1
|
Ryu Y, Bouharras FE, Cha M, Mudondo J, Kim Y, Ramakrishnan SR, Shin S, Yu Y, Lee W, Park J, Song Y, Yum SJ, Cha HG, Ahn D, Kim SJ, Kim HT. Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. ENVIRONMENTAL RESEARCH 2025; 277:121629. [PMID: 40250592 DOI: 10.1016/j.envres.2025.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Biomass-based plastic production systems play a crucial role in fostering a sustainable society. Biodegradable mulch films (BDMs) have emerged as a practical solution to environmental pollution in agriculture. Various types of BDMs, including polybutylene adipate-co-terephthalate, polybutylene succinate, and polybutylene succinate-co-adipate, have been developed, though many are still derived from fossil-fuel-based plastics. Furthermore, the adoption of biodegradable materials in agricultural practices remains limited. This review critically assesses the evolution and significance of mulch films, highlighting the transition from traditional polyethylene (PE) to BDMs in response to environmental challenges. We provide an overview of the biorefinery approach to producing biomass-derived BDMs, discussing biomass pretreatment, saccharification, production of plastic monomers using microbial cell factories, purification, and polymerization. The review also explores techniques to enhance the biodegradation capabilities of mulch films during polymerization. Additionally, we emphasize the necessity for advancements in controlling the degradation rates of BDMs. By addressing the environmental concerns associated with the disposal of these materials, this review underscores the importance of developing effective strategies for a more sustainable and environmentally friendly agricultural landscape.
Collapse
Affiliation(s)
- Yeonkyeong Ryu
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Fatima Ezzahra Bouharras
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Minseok Cha
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joyce Mudondo
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Younghoon Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Sudha Rani Ramakrishnan
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biotechnology, Anna University, Chennai, 600025, India
| | - Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea; Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Jiyoung Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yunjeong Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| | - Dowon Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Soo-Jung Kim
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Wang F, Sun H, Deng D, Wu Y, Zhao J, Li Q, Li A. Multidimensional Engineering of Escherichia coli for Efficient Adipic Acid Synthesis From Cyclohexane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411938. [PMID: 39960345 PMCID: PMC11984861 DOI: 10.1002/advs.202411938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/07/2025] [Indexed: 04/12/2025]
Abstract
Adipic acid (AA), a key aliphatic dicarboxylic acid, is conventionally manufactured through energy-intensive, multi-step chemical processes with significant environmental impacts. In contrast, biological production methods offer more sustainable alternatives but are often limited by low productivity. To overcome these challenges, this study reports the engineering of a single Escherichia coli for efficient biosynthesis of AA starting from cyclohexanol (CHOL), KA oil (mixture of CHOL and cyclohexanone (CHONE)), or cyclohexane (CH). To start with, a comprehensive screening of rate-limiting enzymes is conducted, particularly focusing on cytochrome P450 monooxygenase, followed by the optimization of protein expression using strategies such as protein fusion, promoter replacement, and genome editing. Consequently, an engineered E. coli capable of efficiently converting either KA oil or CH into AA is obtained, achieving remarkable product titers of 110 and 22.6 g L-1, respectively. This represents the highest productivity record for the biological production of AA to date. Finally, this developed biocatalytic system is successfully employed to convert different cycloalkanes and cycloalkanols with varied carbon chain lengths into their corresponding dicarboxylic acids, highlighting its great potential as well as broad applicability for industrial applications.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
- School of Synthetic BiologyShanxi UniversityTaiyuan030031P. R. China
| | - Huiqi Sun
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Di Deng
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| |
Collapse
|
3
|
Nerke P, Korb J, Haala F, Hubmann G, Lütz S. Metabolic bottlenecks of Pseudomonas taiwanensis VLB120 during growth on d-xylose via the Weimberg pathway. Metab Eng Commun 2024; 18:e00241. [PMID: 39021639 PMCID: PMC11252243 DOI: 10.1016/j.mec.2024.e00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.
Collapse
Affiliation(s)
- Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Jonas Korb
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Frederick Haala
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Georg Hubmann
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Tüllinghoff A, Djaya‐Mbissam H, Toepel J, Bühler B. Light-driven redox biocatalysis on gram-scale in Synechocystis sp. PCC 6803 via an in vivo cascade. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2074-2083. [PMID: 37439151 PMCID: PMC10502755 DOI: 10.1111/pbi.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023]
Abstract
The photosynthetic light reaction in cyanobacteria constitutes a highly attractive tool for productive biocatalysis, as it can provide redox reactions with high-energy reduction equivalents using sunlight and water as sources of energy and electrons, respectively. Here, we describe the first artificial light-driven redox cascade in Synechocystis sp. PCC 6803 to convert cyclohexanone to the polymer building block 6-hydroxyhexanoic acid (6-HA). Co-expression of a Baeyer-Villiger monooxygenase (BVMO) and a lactonase, both from Acidovorax sp. CHX100, enabled this two-step conversion with an activity of up to 63.1 ± 1.0 U/gCDW without accumulating inhibitory ε-caprolactone. Thereby, one of the key limitations of biocatalytic reactions, that is, reactant inhibition or toxicity, was overcome. In 2 L stirred-tank-photobioreactors, the process could be stabilized for 48 h, forming 23.50 ± 0.84 mm (3.11 ± 0.12 g/L) 6-HA. The high specificity enabling a product yield (YP/S ) of 0.96 ± 0.01 mol/mol and the remarkable biocatalyst-related yield of 3.71 ± 0.21 g6-HA /gCDW illustrate the potential of producing this non-toxic product in a synthetic cascade. The fine-tuning of the energy burden on the catalyst was found to be crucial, which indicates a limitation by the metabolic capacity of the cells possibly being compromised by biocatalysis-related reductant withdrawal. Intriguingly, energy balancing revealed that the biotransformation could tap surplus electrons derived from the photosynthetic light reaction and thereby relieve photosynthetic sink limitation. This study shows the feasibility of light-driven biocatalytic cascade operation in cyanobacteria and highlights respective metabolic limitations and engineering targets to unleash the full potential of photosynthesis.
Collapse
Affiliation(s)
- Adrian Tüllinghoff
- Helmholtz‐Centre for Environmental Research – UFZ, PermoserstrLeipzigGermany
| | | | - Jörg Toepel
- Helmholtz‐Centre for Environmental Research – UFZ, PermoserstrLeipzigGermany
| | - Bruno Bühler
- Helmholtz‐Centre for Environmental Research – UFZ, PermoserstrLeipzigGermany
| |
Collapse
|
5
|
Zhi R, Cheng N, Li G, Deng Y. Biosensor-based high-throughput screening enabled efficient adipic acid production. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12669-z. [PMID: 37421473 DOI: 10.1007/s00253-023-12669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Adipic acid is an industrially important chemical, but the current approach to synthesize it can be of serious pollution to the environment. Rencently, bio-based production of adipic acid has significantly advanced with the development of metabolic engineering and synthetic biology. However, genetic heterogeneity-caused decrease of product titer has largely limited the industrialization of chemicals like adipic acid. Therefore, in the attempt to overcome this challenge, we constitutively expressed the reverse adipate degradation pathway, designed and optimized an adipic acid biosensor, and established a high-throughput screening platform to screen for high-performance strains based on the optimized biosensor. Using this platform, we successfully screened a strain with an adipic acid titer of 188.08 mg·L-1. Coupling the screening platform with fermentation optimization, the titer of adipic acid reached 531.88 mg·L-1 under shake flask fermentation, which achieved an 18.78-fold improvement comparing to the initial strain. Scale-up fermentation in a 5-L fermenter utilizing the screened high-performance strain was eventually conducted, in which the adipic acid titer reached 3.62 g·L-1. Overall, strategies developed in this study proved to be a potentially efficient method in reducing the genetic heterogeneity and was expected to provide guidance in helping to build a more efficient industrial screening process. KEY POINTS: • Developed a fine-tuned adipic acid biosensor. • Established a high-throughput screening platform to screen high-performance strains. • The titer of adipic acid reached 3.62 g·L-1 in a 5-L fermenter.
Collapse
Affiliation(s)
- Rui Zhi
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Cheng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guohui Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Froning M, Grütering C, Blank LM, Hayen H. Determination of double bond positions in methyl ketones by gas chromatography-mass spectrometry using dimethyl disulfide derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9457. [PMID: 36512472 DOI: 10.1002/rcm.9457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Methyl ketones are of interest for the application as biofuels. The fatty acid metabolism of different microbes has been rearranged to achieve a sustainable production of methyl ketones. The biofuel properties and possible further chemical modifications of these methyl ketones are influenced by their chain length, as well as their degree of saturation and the corresponding double bond position. METHODS A method based on gas chromatography-electron ionization; mass spectrometry (GC-EI-MS) was used to determine the double bond position of methyl ketones. Derivatization using dimethyl disulfide (DMDS) and an iodine catalyst enabled the activation of the double bonds for selective fragmentation during electron ionization. The cleavage led to key fragments in the Orbitrap high-resolution mass spectrum and allowed the unequivocal localization of the double bond position of the respective monounsaturated methyl ketone. RESULTS The double bond position of several medium chain length methyl ketones originating from the gram-negative bacterium Pseudomonas taiwanensis (P. taiwanensis) VLB120 was determined. The DMDS derivatives of methyl ketones can yield isobaric fragment ions for different possible double bond positions, which can be distinguished only using high-resolution MS. The double bond position of all methyl ketones deriving from P. taiwanensis VLB120 was the same, counting from the end of the aliphatic chain, and was determined as ω-7. CONCLUSIONS The derivatization of medium chain length monounsaturated methyl ketones with DMDS allowed the determination of the corresponding double bond position via GC-EI-MS. High-resolution MS is needed to differentiate possible double bond positions that yield isobaric fragment ions.
Collapse
Affiliation(s)
- Matti Froning
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Carolin Grütering
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Gauttam R, Eng T, Zhao Z, Ul Ain Rana Q, Simmons BA, Yoshikuni Y, Mukhopadhyay A, Singer SW. Development of genetic tools for heterologous protein expression in a pentose-utilizing environmental isolate of Pseudomonas putida. Microb Biotechnol 2023; 16:645-661. [PMID: 36691869 PMCID: PMC9948227 DOI: 10.1111/1751-7915.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.
Collapse
Affiliation(s)
- Rahul Gauttam
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas Eng
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Zhiying Zhao
- Joint Genome Institute, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Qurrat Ul Ain Rana
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Blake A Simmons
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yasuo Yoshikuni
- Joint Genome Institute, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven W Singer
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
8
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bioplastics are polymers made from sustainable bio-based feedstocks. While the potential of producing bio-based monomers in microbes has been investigated for decades, their economic feasibility is still unsatisfactory compared with petroleum-derived methods. To improve the overall synthetic efficiency of microbial cell factories, three main strategies were summarized in this review: firstly, implementing approaches to improve the microbial utilization ability of cheap and abundant substrates; secondly, developing methods at enzymes, pathway, and cellular levels to enhance microbial production performance; thirdly, building technologies to enhance microbial pH, osmotic, and metabolites stress tolerance. Moreover, the challenges of, and some perspectives on, exploiting microorganisms as efficient cell factories for producing bio-based monomers are also discussed.
Collapse
|
10
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Dhall A, Ramjee R, Oh MJ, Tao K, Hwang G. A 3D-Printed Customizable Platform for Multiplex Dynamic Biofilm Studies. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2200138. [PMID: 35935146 PMCID: PMC9347831 DOI: 10.1002/admt.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 05/03/2023]
Abstract
Biofilms are communities of microbes that colonize surfaces. While several biofilm experimental models exist, they often have limited replications of spatiotemporal dynamics surrounding biofilms. For a better understanding dynamic and complex biofilm development, this manuscript presents a customizable platform compatible with off-the-shelf well plates that can monitor microbial adhesion, growth, and associated parameters under various relevant scenarios by taking advantage of 3D printing. The system i) holds any substrate in a stable, vertical position, ii) subjects samples to flow at different angles, iii) switches between static and dynamic modes during an experiment, and iv) allows multiplexing and real-time monitoring of biofilm parameters. Simulated fluid dynamics is employed to estimate flow patterns around discs and shear stresses at disc surfaces. A 3D printed peristaltic pump and a customized pH measurement system for real-time tracking of spent biofilm culture media are equipped with a graphical user interface that grants control over all experimental parameters. The system is tested under static and dynamic conditions with Streptococcus mutans using different carbon sources. By monitoring the effluent pH and characterizing biochemical, microbiological, and morphological properties of cultured biofilms, distinct properties are demonstrated. This novel platform liberates designing experimental strategies for investigations of biofilms under various conditions.
Collapse
Affiliation(s)
- Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravikiran Ramjee
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Jun Oh
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Tao
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
13
|
Vikhareva IN, Aminova GK, Mazitova AK. Development of a Highly Efficient Environmentally Friendly Plasticizer. Polymers (Basel) 2022; 14:polym14091888. [PMID: 35567061 PMCID: PMC9100690 DOI: 10.3390/polym14091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
The purpose of this work is the synthesis of adipic acid ester and the study of the possibility of its use as a PVC plasticizer. The resulting butyl phenoxyethyl adipate was characterized by Fourier-transform infrared spectrometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The compatibility, effectiveness and plasticizing effect of butyl phenoxyethyl adipate in comparison with dioctylphthalate (DOP) were determined. The new environmentally friendly plasticizer has good compatibility with PVC and high thermal stability. The effectiveness of the plasticizing action of adipate based on the glass-transition temperature was 132.2 °C in relation to pure PVC and 7.7 °C in comparison to compounds based on DOP. An increase in the fluidity of the melt of polyvinyl chloride (PVC) compounds in the temperature range of 160–205 °C by 19–50% confirms a decrease in the energy intensity of the processes of manufacturing and the processing of polymer materials containing a new additive.
Collapse
|