1
|
Simcox BS, Rohde KH. Orphan response regulator NnaR is critical for nitrate and nitrite assimilation in Mycobacterium abscessus. Front Cell Infect Microbiol 2024; 14:1411333. [PMID: 38854658 PMCID: PMC11162112 DOI: 10.3389/fcimb.2024.1411333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Mycobacterium abscessus (Mab) is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for Mab infections are limited by its inherent antibiotic resistance and limited drug access to Mab in its in vivo niches resulting in poor cure rates of 30-50%. Mab's ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates. Mycobacterium tuberculosis (Mtb) is known to coordinate hypoxic adaptation via induction of respiratory nitrate assimilation through the nitrate reductase narGHJI. Mab, on the other hand, does not encode a respiratory nitrate reductase. In addition, our recent study of the transcriptional responses of Mab to hypoxia revealed marked down-regulation of a locus containing putative nitrate assimilation genes, including the orphan response regulator nnaR (nitrate/nitrite assimilation regulator). These putative nitrate assimilation genes, narK3 (nitrate/nitrite transporter), nirBD (nitrite reductase), nnaR, and sirB (ferrochelatase) are arranged contiguously while nasN (assimilatory nitrate reductase identified in this work) is encoded in a different locus. Absence of a respiratory nitrate reductase in Mab and down-regulation of nitrogen metabolism genes in hypoxia suggest interplay between hypoxia adaptation and nitrate assimilation are distinct from what was previously documented in Mtb. The mechanisms used by Mab to fine-tune the transcriptional regulation of nitrogen metabolism in the context of stresses e.g. hypoxia, particularly the role of NnaR, remain poorly understood. To evaluate the role of NnaR in nitrate metabolism we constructed a Mab nnaR knockout strain (MabΔnnaR ) and complement (MabΔnnaR+C ) to investigate transcriptional regulation and phenotypes. qRT-PCR revealed NnaR is necessary for regulating nitrate and nitrite reductases along with a putative nitrate transporter. Loss of NnaR compromised the ability of Mab to assimilate nitrate or nitrite as sole nitrogen sources highlighting its necessity. This work provides the first insights into the role of Mab NnaR setting a foundation for future work investigating NnaR's contribution to pathogenesis.
Collapse
Affiliation(s)
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
2
|
Kuper TJ, Islam MM, Peirce-Cottler SM, Papin JA, Ford RM. Spatial transcriptome-guided multi-scale framework connects P. aeruginosa metabolic states to oxidative stress biofilm microenvironment. PLoS Comput Biol 2024; 20:e1012031. [PMID: 38669236 PMCID: PMC11051585 DOI: 10.1371/journal.pcbi.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models. We used MiMICS to simulate Pseudomonas aeruginosa regulation of denitrification and oxidative stress metabolism in hypoxic and nitric oxide (NO) biofilm microenvironments. Integration of P. aeruginosa PA14 biofilm spatial transcriptomic data into a P. aeruginosa PA14 GENRE generated four PA14 metabolic model states that were input into MiMICS. Characteristic of aerobic, denitrification, and oxidative stress metabolism, the four metabolic model states predicted different oxygen, nitrate, and NO exchange fluxes that were passed as inputs to update the agent's local metabolite concentrations in the extracellular reaction-diffusion model. Individual bacterial agents chose a PA14 metabolic model state based on a combination of stochastic rules, and agents sensing local oxygen and NO. Transcriptome-guided MiMICS predictions suggested microscale denitrification and oxidative stress metabolic heterogeneity emerged due to local variability in the NO biofilm microenvironment. MiMICS accurately predicted the biofilm's spatial relationships between denitrification, oxidative stress, and central carbon metabolism. As simulated cells responded to extracellular NO, MiMICS revealed dynamics of cell populations heterogeneously upregulating reactions in the denitrification pathway, which may function to maintain NO levels within non-toxic ranges. We demonstrated that MiMICS is a valuable computational tool to incorporate multiple -omics-guided metabolic models to mechanistically map heterogeneous microbial metabolic states to the biofilm microenvironment.
Collapse
Affiliation(s)
- Tracy J. Kuper
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce-Cottler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roseanne M Ford
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
3
|
Lv S, Zheng F, Wang Z, Hayat K, Veiga MC, Kennes C, Chen J. Unveiling novel pathways and key contributors in the nitrogen cycle: Validation of enrichment and taxonomic characterization of oxygenic denitrifying microorganisms in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168339. [PMID: 37931816 DOI: 10.1016/j.scitotenv.2023.168339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Microorganisms play a crucial role in both the nitrogen cycle and greenhouse gas emissions. A recent discovery has unveiled a new denitrification pathway called oxygenic denitrification, entailing the enzymatic reduction of nitrite to nitric oxide (NO) by a putative nitric oxide dismutase (nod) enzyme. In this study, the presence of the nod gene was detected and subsequently enriched in anaerobic-activated sludge, farmland soil, and paddy soil samples. After 150 days, the enriched samples exhibited significant denitrification, and concomitant oxygen production. The removal efficiency of nitrite ranged from 64.6 % to 79.0 %, while the oxygen production rate was between 15.4 μL/min and 18.6 μL/min when exposed to a sole nitrogen source of 80 mg/L sodium nitrite. Additionally, batch experiments and kinetic analyses revealed the intricate pathways and underlying mechanisms governing the oxygenic denitrification reaction by using CARBOXY-PTIO, 18O-labelled water, and acetylene to unravel the intricacies of the reaction. The quantitative polymerase chain reaction (qPCR) results indicated a significant surge in the abundance of nod genes, escalating from 7.59 to 10.12-fold. Moreover, analysis of 16S ribosomal DNA (rDNA) amplicons revealed Proteobacteria as the dominant phylum and Thauera as the main genus, with the presumed affiliation. In this study, a new nitrogen conversion pathway, oxygenic denitrification, was discovered in environmental samples. This process provides the possibility for the control of nitrous oxide in the treatment of nitrogenous wastewater.
Collapse
Affiliation(s)
- Sini Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengzhen Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
4
|
Hare PJ, Gonzalez JR, Quelle RM, Wu YI, Mok WWK. Metabolic and transcriptional activities underlie stationary-phase Pseudomonas aeruginosa sensitivity to Levofloxacin. Microbiol Spectr 2024; 12:e0356723. [PMID: 38078717 PMCID: PMC10896071 DOI: 10.1128/spectrum.03567-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa is responsible for a variety of chronic human infections. Even in the absence of identifiable resistance mutations, this pathogen can tolerate lethal antibiotic doses through phenotypic strategies like biofilm formation and metabolic quiescence. In this study, we determined that P. aeruginosa maintains greater metabolic activity in the stationary phase compared to the model organism, Escherichia coli, which has traditionally been used to study fluoroquinolone antibiotic tolerance. We demonstrate that hallmarks of E. coli fluoroquinolone tolerance are not conserved in P. aeruginosa, including the timing of cell death and necessity of the SOS DNA damage response for survival. The heightened sensitivity of stationary-phase P. aeruginosa to fluoroquinolones is attributed to maintained transcriptional and reductase activity. Our data suggest that perturbations that suppress transcription and respiration in P. aeruginosa may actually protect the pathogen against this important class of antibiotics.
Collapse
Affiliation(s)
- Patricia J Hare
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
- School of Dental Medicine, UConn Health , Farmington, Connecticut, USA
| | - Juliet R Gonzalez
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| | - Ryan M Quelle
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| | - Yi I Wu
- Richard D. Berlin Center for Cell Analysis and Modeling, UConn Health , Farmington, Connecticut, USA
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| |
Collapse
|
5
|
Zhou J, Liu S, Xie B, Wang W, Xu N, Xu A, Dong W, Jiang M. Enhancing rhamnolipid production through a two-stage fermentation control strategy based on metabolic engineering and nitrate feeding. BIORESOURCE TECHNOLOGY 2023; 388:129716. [PMID: 37689118 DOI: 10.1016/j.biortech.2023.129716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Nitrate plays a crucial role in the high-efficient fermentation production of rhamnolipids (RLs). However, the underlying mechanism remains unclear. Firstly, by knocking out the restriction endonuclease PaeKI and utilizatiing the endogenous CRISPR-Cas-mediated single-plasmid recombineering system, a genome editing system for P. aeruginosa KT1115 has been established. Secondly, an engineered strain KT1115ΔpaeKIΔnirS was obtained with a 87% of reduction in nitric oxide (NO) accumulation and a 93% of reduction in RLs production, revealing the crucial role of NO signaling molecule produced from nitrate metabolism in RLs production. Finally, by combining metabolic engineering of the nitrate metabolism pathway with nitrogen feeding, a new two-stage fermentation process was developed. The fermentation production period was reduced from 168 h to 120 h while achieving a high yield of 0.8 g/g, and the average productivity increased by 55%. In all, this study provides a novel insights in the RLs biosynthesis and fermentation control strategy.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Shixun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Bin Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenyao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, PR China
| | - Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
6
|
Nakatsuka Y, Matsumoto M, Inohara N, Núñez G. Pseudomonas aeruginosa hijacks the murine nitric oxide metabolic pathway to evade killing by neutrophils in the lung. Cell Rep 2023; 42:112973. [PMID: 37561628 DOI: 10.1016/j.celrep.2023.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils play a critical role in the eradication of Pseudomonas aeruginosa, a major pathogen causing lung infection. However, the mechanisms used by the pathogen to evade neutrophil-mediated killing remain poorly understood. Using a high-density transposon screen, we find that P. aeruginosa colonization in the lung is promoted by pathogen nitrite reductase nirD. nirD is required for ammonia production from nitrite, a metabolite derived from nitrogen oxide (NO) generated by inducible NO synthetase (iNOS) in phagocytes. P. aeruginosa deficient in nirD exhibit reduced survival in wild-type neutrophils but not in iNOS-deficient neutrophils. Mechanistically, nirD enhances P. aeruginosa survival in neutrophils by inhibiting the localization of the pathogen in late phagosomes. P. aeruginosa deficient in nirD show impaired lung colonization after infection in wild-type mice but not in mice with selective iNos deficiency in neutrophils. Thus, P. aeruginosa uses neutrophil iNOS-mediated NO production to limit neutrophil pathogen killing and to promote its colonization in the lung.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| | - Masanori Matsumoto
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| |
Collapse
|
7
|
Lichtenberg M, Line L, Schrameyer V, Jakobsen TH, Rybtke ML, Toyofuku M, Nomura N, Kolpen M, Tolker-Nielsen T, Kühl M, Bjarnsholt T, Jensen PØ. Nitric-oxide-driven oxygen release in anoxic Pseudomonas aeruginosa. iScience 2021; 24:103404. [PMID: 34849468 PMCID: PMC8608891 DOI: 10.1016/j.isci.2021.103404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Denitrification supports anoxic growth of Pseudomonas aeruginosa in infections. Moreover, denitrification may provide oxygen (O2) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in Methylomirabilis oxyfera. To examine the prevalence of NO dismutation we studied O2 release by P. aeruginosa in airtight vials. P. aeruginosa rapidly depleted O2 but NO supplementation generated peaks of O2 at the onset of anoxia, and we demonstrate a direct role of NO in the O2 release. However, we were not able to detect genetic evidence for putative NO dismutases. The supply of endogenous O2 at the onset of anoxia could play an adaptive role when P. aeruginosa enters anaerobiosis. Furthermore, O2 generation by NO dismutation may be more widespread than indicated by the reports on the distribution of homologues genes. In general, NO dismutation may allow removal of nitrate by denitrification without release of the very potent greenhouse gas, nitrous oxide. Pseudomonas aeruginosa was found to release O2 at the onset of anoxia Peaks of O2 were amplified in a nitric oxide reductase (NOR) mutant The O2 release was mediated by nitric oxide (NO)
Collapse
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Line
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Verena Schrameyer
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Masanori Toyofuku
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Rigshospitalet, 2100 Copenhagen, Denmark
- Corresponding author
| |
Collapse
|
8
|
Sivaloganathan DM, Brynildsen MP. Pseudomonas aeruginosa prioritizes detoxification of hydrogen peroxide over nitric oxide. BMC Res Notes 2021; 14:120. [PMID: 33771209 PMCID: PMC7995768 DOI: 10.1186/s13104-021-05534-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Bacteria are exposed to multiple concurrent antimicrobial stressors within phagosomes. Among the antimicrobials produced, hydrogen peroxide and nitric oxide are two of the most deleterious products. In a previous study, we discovered that when faced with both stressors simultaneously, Escherichia coli prioritized detoxification of hydrogen peroxide over nitric oxide. In this study, we investigated whether such a process was conserved in another bacterium, Pseudomonas aeruginosa. RESULTS P. aeruginosa prioritized hydrogen peroxide detoxification in a dose-dependent manner. Specifically, hydrogen peroxide detoxification was unperturbed by the presence of nitric oxide, whereas larger doses of hydrogen peroxide produced longer delays in nitric oxide detoxification. Computational modelling revealed that the rate of nitric oxide consumption in co-treated cultures was biphasic, with cells entering the second phase of detoxification only after hydrogen peroxide was eliminated from the culture.
Collapse
Affiliation(s)
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| |
Collapse
|
9
|
Liu RR, Tian Y, Zhou EM, Xiong MJ, Xiao M, Li WJ. Distinct Expression of the Two NO-Forming Nitrite Reductases in Thermus antranikianii DSM 12462 T Improved Environmental Adaptability. MICROBIAL ECOLOGY 2020; 80:614-626. [PMID: 32474659 DOI: 10.1007/s00248-020-01528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/14/2020] [Indexed: 05/21/2023]
Abstract
Hot spring ecosystems are analogous to some thermal environments on the early Earth and represent ideal models to understand life forms and element cycling on the early Earth. Denitrification, an important component of biogeochemical nitrogen cycle, is highly active in hot springs. Nitrite (NO2-) reduction to nitric oxide (NO) is the significant and rate-limiting pathway in denitrification and is catalyzed by two types of nitrite reductases, encoded by nirS and nirK genes. NirS and NirK were originally considered incompatible in most denitrifying organisms, although a few strains have been reported to possess both genes. Herein, we report the functional division of nirS and nirK in Thermus, a thermophilic genus widespread in thermal ecosystems. Transcriptional levels of nirS and nirK coexisting in Thermus antranikianii DSM 12462T were measured to assess the effects of nitrite, oxygen, and stimulation time. Thirty-nine Thermus strains were used to analyze the phylogeny and distribution of nirS and nirK; six representative strains were used to assess the denitrification phenotype. The results showed that both genes were actively transcribed and expressed independently in T. antranikianii DSM 12462T. Strains with both nirS and nirK had a wider range of nitrite adaptation and revealed nir-related physiological adaptations in Thermus: nirK facilitated adaptation to rapid changes and extended the adaptation range of nitrite under oxygen-limited conditions, while nirS expression was higher under oxic and relatively stable conditions.
Collapse
Affiliation(s)
- Rui-Rui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ye Tian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - En-Min Zhou
- School of Resource Environment and Earth Science, Yunnan Institute of Geography, Yunnan University, Kunming, 650091, People's Republic of China
| | - Meng-Jie Xiong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
10
|
Ghasemi M, Jenkins B, Doxey AC, Sivaloganathan S. A study of nitric oxide dynamics in a growing biofilm using a density dependent reaction-diffusion model. J Theor Biol 2020; 485:110053. [PMID: 31628906 DOI: 10.1016/j.jtbi.2019.110053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
One of a number of critical roles played by NO· as a chemical weapon (generated by the immune system) is to neutralize pathogens. However, the virulence of pathogens depends on the production activity of reductants to detoxify NO·. Broad reactivity of NO· makes it complicated to predict the fate of NO· inside bacteria and its effects on the treatment of any infection. Here, we present a mathematical model of biofilm response to NO·, as a stressor. The model is comprised of a PDE system of highly nonlinear reaction-diffusion equations that we study in computer simulations to determine the positive and negative effects of key parameters on bacterial defenses against NO·. From the reported results, we conjecture that the oscillatory behavior of NO· under a microaerobic regime is a temporal phenomenon and does not give rise to a spatial pattern. It is also shown computationally that decreasing the initial size of the biofilm colony negatively impacts the functionality of reducing agents that deactivate NO·. Whereas nutrient deprivation results in the development of biofilms with heterogeneous structure, its effect on the activity of NO· reductants depends on the oxygen availability, biofilm size, and the amount of NO·.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Dept. of Applied Mathematics, Univ. Waterloo, Waterloo, ON, Canada, N2L 3G1.
| | | | - Andrew C Doxey
- Dept. of Biology, Univ. Waterloo,Waterloo, ON, Canada, N2L 3G1
| | | |
Collapse
|
11
|
Abstract
Nitric oxide (NO) is a radical that is used as an attack molecule by immune cells. NO can interact and damage a range of biomolecules, and the biological outcome for bacteria assaulted with NO will be governed by how the radical distributes within their biochemical reaction networks. Measurement of those NO fluxes is complicated by the low abundance and transience of many of its reaction products. To overcome this challenge, we use computational modeling to translate measurements of several biochemical species (e.g., NO, O2, NO2-) into NO flux distributions. In this chapter, we provide a detailed protocol, which includes experimental measurements and computational modeling, to estimate the NO flux distribution in an Escherichia coli culture. Those fluxes will have uncertainty associated with them and we also discuss how further experiments and modeling can be employed for flux refinement.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Tribelli PM, Lujan AM, Pardo A, Ibarra JG, Fernández Do Porto D, Smania A, López NI. Core regulon of the global anaerobic regulator Anr targets central metabolism functions in Pseudomonas species. Sci Rep 2019; 9:9065. [PMID: 31227753 PMCID: PMC6588701 DOI: 10.1038/s41598-019-45541-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
A comparative genome analysis of the global anaerobic regulator Anr regulon in five species of Pseudomonas with different life style was performed. Expression of this regulator was detected in all analyzed Pseudomonas. The predicted Anr regulon (pan-regulon) consisted of 253 genes. However, only 11 Anr-boxes located upstream of qor/hemF, hemN, cioA/PA3931, azu, rpsL, gltP, orthologous to PA2867, cspD, tyrZ, slyD and oprG, were common to all species. Whole genome in silico prediction of metabolic pathways identified genes belonging to heme biosynthesis, cytochromes and Entner-Doudoroff pathway as members of Anr regulon in all strains. Extending genome analysis to 28 Pseudomonas spp. spanning all phylogenetic groups showed Anr-boxes conservation in genes related to these functions. When present, genes related to anaerobic metabolism were predicted to hold Anr-boxes. Focused on the genomes of eight P. aeruginosa isolates of diverse origins, we observed a conserved regulon, sharing nearly 80% of the genes, indicating its key role in this opportunistic pathogen. The results suggest that the core Anr regulon comprises genes involved in central metabolism and aerobic electron transport chain, whereas those genes related to anaerobic metabolism and other functions constitute the accessory Anr-regulon, thereby differentially contributing to the ecological fitness of each Pseudomonas species.
Collapse
Affiliation(s)
- Paula M Tribelli
- IQUIBICEN, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adela M Lujan
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.,CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Agustín Pardo
- IQUIBICEN, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José G Ibarra
- IQUIBICEN, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Andrea Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.,CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Nancy I López
- IQUIBICEN, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Brynildsen MP. Nitric Oxide Stress as a Metabolic Flux. Adv Microb Physiol 2018; 73:63-76. [PMID: 30262110 DOI: 10.1016/bs.ampbs.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) is an antimicrobial metabolite produced by immune cells to prohibit infection. Due to its reactivity, NO has numerous reaction routes available to it in biological systems with some leading to cellular damage and others producing innocuous compounds. Pathogens have evolved resistance mechanisms toward NO, and many of these take the form of enzymes that chemically passivate the molecule. In essence, bacteria have channeled NO flux toward useful or harmless compounds, and away from pathways that damage cellular components. Pathogens devoid of detoxification enzymes have been found to have compromised survival in different infection models, which suggests that diverting flux away from NO defenses could be a viable antiinfective strategy. From this perspective, potentiation of NO stress mirrors challenges in metabolic engineering where researchers endeavor to divert flux away from endogenous pathways and toward those that produce desirable biomolecules. In this review, we cast NO stress as a metabolic flux and discuss how the tools and methodologies of metabolic engineering are well suited for analysis of this bacterial stress response. We provide examples of such interdisciplinary applications, discuss the benefits of considering NO stress from a flux perspective, as well as the pitfalls, and offer a vision for how metabolic engineering analyses can assist in deciphering the economics underlying bacterial responses to multistress conditions that are characteristic of the phagosomes of immune cells.
Collapse
Affiliation(s)
- Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
14
|
Gomes FO, Maia LB, Cordas C, Moura I, Delerue-Matos C, Moura JJG, Morais S. Electroanalytical characterization of the direct Marinobacter hydrocarbonoclasticus nitric oxide reductase-catalysed nitric oxide and dioxygen reduction. Bioelectrochemistry 2018; 125:8-14. [PMID: 30176545 DOI: 10.1016/j.bioelechem.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
Understanding the direct electron transfer processes between redox proteins and electrode surface is fundamental to understand the proteins mechanistic properties and for development of novel biosensors. In this study, nitric oxide reductase (NOR) extracted from Marinobacter hydrocarbonoclasticus bacteria was adsorbed onto a pyrolytic graphite electrode (PGE) to develop an unmediated enzymatic biosensor (PGE/NOR)) for characterization of NOR direct electrochemical behaviour and NOR electroanalytical features towards NO and O2. Square-wave voltammetry showed the reduction potential of all the four NOR redox centers: 0.095 ± 0.002, -0.108 ± 0.008, -0.328 ± 0.001 and -0.635 ± 0.004 V vs. SCE for heme c, heme b, heme b3 and non-heme FeB, respectively. The determined sensitivity (-4.00 × 10-8 ± 1.84 × 10-9 A/μM and - 2.71 × 10-8 ± 1.44 × 10-9 A/μM for NO and O2, respectively), limit of detection (0.5 μM for NO and 1.0 μM for O2) and the Michaelis Menten constant (2.1 and 7.0 μM for NO and O2, respectively) corroborated the higher affinity of NOR for its natural substrate (NO). No significant interference on sensitivity towards NO was perceived in the presence of O2, while the O2 reduction was markedly and negatively impacted (3.6 times lower sensitivity) by the presence of NO. These results clearly demonstrate the high potential of NOR for the design of innovative NO biosensors.
Collapse
Affiliation(s)
- Filipa O Gomes
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida n° 451, 4249-015 Porto, Portugal; REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Luísa B Maia
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Cristina Cordas
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Moura
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida n° 451, 4249-015 Porto, Portugal
| | - José J G Moura
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida n° 451, 4249-015 Porto, Portugal.
| |
Collapse
|
15
|
Nitric Oxide-Mediated Induction of Dispersal in Pseudomonas aeruginosa Biofilms Is Inhibited by Flavohemoglobin Production and Is Enhanced by Imidazole. Antimicrob Agents Chemother 2018; 62:AAC.01832-17. [PMID: 29263060 DOI: 10.1128/aac.01832-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The biological signal molecule nitric oxide (NO) was found to induce biofilm dispersal across a range of bacterial species, which led to its consideration for therapeutic strategies to treat biofilms and biofilm-related infections. However, biofilms are often not completely dispersed after exposure to NO. To better understand this phenomenon, we investigated the response of Pseudomonas aeruginosa biofilm cells to successive NO treatments. When biofilms were first pretreated with a low, noneffective dose of NO, a second dose of the signal molecule at a concentration usually capable of inducing dispersal did not have any effect. Amperometric analysis revealed that pretreated P. aeruginosa cells had enhanced NO-scavenging activity, and this effect was associated with the production of the flavohemoglobin Fhp. Further, quantitative real-time reverse transcription-PCR (qRT-PCR) analysis showed that fhp expression increased by over 100-fold in NO-pretreated biofilms compared to untreated biofilms. Biofilms of mutant strains harboring mutations in fhp or fhpR, encoding a NO-responsive regulator of fhp, were not affected in their dispersal response after the initial pretreatment with NO. Overall, these results suggest that FhpR can sense NO to trigger production of the flavohemoglobin Fhp and inhibit subsequent dispersal responses to NO. Finally, the addition of imidazole, which can inhibit the NO dioxygenase activity of flavohemoglobin, attenuated the prevention of dispersal after NO pretreatment and improved the dispersal response in older, starved biofilms. This study clarifies the underlying mechanisms of impaired dispersal induced by repeated NO treatments and offers a new perspective for improving the use of NO in biofilm control strategies.
Collapse
|
16
|
Kim DJ, Park JH, Kim M, Park CY. The Antibiofilm efficacy of nitric oxide on soft contact lenses. BMC Ophthalmol 2017; 17:206. [PMID: 29162075 PMCID: PMC5696802 DOI: 10.1186/s12886-017-0604-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To investigate the antibiofilm efficacy of nitric oxide (NO) on soft contact lenses. METHODS Nitrite (NO precursor) release from various concentrations (0-1000 μM) of sodium nitrite (NaNO2, NO donor) was measured by Griess Assay. Cell viability assay was performed using human corneal epithelial cell under various concentration (0-1000 μM) of NaNO2. Biofilm formation on soft contact lenses was achieved by adding Staphylococcus aureus or Pseudomonas aeruginosa to the culture media. Various concentrations of NaNO2 (0-1000 μM) were added to the culture media, each containing soft contact lens. After incubation in NaNO2 containing culture media for 1, 3, or 7 days, each contact lens was transferred to a fresh, bacteria-free media without NaNO2. The bacteria in the biofilm were dispersed in the culture media for planktonic growth. After reculturing the lenses in the fresh media for 24 h, optical density (OD) of media was measured at 600 nm and colony forming unit (CFU) was counted by spreading media on tryptic soy agar plate for additional 18 h. RESULTS Nitrite release from NaNO2 showed dose-dependent suppressive effect on biofilm formation. Most nitrite release from NaNO2 tended to occur within 30 min. The viability of human corneal epithelial cells was well maintained at tested NaNO2 concentrations. The bacterial CFU and OD showed dose-dependent decrease in the NaNO2 treated samples on days 1, 3 and 7 for both Staphylococcus aureus and Pseudomonas aeruginosa. CONCLUSIONS NO successfully inhibited the biofilm formation by Staphylococcus aureus or Pseudomonas aeruginosa on soft contact lenses in dose-dependent manner.
Collapse
Affiliation(s)
- Dong Ju Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Marth Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea.
| |
Collapse
|