-decarboxylative elongation of carbon molecules of varying chain lengths and functional groups with only four core enzymes and no ATP requirement. Here, we describe recent developments in rBOX pathway engineering to produce alcohols and carboxylic acids with diverse functional groups, along with other commercially important molecules such as polyketides. We discuss the application of rBOX beyond the pathway itself by its interfacing with various carbon-utilization pathways and deployment in different organisms, which allows feedstock diversification from sugars to glycerol, carbon dioxide, methane, and other substrates.
Collapse
Affiliation(s)
- Katia Tarasava
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Seung Hwan Lee
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Jing Chen
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | | | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
13
|
Yunus IS, Anfelt J, Sporre E, Miao R, Hudson EP, Jones PR. Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria. Metab Eng 2022; 72:14-23. [DOI: 10.1016/j.ymben.2022.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
14
|
Wang ZQ, Song H, Koleski EJ, Hara N, Park DS, Kumar G, Min Y, Dauenhauer PJ, Chang MCY. A dual cellular-heterogeneous catalyst strategy for the production of olefins from glucose. Nat Chem 2021; 13:1178-1185. [PMID: 34811478 DOI: 10.1038/s41557-021-00820-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
Living systems provide a promising approach to chemical synthesis, having been optimized by evolution to convert renewable carbon sources, such as glucose, into an enormous range of small molecules. However, a large number of synthetic structures can still be difficult to obtain solely from cells, such as unsubstituted hydrocarbons. In this work, we demonstrate the use of a dual cellular-heterogeneous catalytic strategy to produce olefins from glucose using a selective hydrolase to generate an activated intermediate that is readily deoxygenated. Using a new family of iterative thiolase enzymes, we genetically engineered a microbial strain that produces 4.3 ± 0.4 g l-1 of fatty acid from glucose with 86% captured as 3-hydroxyoctanoic and 3-hydroxydecanoic acids. This 3-hydroxy substituent serves as a leaving group that enables heterogeneous tandem decarboxylation-dehydration routes to olefinic products on Lewis acidic catalysts without the additional redox input required for enzymatic or chemical deoxygenation of simple fatty acids.
Collapse
Affiliation(s)
- Zhen Q Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Heng Song
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,College of Chemistry & Molecular Science, Wuhan University, Wuhan, P. R. China
| | - Edward J Koleski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Noritaka Hara
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Dae Sung Park
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA.,Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Gaurav Kumar
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yejin Min
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Paul J Dauenhauer
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Lu R, Cao L, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce advanced biofuels: Current status and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125877. [PMID: 34523574 DOI: 10.1016/j.biortech.2021.125877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Energy security and global climate change have necessitated the development of renewable energy with net-zero emissions. As alternatives to traditional fuels used in heavy-duty vehicles, advanced biofuels derived from fatty acids and terpenes have similar properties to current petroleum-based fuels, which makes them compatible with existing storage and transportation infrastructures. The fast development of metabolic engineering and synthetic biology has shown that microorganisms can be engineered to convert renewable feedstocks into these advanced biofuels. The oleaginous yeast Yarrowia lipolytica is rapidly emerging as a valuable chassis for the sustainable production of advanced biofuels derived from fatty acids and terpenes. Here, we provide a summary of the strategies developed in recent years for engineering Y. lipolytica to synthesize advanced biofuels. Finally, efficient biotechnological strategies for the production of these advanced biofuels and perspectives for future research are also discussed.
Collapse
Affiliation(s)
- Ran Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lizhen Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
16
|
Bahls MO, Platz L, Morgado G, Schmidt GW, Panke S. Directed evolution of biofuel-responsive biosensors for automated optimization of branched-chain alcohol biosynthesis. Metab Eng 2021; 69:98-111. [PMID: 34767976 DOI: 10.1016/j.ymben.2021.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022]
Abstract
The biosynthesis of short-chain alcohols is a carbon-neutral alternative to petroleum-derived production, but strain screening operations are encumbered by laborious analytics. Here, we built, characterized and applied whole cell biosensors by directed evolution of the transcription factor AlkS for screening microbial strain libraries producing industrially relevant alcohols. A selected AlkS variant was applied for in situ product detection in two screening applications concerning key steps in alcohol production. Further, the biosensor strains enabled the implementation of an automated, robotic platform-based workflow with data clustering, which readily allowed the identification of significantly improved strain variants for isopentanol production.
Collapse
Affiliation(s)
- Maximilian O Bahls
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Lukas Platz
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Gaspar Morgado
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
17
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
18
|
Zhou W, Wang Y, Zhang J, Zhao M, Tang M, Zhou W, Gong Z. A metabolic model of Lipomyces starkeyi for predicting lipogenesis potential from diverse low-cost substrates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:148. [PMID: 34210354 PMCID: PMC8247262 DOI: 10.1186/s13068-021-01997-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lipomyces starkeyi has been widely regarded as a promising oleaginous yeast with broad industrial application prospects because of its wide substrate spectrum, good adaption to fermentation inhibitors, excellent fatty acid composition for high-quality biodiesel, and negligible lipid remobilization. However, the currently low experimental lipid yield of L. starkeyi prohibits its commercial success. Metabolic model is extremely valuable to comprehend the complex biochemical processes and provide great guidance for strain modification to facilitate the lipid biosynthesis. RESULTS A small-scale metabolic model of L. starkeyi NRRL Y-11557 was constructed based on the genome annotation information. The theoretical lipid yields of glucose, cellobiose, xylose, glycerol, and acetic acid were calculated according to the flux balance analysis (FBA). The optimal flux distribution of the lipid synthesis showed that pentose phosphate pathway (PPP) independently met the necessity of NADPH for lipid synthesis, resulting in the relatively low lipid yields. Several targets (NADP-dependent oxidoreductases) beneficial for oleaginicity of L. starkeyi with significantly higher theoretical lipid yields were compared and elucidated. The combined utilization of acetic acid and other carbon sources and a hypothetical reverse β-oxidation (RBO) pathway showed outstanding potential for improving the theoretical lipid yield. CONCLUSIONS The lipid biosynthesis potential of L. starkeyi can be significantly improved through appropriate modification of metabolic network, as well as combined utilization of carbon sources according to the metabolic model. The prediction and analysis provide valuable guidance to improve lipid production from various low-cost substrates.
Collapse
Affiliation(s)
- Wei Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| |
Collapse
|
19
|
Sharma A, Yazdani SS. Microbial engineering to produce fatty alcohols and alkanes. J Ind Microbiol Biotechnol 2021; 48:6169711. [PMID: 33713132 DOI: 10.1093/jimb/kuab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022]
Abstract
Owing to their high energy density and composition, fatty acid-derived chemicals possess a wide range of applications such as biofuels, biomaterials, and other biochemical, and as a consequence, the global annual demand for products has surpassed 2 million tons. With the exhausting petroleum reservoirs and emerging environmental concerns on using petroleum feedstock, it has become indispensable to shift to a renewable-based industry. With the advancement in the field of synthetic biology and metabolic engineering, the use of microbes as factories for the production of fatty acid-derived chemicals is becoming a promising alternative approach for the production of these derivatives. Numerous metabolic approaches have been developed for conditioning the microbes to improve existing or develop new methodologies capable of efficient oleochemical production. However, there still exist several limitations that need to be addressed for the commercial viability of the microbial cell factory production. Though substantial advancement has been made toward successfully producing these fatty acids derived chemicals, a considerable amount of work needs to be done for improving the titers. In the present review, we aim to address the roadblocks impeding the heterologous production, the engineering pathway strategies implemented across the range of microbes in a detailed manner, and the commercial readiness of these molecules of immense application.
Collapse
Affiliation(s)
- Ashima Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
20
|
Liu Y, Benitez MG, Chen J, Harrison E, Khusnutdinova AN, Mahadevan R. Opportunities and Challenges for Microbial Synthesis of Fatty Acid-Derived Chemicals (FACs). Front Bioeng Biotechnol 2021; 9:613322. [PMID: 33575251 PMCID: PMC7870715 DOI: 10.3389/fbioe.2021.613322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming and uneven distribution of fossil fuels worldwide concerns have spurred the development of alternative, renewable, sustainable, and environmentally friendly resources. From an engineering perspective, biosynthesis of fatty acid-derived chemicals (FACs) is an attractive and promising solution to produce chemicals from abundant renewable feedstocks and carbon dioxide in microbial chassis. However, several factors limit the viability of this process. This review first summarizes the types of FACs and their widely applications. Next, we take a deep look into the microbial platform to produce FACs, give an outlook for the platform development. Then we discuss the bottlenecks in metabolic pathways and supply possible solutions correspondingly. Finally, we highlight the most recent advances in the fast-growing model-based strain design for FACs biosynthesis.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mauricio Garcia Benitez
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Schwarz A, Hecko S, Rudroff F, Kohrt JT, Howard RM, Winkler M. Cell-free in vitro reduction of carboxylates to aldehydes: With crude enzyme preparations to a key pharmaceutical building block. Biotechnol J 2021; 16:e2000315. [PMID: 33245607 DOI: 10.1002/biot.202000315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Indexed: 11/07/2022]
Abstract
The scarcity of practical methods for aldehyde synthesis in chemistry necessitates the development of mild, selective procedures. Carboxylic acid reductases catalyze aldehyde formation from stable carboxylic acid precursors in an aqueous solution. Carboxylic acid reductases were employed to catalyze aldehyde formation in a cell-free system with activation energy and reducing equivalents provided through auxiliary proteins for ATP and NADPH recycling. In situ product removal was used to suppress over-reduction due to background enzyme activities, and an N-protected 4-formyl-piperidine pharma synthon was prepared in 61% isolated yield. This is the first report of preparative aldehyde synthesis with carboxylic acid reductases employing crude, commercially available enzyme preparations.
Collapse
Affiliation(s)
- Anna Schwarz
- Austrian Center of Industrial Biotechnology, Area Biotransformation, Graz, Austria
| | - Sebastian Hecko
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Jeffrey T Kohrt
- Pfizer Worldwide Research and Development, Applied Synthesis Technologies - Biocatalysis, Groton, USA
| | - Roger M Howard
- Pfizer Worldwide Research and Development, Applied Synthesis Technologies - Biocatalysis, Groton, USA
| | - Margit Winkler
- Austrian Center of Industrial Biotechnology, Area Biotransformation, Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
22
|
Kim DI, Chae TU, Kim HU, Jang WD, Lee SY. Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nat Commun 2021; 12:173. [PMID: 33420084 PMCID: PMC7794544 DOI: 10.1038/s41467-020-20423-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Bio-based production of many chemicals is not yet possible due to the unknown biosynthetic pathways. Here, we report a strategy combining retrobiosynthesis and precursor selection step to design biosynthetic pathways for multiple short-chain primary amines (SCPAs) that have a wide range of applications in chemical industries. Using direct precursors of 15 target SCPAs determined by the above strategy, Streptomyces viridifaciens vlmD encoding valine decarboxylase is examined as a proof-of-concept promiscuous enzyme both in vitro and in vivo for generating SCPAs from their precursors. Escherichia coli expressing the heterologous vlmD produces 10 SCPAs by feeding their direct precursors. Furthermore, metabolically engineered E. coli strains are developed to produce representative SCPAs from glucose, including the one producing 10.67 g L-1 of iso-butylamine by fed-batch culture. This study presents the strategy of systematically designing biosynthetic pathways for the production of a group of related chemicals as demonstrated by multiple SCPAs as examples.
Collapse
Affiliation(s)
- Dong In Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Tong Un Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production. Int J Biol Macromol 2020; 164:3155-3162. [PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022]
Abstract
The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
24
|
Amer M, Toogood H, Scrutton NS. Engineering nature for gaseous hydrocarbon production. Microb Cell Fact 2020; 19:209. [PMID: 33187524 PMCID: PMC7661322 DOI: 10.1186/s12934-020-01470-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
The development of sustainable routes to the bio-manufacture of gaseous hydrocarbons will contribute widely to future energy needs. Their realisation would contribute towards minimising over-reliance on fossil fuels, improving air quality, reducing carbon footprints and enhancing overall energy security. Alkane gases (propane, butane and isobutane) are efficient and clean-burning fuels. They are established globally within the transportation industry and are used for domestic heating and cooking, non-greenhouse gas refrigerants and as aerosol propellants. As no natural biosynthetic routes to short chain alkanes have been discovered, de novo pathways have been engineered. These pathways incorporate one of two enzymes, either aldehyde deformylating oxygenase or fatty acid photodecarboxylase, to catalyse the final step that leads to gas formation. These new pathways are derived from established routes of fatty acid biosynthesis, reverse β-oxidation for butanol production, valine biosynthesis and amino acid degradation. Single-step production of alkane gases in vivo is also possible, where one recombinant biocatalyst can catalyse gas formation from exogenously supplied short-chain fatty acid precursors. This review explores current progress in bio-alkane gas production, and highlights the potential for implementation of scalable and sustainable commercial bioproduction hubs.
Collapse
Affiliation(s)
- Mohamed Amer
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
25
|
Trisrivirat D, Hughes JMX, Hoeven R, Faulkner M, Toogood H, Chaiyen P, Scrutton NS. Promoter engineering for microbial bio-alkane gas production. Synth Biol (Oxf) 2020; 5:ysaa022. [PMID: 33263086 PMCID: PMC7680561 DOI: 10.1093/synbio/ysaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022] Open
Abstract
Successful industrial biotechnological solutions to biofuels and other chemicals production rely on effective competition with existing lower-cost natural sources and synthetic chemistry approaches enabled by adopting low-cost bioreactors and processes. This is achievable by mobilizing Halomonas as a next generation industrial chassis, which can be cultivated under non-sterile conditions. To increase the cost effectiveness of an existing sustainable low carbon bio-propane production strategy, we designed and screened a constitutive promoter library based on the known strong porin promoter from Halomonas. Comparative studies were performed between Escherichia coli and Halomonas using the reporter gene red fluorescent protein (RFP). Later studies with a fatty acid photodecarboxylase-RFP fusion protein demonstrated tuneable propane production in Halomonas and E. coli, with an ∼8-fold improvement in yield over comparable isopropyl-β-D-thiogalactoside-inducible systems. This novel set of promoters is a useful addition to the synthetic biology toolbox for future engineering of Halomonas to make chemicals and fuels.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- Department of Chemistry, School of Natural Sciences, EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.,School of Biomolecular Science and Engineering, Vidyasirimedhi Inistitute of Science and Technology (VISTEC), Rayong 21210, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - John M X Hughes
- Department of Chemistry, School of Natural Sciences, EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Robin Hoeven
- Department of Chemistry, School of Natural Sciences, EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Matthew Faulkner
- Department of Chemistry, School of Natural Sciences, EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Helen Toogood
- Department of Chemistry, School of Natural Sciences, EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Inistitute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nigel S Scrutton
- Department of Chemistry, School of Natural Sciences, EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.,School of Biomolecular Science and Engineering, Vidyasirimedhi Inistitute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
26
|
Mak WS, Wang X, Arenas R, Cui Y, Bertolani S, Deng WQ, Tagkopoulos I, Wilson DK, Siegel JB. Discovery, Design, and Structural Characterization of Alkane-Producing Enzymes across the Ferritin-like Superfamily. Biochemistry 2020; 59:3834-3843. [PMID: 32935984 DOI: 10.1021/acs.biochem.0c00665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To complement established rational and evolutionary protein design approaches, significant efforts are being made to utilize computational modeling and the diversity of naturally occurring protein sequences. Here, we combine structural biology, genomic mining, and computational modeling to identify structural features critical to aldehyde deformylating oxygenases (ADOs), an enzyme family that has significant implications in synthetic biology and chemoenzymatic synthesis. Through these efforts, we discovered latent ADO-like function across the ferritin-like superfamily in various species of Bacteria and Archaea. We created a machine learning model that uses protein structural features to discriminate ADO-like activity. Computational enzyme design tools were then utilized to introduce ADO-like activity into the small subunit of Escherichia coli class I ribonucleotide reductase. The integrated approach of genomic mining, structural biology, molecular modeling, and machine learning has the potential to be utilized for rapid discovery and modulation of functions across enzyme families.
Collapse
Affiliation(s)
- Wai Shun Mak
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - XiaoKang Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Rigoberto Arenas
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Steve Bertolani
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Wen Qiao Deng
- California College of Arts, 1111 Eighth Street, San Francisco, California 94107, United States
| | - Ilias Tagkopoulos
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States.,Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States.,Department of Computer Science, University of California, Davis, Davis, California 95616, United States
| | - David K Wilson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, United States.,Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, California 95817, United States.,Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| |
Collapse
|
27
|
Arias DB, Gomez Pinto KA, Cooper KK, Summers ML. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation. Microb Genom 2020; 6. [PMID: 32941127 PMCID: PMC7660261 DOI: 10.1099/mgen.0.000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyanobacterium Nostoc punctiforme can form lipid droplets (LDs), internal inclusions containing triacylglycerols, carotenoids and alkanes. LDs are enriched for a 17 carbon-long alkane in N. punctiforme, and it has been shown that the overexpression of the aar and ado genes results in increased LD and alkane production. To identify transcriptional adaptations associated with increased alkane production, we performed comparative transcriptomic analysis of an alkane overproduction strain. RNA-seq data identified a large number of highly upregulated genes in the overproduction strain, including genes potentially involved in rRNA processing, mycosporine-glycine production and synthesis of non-ribosomal peptides, including nostopeptolide A. Other genes encoding helical carotenoid proteins, stress-induced proteins and those for microviridin synthesis were also upregulated. Construction of N. punctiforme strains with several upregulated genes or operons on multi-copy plasmids resulted in reduced alkane accumulation, indicating possible negative regulators of alkane production. A strain containing four genes for microviridin biosynthesis completely lost the ability to synthesize LDs. This strain exhibited wild-type growth and lag phase recovery under standard conditions, and slightly faster growth under high light. The transcriptional changes associated with increased alkane production identified in this work will provide the basis for future experiments designed to use cyanobacteria as a production platform for biofuel or high-value hydrophobic products.
Collapse
Affiliation(s)
- Daisy B. Arias
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
| | - Kevin A. Gomez Pinto
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
| | - Kerry K. Cooper
- University of Arizona, 1117 E. Lowell St, Tucson, AZ 85721, USA
| | - Michael L. Summers
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
- *Correspondence: Michael L. Summers,
| |
Collapse
|
28
|
Zhong Y, Zhou B, Wang L. Fe/FeOx embedded in LDH catalyzing C-C bond forming reactions of furfural with alcohols in the absence of a homogeneous base. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Horvat M, Winkler M. In Vivo
Reduction of Medium‐ to Long‐Chain Fatty Acids by Carboxylic Acid Reductase (CAR) Enzymes: Limitations and Solutions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Melissa Horvat
- acib –Austrian Center of Industrial Biotechnology Krenngasse 37 8010 Graz Austria
| | - Margit Winkler
- acib –Austrian Center of Industrial Biotechnology Krenngasse 37 8010 Graz Austria
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
30
|
Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr Opin Biotechnol 2020; 62:7-14. [DOI: 10.1016/j.copbio.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/07/2019] [Accepted: 07/21/2019] [Indexed: 02/01/2023]
|
31
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
32
|
Sulzbach M, Kunjapur AM. The Pathway Less Traveled: Engineering Biosynthesis of Nonstandard Functional Groups. Trends Biotechnol 2020; 38:532-545. [PMID: 31954529 DOI: 10.1016/j.tibtech.2019.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
The field of metabolic engineering has achieved biochemical routes for conversion of renewable inputs to structurally diverse chemicals, but these products contain a limited number of chemical functional groups. In this review, we provide an overview of the progression of uncommon or 'nonstandard' functional groups from the elucidation of their biosynthetic machinery to the pathway optimization framework of metabolic engineering. We highlight exemplary efforts from primarily the last 5 years for biosynthesis of aldehyde, ester, terminal alkyne, terminal alkene, fluoro, epoxide, nitro, nitroso, nitrile, and hydrazine functional groups. These representative nonstandard functional groups vary in development stage and showcase the pipeline of chemical diversity that could soon appear within customized, biologically produced molecules.
Collapse
Affiliation(s)
- Morgan Sulzbach
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
33
|
Fedorchuk TP, Khusnutdinova AN, Evdokimova E, Flick R, Di Leo R, Stogios P, Savchenko A, Yakunin AF. One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6-Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases. J Am Chem Soc 2020; 142:1038-1048. [PMID: 31886667 DOI: 10.1021/jacs.9b11761] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Production of platform chemicals from renewable feedstocks is becoming increasingly important due to concerns on environmental contamination, climate change, and depletion of fossil fuels. Adipic acid (AA), 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD) are key precursors for nylon synthesis, which are currently produced primarily from petroleum-based feedstocks. In recent years, the biosynthesis of adipic acid from renewable feedstocks has been demonstrated using both bacterial and yeast cells. Here we report the biocatalytic conversion/transformation of AA to 6-ACA and HMD by carboxylic acid reductases (CARs) and transaminases (TAs), which involves two rounds (cascades) of reduction/amination reactions (AA → 6-ACA → HMD). Using purified wild type CARs and TAs supplemented with cofactor regenerating systems for ATP, NADPH, and amine donor, we established a one-pot enzyme cascade catalyzing up to 95% conversion of AA to 6-ACA. To increase the cascade activity for the transformation of 6-ACA to HMD, we determined the crystal structure of the CAR substrate-binding domain in complex with AMP and succinate and engineered three mutant CARs with enhanced activity against 6-ACA. In combination with TAs, the CAR L342E protein showed 50-75% conversion of 6-ACA to HMD. For the transformation of AA to HMD (via 6-ACA), the wild type CAR was combined with the L342E variant and two different TAs resulting in up to 30% conversion to HMD and 70% to 6-ACA. Our results highlight the suitability of CARs and TAs for several rounds of reduction/amination reactions in one-pot cascade systems and their potential for the biobased synthesis of terminal amines.
Collapse
Affiliation(s)
- Tatiana P Fedorchuk
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Institute of Basic Biological Problems , Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Institute of Basic Biological Problems , Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Department of Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada.,Centre for Environmental Biotechnology, School of Natural Sciences , Bangor University , Gwynedd LL57 2UW , U.K
| |
Collapse
|
34
|
Amer M, Hoeven R, Kelly P, Faulkner M, Smith MH, Toogood HS, Scrutton NS. Renewable and tuneable bio-LPG blends derived from amino acids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:125. [PMID: 32684978 PMCID: PMC7362463 DOI: 10.1186/s13068-020-01766-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbial biorefinery approaches are beginning to define renewable and sustainable routes to clean-burning and non-fossil fuel-derived gaseous alkanes (known as 'bio-LPG'). The most promising strategies have used a terminal fatty acid photodecarboxylase, enabling light-driven propane production from externally fed waste butyric acid. Use of Halomonas (a robust extremophile microbial chassis) with these pathways has enabled bio-LPG production under non-sterile conditions and using waste biomass as the carbon source. Here, we describe new engineering approaches to produce next-generation pathways that use amino acids as fuel precursors for bio-LPG production (propane, butane and isobutane blends). RESULTS Multiple pathways from the amino acids valine, leucine and isoleucine were designed in E. coli for the production of propane, isobutane and butane, respectively. A branched-chain keto acid decarboxylase-dependent pathway utilising fatty acid photodecarboxylase was the most effective route, generating higher alkane gas titres over alternative routes requiring coenzyme A and/or aldehyde deformylating oxygenase. Isobutane was the major gas produced in standard (mixed amino acid) medium, however valine supplementation led to primarily propane production. Transitioning pathways into Halomonas strain TQ10 enabled fermentative production of mixed alkane gases under non-sterile conditions on simple carbon sources. Chromosomal integration of inducible (~ 180 mg/g cells/day) and constitutive (~ 30 mg/g cells/day) pathways into Halomonas generated production strains shown to be stable for up to 7 days. CONCLUSIONS This study highlights new microbial pathways for the production of clean-burning bio-LPG fuels from amino acids. The use of stable Halomonas production strains could lead to gas production in the field under non-sterile conditions following process optimisation.
Collapse
Affiliation(s)
- Mohamed Amer
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Robin Hoeven
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Paul Kelly
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Michael H. Smith
- C3 Biotechnologies Ltd, The Railway Goods Yard, Middleton-in-Lonsdale, Lancashire, LA6 2NF UK
| | - Helen S. Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Nigel S. Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
- C3 Biotechnologies Ltd, The Railway Goods Yard, Middleton-in-Lonsdale, Lancashire, LA6 2NF UK
| |
Collapse
|
35
|
Liu Y, Chen J, Khusnutdinova AN, Correia K, Diep P, Batyrova KA, Nemr K, Flick R, Stogios P, Yakunin AF, Mahadevan R. A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:114. [PMID: 32612677 PMCID: PMC7325246 DOI: 10.1186/s13068-020-01753-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/16/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Aldehyde decarbonylases (ADs), which convert acyl aldehydes into alkanes, supply promising solution for producing alkanes from renewable feedstock. However the instability of ADs impedes their further application. Therefore, the current study aimed to investigate the degradation mechanism of ADs and engineer it towards high stability. RESULTS Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus using error-prone PCR-based directed evolution system. Bioinformatic analysis revealed that this C-terminal degron is common in bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli, thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo. CONCLUSION This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Khorcheska A. Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Kayla Nemr
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW UK
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
- Institute of Biomedical Engineering, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| |
Collapse
|
36
|
Carboxylic acid reductases in metabolic engineering. J Biotechnol 2020; 307:1-14. [DOI: 10.1016/j.jbiotec.2019.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/29/2023]
|
37
|
Fedorchuk TP, Khusnutdinova AN, Flick R, Yakunin AF. Site-directed mutagenesis and stability of the carboxylic acid reductase MAB4714 from Mycobacterium abscessus. J Biotechnol 2019; 303:72-79. [DOI: 10.1016/j.jbiotec.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
|
38
|
Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proc Natl Acad Sci U S A 2019; 116:10348-10353. [PMID: 31061132 DOI: 10.1073/pnas.1903282116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes have diverse functions in primary and secondary metabolisms. By using a structure-guided approach, we uncovered the function of a NRPS-like enzyme with unusual domain architecture, catalyzing two sequential two-electron reductions of glycine betaine to choline. Structural analysis based on the homology model suggests cation-π interactions as the major substrate specificity determinant, which was verified using substrate analogs and inhibitors. Bioinformatic analysis indicates this NRPS-like glycine betaine reductase is highly conserved and widespread in kingdom fungi. Genetic knockout experiments confirmed its role in choline biosynthesis and maintaining glycine betaine homeostasis in fungi. Our findings demonstrate that the oxidative choline-glycine betaine degradation pathway can operate in a fully reversible fashion and provide insight in understanding fungal choline metabolism. The use of an NRPS-like enzyme for reductive choline formation is energetically efficient compared with known pathways. Our discovery also underscores the capabilities of the structure-guided approach in assigning functions of uncharacterized multidomain proteins, which can potentially aid functional discovery of new enzymes by genome mining.
Collapse
|
39
|
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2019; 58:35-46. [PMID: 31022535 DOI: 10.1016/j.ymben.2019.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Microbial production of oleochemicals from renewable feedstocks remains an attractive route to produce high-energy density, liquid transportation fuels and high-value chemical products. Metabolic engineering strategies have been applied to demonstrate production of a wide range of oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products containing long-chain fatty acids. These successes motivated additional effort to produce analogous molecules comprised of medium-chain fatty acids, molecules that are less common in natural oils and therefore of higher commercial value. Substantial progress has been made towards producing a subset of these chemicals, but significant work remains for most. The other primary challenge to producing oleochemicals in microbes is improving the performance, in terms of yield, rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common metabolic engineering strategies include blocking pathways that compete with synthesis of oleochemical building blocks and/or consume products, pulling flux through pathways by removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review, we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013 towards improving performance of heterotrophic microbial cell factories.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
40
|
Zhao F, Liu X, Kong A, Zhao Y, Fan X, Ma T, Gao W, Wang S, Yang C. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Sci Rep 2019; 9:1798. [PMID: 30755729 PMCID: PMC6372614 DOI: 10.1038/s41598-019-39321-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) can be produced by microorganisms from renewable resources and is regarded as a promising bioplastic to replace petroleum-based plastics. Pseudomonas mendocina NK-01 is a medium-chain-length PHA (mcl-PHA)-producing strain and its whole-genome sequence is currently available. The yield of mcl-PHA in P. mendocina NK-01 is expected to be improved by applying a promoter engineering strategy. However, a limited number of well-characterized promoters has greatly restricted the application of promoter engineering for increasing the yield of mcl-PHA in P. mendocina NK-01. In this work, 10 endogenous promoters from P. mendocina NK-01 were identified based on RNA-seq and promoter prediction results. Subsequently, 10 putative promoters were characterized for their strength through the expression of a reporter gene gfp. As a result, five strong promoters designated as P4, P6, P9, P16 and P25 were identified based on transcriptional level and GFP fluorescence intensity measurements. To evaluate whether the screened promoters can be used to enhance transcription of PHA synthase gene (phaC), the three promoters P4, P6 and P16 were separately integrated into upstream of the phaC operon in the genome of P. mendocina NK-01, resulting in the recombinant strains NKU-4C1, NKU-6C1 and NKU-16C1. As expected, the transcriptional levels of phaC1 and phaC2 in the recombinant strains were increased as shown by real-time quantitative RT-PCR. The phaZ gene encoding PHA depolymerase was further deleted to construct the recombinant strains NKU-∆phaZ-4C1, NKU-∆phaZ-6C1 and NKU-∆phaZ-16C1. The results from shake-flask fermentation indicated that the mcl-PHA titer of recombinant strain NKU-∆phaZ-16C1 was increased from 17 to 23 wt% compared with strain NKU-∆phaZ. This work provides a feasible method to discover strong promoters in P. mendocina NK-01 and highlights the potential of the screened endogenous strong promoters for metabolic engineering of P. mendocina NK-01 to increase the yield of mcl-PHA.
Collapse
Affiliation(s)
- Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Annie Kong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xu Fan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weixia Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
41
|
Lee SY, Kim HU, Chae TU, Cho JS, Kim JW, Shin JH, Kim DI, Ko YS, Jang WD, Jang YS. A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2019. [DOI: 10.1038/s41929-018-0212-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel. Metab Eng 2018; 49:201-211. [DOI: 10.1016/j.ymben.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
|
43
|
Nemr K, Müller JE, Joo JC, Gawand P, Choudhary R, Mendonca B, Lu S, Yu X, Yakunin AF, Mahadevan R. Engineering a short, aldolase-based pathway for (R)-1,3-butanediol production in Escherichia coli. Metab Eng 2018; 48:13-24. [DOI: 10.1016/j.ymben.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/03/2023]
|
44
|
Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression. Appl Environ Microbiol 2018; 84:AEM.02868-17. [PMID: 29549102 DOI: 10.1128/aem.02868-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/12/2018] [Indexed: 12/27/2022] Open
Abstract
Medium-chain fatty acids are commodity chemicals. Increasing and modifying the activity of thioesterases (TEs) on medium-chain fatty acyl-acyl carrier protein (acyl-ACP) esters may enable a high-yield microbial production of these molecules. The plant Cuphea palustris harbors two distinct TEs: C. palustris FatB1 (CpFatB1) (C8 specificity, lower activity) and CpFatB2 (C14 specificity, higher activity) with 78% sequence identity. We combined structural features from these two enzymes to create several chimeric TEs, some of which showed nonnatural fatty acid production as measured by an enzymatic assay and gas chromatography-mass spectrometry (GC-MS). Notably, chimera 4 exhibited an increased C8 fatty acid production in correlation with improved microbial expression. This chimera led us to identify CpFatB2-specific amino acids between positions 219 and 272 that lead to higher protein levels. Chimera 7 produced a broad range of fatty acids and appeared to combine a fatty acid binding pocket with long-chain specificity and an ACP interaction site that may activate fatty acid extrusion. Using homology modeling and in silico docking with ACP, we identified a "positive patch" within amino acids 162 to 218, which may direct the ACP interaction and regulate access to short-chain fatty acids. On the basis of this modeling, we transplanted putative ACP interaction sequences from CpFatB1 into CpFatB2 and created a chimeric thioesterase that produced medium-chain as well as long-chain fatty acids. Thus, the engineering of chimeric enzymes and characterizing their microbial activity and chain-length specificity suggested mechanistic insights into TE functions and also generated thioesterases with potentially useful properties. These observations may inform a rational engineering of TEs to allow alkyl chain length control.IMPORTANCE Medium-chain fatty acids are important commodity chemicals. These molecules are used as plastic precursors and in shampoos and other detergents and could be used as biofuel precursors if production economics were favorable. Hydrocarbon-based liquid fuels must be optimized to have a desired boiling point, low freezing point, low viscosity, and other physical characteristics. Similarly, the solubility and harshness of detergents and the flexibility of plastic polymers can be modulated. The length and distribution of the carbon chains in the hydrophobic tails determine these properties. The biological synthesis of cell membranes and fatty acids produces chains of primarily 16 to 18 carbons, which give rise to current biofuels. The ultimate goal of the work presented here is to engineer metabolic pathways to produce designer molecules with the correct number of carbons in a chain, so that such molecules could be used directly as specialty commodity chemicals or as fuels after minimal processing.
Collapse
|
45
|
Wang J, Zhu K. Microbial production of alka(e)ne biofuels. Curr Opin Biotechnol 2018; 50:11-18. [DOI: 10.1016/j.copbio.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
|
46
|
Marshall AC, Bond CS, Bruning JB. Structure of Aspergillus fumigatus Cytosolic Thiolase: Trapped Tetrahedral Reaction Intermediates and Activation by Monovalent Cations. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andrew C. Marshall
- Institute
for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Charles S. Bond
- School
of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John B. Bruning
- Institute
for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
47
|
Carboxylic acid reductase enzymes (CARs). Curr Opin Chem Biol 2017; 43:23-29. [PMID: 29127833 DOI: 10.1016/j.cbpa.2017.10.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
Abstract
Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes.
Collapse
|
48
|
Yan Q, Fong SS. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J Biol Eng 2017; 11:33. [PMID: 29118850 PMCID: PMC5664571 DOI: 10.1186/s13036-017-0075-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UP elements (upstream element) are DNA sequences upstream of a promoter that interact with the α-subunit of RNA polymerase (RNAP) and can affect transcription by altering the binding RNAP to DNA. However, details of UP element and binding affinity effects on transcriptional strength are unclear. RESULTS Here, we investigated the effects of UP element sequences on gene transcription, binding affinity, and gene expression noise. Addition of UP elements resulted in increased gene expression (maximum 95.7-fold increase) and reduced gene expression noise (8.51-fold reduction). Half UP element sequences at the proximal subsite has little effect on transcriptional strength despite increasing binding affinity by 2.28-fold. In vitro binding assays were used to determine dissociation constants (Kd) and in the in vitro system, the full range of gene expression occurs in a small range of dissociation constants (25 nM < Kd < 45 nM) indicating that transcriptional strength is highly sensitive to small changes in binding affinity. CONCLUSIONS These results demonstrate the utility of UP elements and provide mechanistic insight into the functional relationship between binding affinity and transcription. Given the centrality of gene expression via transcription to biology, additional insight into transcriptional mechanisms can foster both fundamental and applied research. In particular, knowledge of the DNA sequence-specific effects on expression strength can aid in promoter engineering for different organisms and for metabolic engineering to balance pathway fluxes.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA 23284-3028 USA
| | - Stephen S. Fong
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA 23284-3028 USA
- Center for the study of Biological Complexity, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
49
|
Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol 2017; 50:39-46. [PMID: 29101852 DOI: 10.1016/j.copbio.2017.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
Abstract
Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed.
Collapse
|
50
|
Zhu Z, Zhou YJ, Kang MK, Krivoruchko A, Buijs NA, Nielsen J. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab Eng 2017; 44:81-88. [PMID: 28939277 DOI: 10.1016/j.ymben.2017.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/15/2023]
Abstract
Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7-C13) by yeast Saccharomyces cerevisiae through engineering fatty acid synthases to control the chain length of fatty acids and introducing heterologous pathways for alkane or 1-alkene synthesis. We carried out enzyme engineering/screening of the fatty aldehyde deformylating oxygenase (ADO), and compartmentalization of the alkane biosynthesis pathway into peroxisomes to improve alkane production. The two-step synthesis of alkanes was found to be inefficient due to the formation of alcohols derived from aldehyde intermediates. Alternatively, the drain of aldehyde intermediates could be circumvented by introducing a one-step decarboxylation of fatty acids to 1-alkenes, which could be synthesized at a level of 3mg/L, 25-fold higher than that of alkanes produced via aldehydes.
Collapse
Affiliation(s)
- Zhiwei Zhu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Yongjin J Zhou
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Min-Kyoung Kang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anastasia Krivoruchko
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicolaas A Buijs
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark; Science for Life Laboratory, Royal Institute of Technology, SE-17121 Stockholm, Sweden.
| |
Collapse
|