1
|
Knier AS, Davis EE, Buchholz HE, Dorweiler JE, Flannagan LE, Manogaran AL. The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation. Front Mol Neurosci 2022; 15:1050472. [PMID: 36590917 PMCID: PMC9802906 DOI: 10.3389/fnmol.2022.1050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline.
Collapse
|
2
|
Dennis EM, Garcia DM. Biochemical Principles in Prion-Based Inheritance. EPIGENOMES 2022; 6:4. [PMID: 35225957 PMCID: PMC8883993 DOI: 10.3390/epigenomes6010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Prions are proteins that can stably fold into alternative structures that frequently alter their activities. They can self-template their alternate structures and are inherited across cell divisions and generations. While they have been studied for more than four decades, their enigmatic nature has limited their discovery. In the last decade, we have learned just how widespread they are in nature, the many beneficial phenotypes that they confer, while also learning more about their structures and modes of inheritance. Here, we provide a brief review of the biochemical principles of prion proteins, including their sequences, characteristics and structures, and what is known about how they self-template, citing examples from multiple organisms. Prion-based inheritance is the most understudied segment of epigenetics. Here, we lay a biochemical foundation and share a framework for how to define these molecules, as new examples are unearthed throughout nature.
Collapse
Affiliation(s)
- Emily M. Dennis
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
| | - David M. Garcia
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
4
|
Park S, Park SK, Watanabe N, Hashimoto T, Iwatsubo T, Shelkovnikova TA, Liebman SW. Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies. PLoS Genet 2019; 15:e1008308. [PMID: 31390360 PMCID: PMC6699716 DOI: 10.1371/journal.pgen.1008308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/19/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins associated with familial neurodegenerative disease often aggregate in patients’ neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases. Mutations in the calcium-responsive transactivator (CREST) protein have been shown to cause amyotrophic lateral sclerosis (ALS). Here we show that the human CREST protein expressed in yeast forms largely nuclear aggregates and is toxic. We also show that the HSP104 chaperone required for propagation of yeast prions is likewise required for CREST toxicity. Furthermore deletion of HSP104 affects CREST aggregation. ATXN2, previously shown to modify ALS toxicity caused by mutations in the TDP-43 encoding gene, also modifies toxicity of CREST expressed in either yeast or flies. In addition, deletion of the yeast ATXN2 ortholog reduces CREST aggregation. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sangeun Park
- Department of Pharmacology, University of Nevada, Reno, Untied States of America
| | - Sei-Kyoung Park
- Department of Pharmacology, University of Nevada, Reno, Untied States of America
| | | | | | | | | | - Susan W. Liebman
- Department of Pharmacology, University of Nevada, Reno, Untied States of America
- * E-mail:
| |
Collapse
|
5
|
Park SK, Park S, Liebman SW. Respiration Enhances TDP-43 Toxicity, but TDP-43 Retains Some Toxicity in the Absence of Respiration. J Mol Biol 2019; 431:2050-2059. [PMID: 30905713 DOI: 10.1016/j.jmb.2019.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
Abstract
The trans-activating response DNA-binding protein 43 (TDP-43) is a transcriptional repressor and splicing factor. TDP-43 is normally mostly in the nucleus, although it shuttles to the cytoplasm. Mutations in TDP-43 are one cause of familial amyotrophic lateral sclerosis. In neurons of these patients, TDP-43 forms cytoplasmic aggregates. In addition, wild-type TDP-43 is also frequently found in neuronal cytoplasmic aggregates in patients with neurodegenerative diseases not caused by TDP-43 mutations. TDP-43 expressed in yeast causes toxicity and forms cytoplasmic aggregates. This disease model has been validated because genetic modifiers of TDP-43 toxicity in yeast have led to the discovery that their conserved genes in humans are amyotrophic lateral sclerosis genetic risk factors. While how TDP-43 is associated with toxicity is unknown, several studies find that TDP-43 alters mitochondrial function. We now report that TDP-43 is much more toxic when yeast are respiring than when grown on a carbon source where respiration is inhibited. However, respiration is not the unique target of TDP-43 toxicity because we found that TDP-43 retains some toxicity even in the absence of respiration. We found that H2O2 increases the toxicity of TDP-43, suggesting that the reactive oxygen species associated with respiration could likewise enhance the toxicity of TDP-43. In this case, the TDP-43 toxicity targets in the presence or absence of respiration could be identical, with the reactive oxygen species produced by respiration activating TDP-43 to become more toxic or making TDP-43 targets more vulnerable.
Collapse
Affiliation(s)
- Sei-Kyoung Park
- Department of Pharmacology, University of Nevada, Reno, NV, USA
| | - Sangeun Park
- Department of Pharmacology, University of Nevada, Reno, NV, USA
| | - Susan W Liebman
- Department of Pharmacology, University of Nevada, Reno, NV, USA.
| |
Collapse
|
6
|
Abstract
From bacteria to humans, ancient stress responses enable organisms to contend with damage to both the genome and the proteome. These pathways have long been viewed as fundamentally separate responses. Yet recent discoveries from multiple fields have revealed surprising links between the two. Many DNA-damaging agents also target proteins, and mutagenesis induced by DNA damage produces variant proteins that are prone to misfolding, degradation, and aggregation. Likewise, recent studies have observed pervasive engagement of a p53-mediated response, and other factors linked to maintenance of genomic integrity, in response to misfolded protein stress. Perhaps most remarkably, protein aggregation and self-assembly has now been observed in multiple proteins that regulate the DNA damage response. The importance of these connections is highlighted by disease models of both cancer and neurodegeneration, in which compromised DNA repair machinery leads to profound defects in protein quality control, and vice versa.
Collapse
|
7
|
Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 2017; 13:e1006805. [PMID: 28531192 PMCID: PMC5460882 DOI: 10.1371/journal.pgen.1006805] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/06/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. Many neurodegenerative diseases are associated with aggregation of specific proteins. Thus we are interested in factors that influence the aggregation and how the aggregated proteins are associated with pathology. Here, we study a protein called TDP-43 that is frequently aggregated in the neurons of patients with amyotrophic lateral sclerosis (ALS). TDP-43 aggregates and is toxic when expressed in yeast, providing a useful model for ALS. Remarkably, a protein that modified TDP-43 toxicity in yeast successfully predicted a new ALS susceptibility gene in humans. We now report a new modifier of TDP-43 toxicity, Sis1. We show that expression of TDP-43 in yeast inhibits degradation of damaged protein, while overexpression of Sis1 restores degradation. Thus suggests a link between protein degradation and TDP-43 toxicity. Furthermore we show that a mammalian protein similar to Sis1 reduces TDP-43 toxicity in primary rodent neurons. This identifies the mammalian Sis1-like gene as a new ALS therapeutic target and possible susceptibility gene.
Collapse
|
8
|
Stein KC, True HL. Structural variants of yeast prions show conformer-specific requirements for chaperone activity. Mol Microbiol 2014; 93:1156-71. [PMID: 25060529 DOI: 10.1111/mmi.12725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 02/03/2023]
Abstract
Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1 and its human orthologue Hdj1 had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
9
|
Stein KC, True HL. Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions. PLoS Genet 2014; 10:e1004337. [PMID: 24811344 PMCID: PMC4014422 DOI: 10.1371/journal.pgen.1004337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 11/27/2022] Open
Abstract
Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression.
Collapse
Affiliation(s)
- Kevin C. Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Byers JS, Jarosz DF. Pernicious pathogens or expedient elements of inheritance: the significance of yeast prions. PLoS Pathog 2014; 10:e1003992. [PMID: 24722628 PMCID: PMC3983059 DOI: 10.1371/journal.ppat.1003992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- James S Byers
- Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel F Jarosz
- Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
11
|
Pampeno C, Derkatch IL, Meruelo D. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins. PLoS One 2014; 9:e86013. [PMID: 24416454 PMCID: PMC3885751 DOI: 10.1371/journal.pone.0086013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
The laminin receptor (LamR) is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C) and PrP(Sc). Indeed, LamR is a receptor for PrP(C). Whether LamR interacts with PrP(Sc) exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrP(Sc), is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP) were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI⁺] and [psi⁻]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI⁺] strains. The presence of [PSI⁺] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI⁺] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI⁺] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.
Collapse
Affiliation(s)
- Christine Pampeno
- Gene Therapy Center, Cancer Institute and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Irina L. Derkatch
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Daniel Meruelo
- Gene Therapy Center, Cancer Institute and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
12
|
Abstract
Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23–46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Amy C Kelly
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Sharma J, Liebman SW. Variant-specific prion interactions: Complicating factors. CELLULAR LOGISTICS 2013; 3:e25698. [PMID: 24475372 PMCID: PMC3891757 DOI: 10.4161/cl.25698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023]
Abstract
Prions are protein conformations that “self-seed” the misfolding of their non-prion iso-forms into prion, often amyloid, conformations. The most famous prion is the mammalian PrP protein that in its prion form causes transmissible spongiform encephalopathy. Curiously there can be distinct conformational differences even between prions of the same protein propagated in the same host species. These are called prion strains or variants. For example, different PrP variants are faithfully transmitted during self-seeding and are associated with distinct disease characteristics. Variant-specific PrP prion differences include the length of the incubation period before the disease appears and the deposition of prion aggregates in distinct regions of the brain.1 Other more common neurodegenerative diseases (e.g., Alzheimer disease, Parkinson disease, type 2 diabetes and ALS) are likewise caused by the misfolding of a normal protein into a self-seeding aggregate.2-4 One of the most important unanswered questions is how the first prion-like seed arises de novo, resulting in the pathological cascade.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, IL USA
| | - Susan W Liebman
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, IL USA ; Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno, NV USA
| |
Collapse
|
14
|
Oishi K, Kurahashi H, Pack CG, Sako Y, Nakamura Y. A bipolar functionality of Q/N-rich proteins: Lsm4 amyloid causes clearance of yeast prions. Microbiologyopen 2013; 2:415-30. [PMID: 23512891 PMCID: PMC3684756 DOI: 10.1002/mbo3.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 12/11/2022] Open
Abstract
Prions are epigenetic modifiers that cause partially loss-of-function phenotypes of the proteins in Saccharomyces cerevisiae. The molecular chaperone network that supports prion propagation in the cell has seen a great progress in the last decade. However, the cellular machinery to activate or deactivate the prion states remains an enigma, largely due to insufficient knowledge of prion-regulating factors. Here, we report that overexpression of a [PSI+]-inducible Q/N-rich protein, Lsm4, eliminates the three major prions [PSI+], [URE3], and [RNQ+]. Subcloning analysis revealed that the Q/N-rich region of Lsm4 is responsible for the prion loss. Lsm4 formed an amyloid in vivo, which seemed to play a crucial role in the prion elimination. Fluorescence correlation spectroscopy analysis revealed that in the course of the Lsm4-driven [PSI+] elimination, the [PSI+] aggregates undergo a size increase, which ultimately results in the formation of conspicuous foci in otherwise [psi−]-like mother cells. We also found that the antiprion activity is a general property of [PSI+]-inducible factors. These data provoked a novel “unified” model that explains both prion induction and elimination by a single scheme.
Collapse
Affiliation(s)
- Keita Oishi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
15
|
Clearance of yeast prions by misfolded multi-transmembrane proteins. Biochimie 2013; 95:1223-32. [PMID: 23384482 DOI: 10.1016/j.biochi.2013.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces the stress response to protect cells against toxicity by the unfolded protein response (UPR), heat shock response (HSR), and ER-associated degradation pathways. Here, we found that over-production of C-terminally truncated multi-transmembrane (MTM) mutant proteins triggers HSR, but not UPR, and clearance of yeast prions [PSI(+)] and [URE3]. One of the mutant MTM proteins, Dip5ΔC-v82, produces a disabled amino-acid permease. Fluorescence microscopy analysis revealed abnormal accumulation of Dip5ΔC-v82 in the ER. Importantly, the mutant defective in the GET pathway, which functions for ER membrane insertion of tail-anchored proteins, failed to translocate Dip5ΔC-v82 to the ER and disabled Dip5ΔC-v82-mediated prion clearance. These findings suggest that the GET pathway plays a pivotal role in quality assurance of MTM proteins, and entraps misfolded MTM proteins into ER compartments, leading to loss-of-prion through a yet undefined mechanism.
Collapse
|
16
|
Lancaster DL, Dobson CM, Rachubinski RA. Chaperone proteins select and maintain [PIN+] prion conformations in Saccharomyces cerevisiae. J Biol Chem 2012; 288:1266-76. [PMID: 23148221 DOI: 10.1074/jbc.m112.377564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prions are proteins that can adopt different infectious conformations known as "strains" or "variants," each with a distinct, epigenetically inheritable phenotype. Mechanisms by which prion variants are determined remain unclear. Here we use the Saccharomyces cerevisiae prion Rnq1p/[PIN(+)] as a model to investigate the effects of chaperone proteins upon prion variant determination. We show that deletion of specific chaperone genes alters [PIN(+)] variant phenotypes, including [PSI(+)] induction efficiency, Rnq1p aggregate morphology/size and variant dominance. Mating assays demonstrate that gene deletion-induced phenotypic changes are stably inherited in a non-Mendelian manner even after restoration of the deleted gene, confirming that they are due to a bona fide change in the [PIN(+)] variant. Together, our results demonstrate a role for chaperones in regulating the prion variant complement of a cell.
Collapse
Affiliation(s)
- David L Lancaster
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
17
|
Abstract
Even deadly prions may be widespread in nature if they spread by infection faster than they kill off their hosts. The yeast prions [PSI+] and [URE3] (amyloids of Sup35p and Ure2p) were not found in 70 wild strains, while [PIN+] (amyloid of Rnq1p) was found in ∼16% of the same population. Yeast prion infection occurs only by mating, balancing the detrimental effects of carrying the prion. We estimated the frequency of outcross mating as about 1% of mitotic doublings from the known detriment of carrying the 2-μm DNA plasmid (∼1%) and its frequency in wild populations (38/70). We also estimated the fraction of total matings that are outcross matings (∼23-46%) from the fraction of heterozygosity at the highly polymorphic RNQ1 locus (∼46%). These results show that the detriment of carrying even the mildest forms of [PSI+], [URE3], or [PIN+] is greater than 1%. We find that Rnq1p polymorphisms in wild strains include several premature stop codon alleles that cannot propagate [PIN+] from the reference allele and others with several small deletions and point mutations which show a small transmission barrier. Wild strains carrying [PIN+] are far more likely to be heterozygous at RNQ1 and other loci than are [pin-] strains, probably reflecting its being a sexually transmitted disease. Because sequence differences are known to block prion propagation or ameliorate its pathogenic effects, we hypothesize that polymorphism of RNQ1 was selected to protect cells from detrimental effects of the [PIN+] prion.
Collapse
|
18
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
19
|
Kabani M, Cosnier B, Bousset L, Rousset JP, Melki R, Fabret C. A mutation within the C-terminal domain of Sup35p that affects [PSI+] prion propagation. Mol Microbiol 2011; 81:640-58. [PMID: 21631606 DOI: 10.1111/j.1365-2958.2011.07719.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The epigenetic factor [PSI+] in the yeast Saccharomyces cerevisiae is due to the prion form of Sup35p. The N-terminal domain of Sup35p (N), alone or together with the middle-domain (NM), assembles in vitro into fibrils that induce [PSI+] when introduced into yeast cells. The Sup35p C-terminal domain (C), involved in translation termination, is essential for growth. The involvement of Sup35p C-terminal domain into [PSI+] propagation is subject to debate. We previously showed that mutation of threonine 341 within Sup35p C-domain affects translation termination efficiency. Here, we demonstrate that mutating threonine 341 to aspartate or alanine results in synthetic lethality with [PSI+] and weakening of [PSI+] respectively. The corresponding Sup35D and Sup35A proteins assemble into wild-type like fibrils in vitro, but with a slower elongation rate. Moreover, cross-seeding between Sup35p and Sup35A is inefficient both in vivo and in vitro, suggesting that the point mutation alters the structural properties of Sup35p within the fibrils. Thus, Sup35p C-terminal domain modulates [PSI+] prion propagation, possibly through a functional interaction with the N and/or M domains of the protein. Our results clearly demonstrate that Sup35p C-terminal domain plays a critical role in prion propagation and provide new insights into the mechanism of prion conversion.
Collapse
Affiliation(s)
- Mehdi Kabani
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Bât. 34, Avenue de la Terrasse, F-91190 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
20
|
Fernández-Tresguerres ME, de la Espina SMD, Gasset-Rosa F, Giraldo R. A DNA-promoted amyloid proteinopathy in Escherichia coli. Mol Microbiol 2010; 77:1456-69. [PMID: 20662778 DOI: 10.1111/j.1365-2958.2010.07299.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein amyloids arise from the conformational conversion and assembly of a soluble protein into fibrilar aggregates with a crossed β-sheet backbone. Amyloid aggregates are able to replicate by acting as a template for the structural transformation and accretion of further protein molecules. In physicochemical terms, amyloids arguably constitute the simplest self-replicative macromolecular assemblies. Similarly to the mammalian proteins PrP and α-synuclein, the winged-helix dimerization (WH1) domain of the bacterial, plasmid-encoded protein RepA can assemble into amyloid fibres upon binding to DNA in vitro. Here we report that a hyper-amyloidogenic functional variant (A31V) of RepA, fused to a red fluorescent protein, causes an amyloid proteinopathy in Escherichia coli with the following features: (i) in the presence of multiple copies of the specific DNA sequence opsp, WH1(A31V) accumulates as cytoplasmatic inclusions segregated from the nucleoid; (ii) such aggregates are amyloid in nature; (iii) bacteria carrying the amyloid inclusions age, exhibiting a fivefold expanded generation time; (iv) before cytokinesis, small inclusions are assembled de novo and transferred to the daughter cells, in which transmission failures cure amyloidosis; and (v) in the absence of inducer DNA, purified cellular WH1(A31V) inclusions seed amyloid fibre growth in vitro from the soluble protein. RepA-WH1 is a suitable bacterial model system for amyloid proteinopathies.
Collapse
Affiliation(s)
- M Elena Fernández-Tresguerres
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast. Methods Enzymol 2010; 470:709-34. [PMID: 20946833 DOI: 10.1016/s0076-6879(10)70030-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein aggregates are associated with a variety of debilitating human diseases, but they can have functional roles as well. Both pathological and nonpathological protein aggregates display tremendous diversity, with substantial differences in aggregate size, morphology, and structure. Among the different aggregation types, amyloids are particularly remarkable, because of their high degree of order and their ability to form self-perpetuating conformational states. Amyloids form the structural basis for a group of proteins called prions, which have the ability to generate new phenotypes by a simple switch in protein conformation that does not involve changes in the sequence of the DNA. Although protein aggregates are notoriously difficult to study, recent technological developments and, in particular, the use of yeast prions as model systems, have been very instrumental in understanding fundamental aspects of aggregation. Here, we provide a range of biochemical, cell biological and yeast genetic methods that are currently used in our laboratory to study protein aggregation and the formation of amyloids and prions.
Collapse
|
22
|
Distinct type of transmission barrier revealed by study of multiple prion determinants of Rnq1. PLoS Genet 2010; 6:e1000824. [PMID: 20107602 PMCID: PMC2809767 DOI: 10.1371/journal.pgen.1000824] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022] Open
Abstract
Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1's prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold. Prions, self-propagating protein conformations and causative agents of lethal neurodegenerative diseases, present a serious public health threat: they can arise sporadically and then spread by transmission to the same, as well as other, species. The risk of infecting humans with prions originating in wild and domestic animals is determined by the so-called transmission barriers. These barriers are attributed to differences in prion proteins from different species, but their underlying mechanisms are not clear. Recent findings that the prion state is transmitted through the interaction between short transmitting regions within prion domains revealed one type of transmission barrier, where productive templating is impeded by non-matching amino acids within transmitting regions. Here we present studies of the prion domain of the [PIN+]-forming protein, Rnq1, and describe a distinct type of transmission barrier not involving individual amino acid mismatches in the transmitting regions. Rnq1's prion domain is complex and encompasses four regions that can independently transmit the prion state. Our data suggest that multiple prion determinants of a complex prion domain act cooperatively to attain the prion conformation, and transmission barriers occur between protein variants that cannot form the same higher order structure, despite the identity of the region(s) driving the transmission.
Collapse
|
23
|
Shibata S, Kurahashi H, Nakamura Y. Localization of prion-destabilizing mutations in the N-terminal non-prion domain of Rnq1 in Saccharomyces cerevisiae. Prion 2009; 3:250-8. [PMID: 20009538 DOI: 10.4161/pri.3.4.10388] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
[PIN(+)] is the prion form of Rnq1 in Saccharomyces cerevisiae and is necessary for the de novo induction of a second prion, [PSI(+)]. The function of Rnq1, however, is little understood. The limited availability of defective rnq1 alleles impedes the study of its structure-function relationship by genetic analysis. In this study, we isolated rnq1 mutants that are defective in the stable maintenance of the [PIN(+)] prion. Since there is no rnq1 phenotype available that is applicable to a direct selection or screening for loss-of-function rnq1 mutants, we took advantage of a prion inhibitory agent, Rnq1Delta100, to develop a color-based genetic screen. Rnq1Delta100 eliminates the [PSI(+)] prion in the [PIN(+)] state but not in the [pin(-)] state. This allows us to find loss-of-[PIN(+)] rnq1 mutants as white [PSI(+)] colonies. Nine rnq1 mutants with single-amino-acid substitutions were defined. These mutations impaired the stable maintenance of [PIN(+)] and, as a consequence, were also partially defective in the de novo induction of [PSI(+)]. Interestingly, eight of the nine alleles were mapped to the N-terminal region of Rnq1, which is known as the non-prion domain preceding the asparagine and glutamine rich prion domain of Rnq1. Notably, overexpression of these rnq1 mutant proteins restored [PIN(+)] prion activity, suggesting that each of the rnq1 mutants was not completely inactive. These findings indicate that the N-terminal non-prion domain of Rnq1 harbors a potent activity to regulate the maintenance of the [PIN(+)] prion.
Collapse
Affiliation(s)
- Shoichiro Shibata
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Bardill JP, Dulle JE, Fisher JR, True HL. Requirements of Hsp104p activity and Sis1p binding for propagation of the [RNQ(+)] prion. Prion 2009; 3:151-60. [PMID: 19770577 DOI: 10.4161/pri.3.3.9662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation and maintenance of prions in the yeast Saccharomyces cerevisiae is highly regulated by the cellular chaperone machinery. The most important player in this regulation is Hsp104p, which is required for the maintenance of all known prions. The requirements for other chaperones, such as members of the Hsp40 or Hsp70 families, vary with each individual prion. [RNQ(+)] cells do not have a phenotype that is amenable to genetic screens to identify cellular factors important in prion propagation. Therefore, we used a chimeric construct that reports the [RNQ(+)] status of cells to perform a screen for mutants that are unable to maintain [RNQ(+)]. We found eight separate mutations in Hsp104p that caused [RNQ(+)] cells to become [rnq(-)]. These mutations also caused the loss of the [PSI(+)] prion. The expression of one of these mutants, Hsp104p-E190K, showed differential loss of the [RNQ(+)] and [PSI(+)] prions in the presence of wild type Hsp104p. Hsp104p-E190K inefficiently propagated [RNQ(+)] and was unable to maintain [PSI(+)]. The mutant was unable to act on other in vivo substrates, as strains carrying it were not thermotolerant. Purified recombinant Hsp104p-E190K showed a reduced level of ATP hydrolysis as compared to wild type protein. This is likely the cause of both prion loss and lack of in vivo function. Furthermore, it suggests that [RNQ(+)] requires less Hsp104p activity to maintain transmissible protein aggregates than Sup35p. Additionally, we show that the L94A mutation in Rnq1p, which reduces its interaction with Sis1p, prevents Rnq1p from maintaining a prion and inducing [PSI(+)].
Collapse
Affiliation(s)
- J Patrick Bardill
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
25
|
Abstract
[PIN(+)] is a prion form of Rnq1 in Saccharomyces cerevisiae and is necessary for the de novo induction of a second prion, [PSI(+)]. We previously isolated a truncated form of Rnq1, named Rnq1Delta100, as a [PSI(+)]-eliminating factor in S. cerevisiae. Rnq1Delta100 deletes the N-terminal non-prion domain of Rnq1, and eliminates [PSI(+)] in [PIN(+)] yeast. Here we found that [PIN(+)] is transmissible to Rnq1Delta100 in the absence of full-length Rnq1, forming a novel prion variant [RNQ1Delta100(+)]. [RNQ1Delta100(+)] has similar [PIN(+)] properties as it stimulates the de novo induction of [PSI(+)] and is eliminated by the null hsp104Delta mutation, but not by Hsp104 overproduction. In contrast, [RNQ1Delta100(+)] inherits the inhibitory activity and hampers the maintenance of [PSI(+)] though less efficiently than [PIN(+)] made of Rnq1-Rnq1Delta100 co-aggregates. Interestingly, [RNQ1Delta100(+)] prion was eliminated by de novo [PSI(+)] induction. Thus, the [RNQ1Delta100(+)] prion demonstrates selfish activity to eliminate a heterologous prion in S. cerevisiae, showing the first instance of a selfish prion variant in living organisms.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
26
|
A G-protein gamma subunit mimic is a general antagonist of prion propagation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2009; 106:791-6. [PMID: 19129493 DOI: 10.1073/pnas.0808383106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gpg1 protein is a Ggamma subunit mimic implicated in the G-protein glucose-signaling pathway in Saccharomyces cerevisiae, and its function is largely unknown. Here we report that Gpg1 blocks the maintenance of [PSI(+)], an aggregated prion form of the translation termination factor Sup35. Although the GPG1 gene is normally not expressed, over-expression of GPG1 inhibits propagation of not only [PSI(+)] but also [PIN(+)], [URE3] prions, and the toxic polyglutamine aggregate in S. cerevisiae. Over-expression of Gpg1 does not affect expression and activity of Hsp104, a protein-remodeling factor required for prion propagation, showing that Gpg1 does not target Hsp104 directly. Nevertheless, prion elimination by Gpg1 is weakened by over-expression of Hsp104. Importantly, Gpg1 protein is prone to self-aggregate and transiently colocalized with Sup35NM-prion aggregates when expressed in [PSI(+)] cells. Genetic selection and characterization of loss-of-activity gpg1 mutations revealed that multiple mutations on the hydrophobic one-side surface of predicted alpha-helices of the Gpg1 protein hampered the activity. Prion elimination by Gpg1 is unaffected in the gpa2Delta and gpb1Delta strains lacking the supposed physiological G-protein partners of Gpg1. These findings suggest a general inhibitory interaction of the Gpg1 protein with other transmissible and nontransmissible amyloids, resulting in prion elimination. Assuming the ability of Gpg1 to form G-protein heterotrimeric complexes, Gpg1 is likely to play a versatile function of reversing the prion state and modulating the G-protein signaling pathway.
Collapse
|
27
|
A regulatory role of the Rnq1 nonprion domain for prion propagation and polyglutamine aggregates. Mol Cell Biol 2008; 28:3313-23. [PMID: 18332119 DOI: 10.1128/mcb.01900-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prions are infectious, self-propagating protein conformations. Rnq1 is required for the yeast Saccharomyces cerevisiae prion [PIN(+)], which is necessary for the de novo induction of a second prion, [PSI(+)]. Here we isolated a [PSI(+)]-eliminating mutant, Rnq1Delta100, that deletes the nonprion domain of Rnq1. Rnq1Delta100 inhibits not only [PSI(+)] prion propagation but also [URE3] prion and huntingtin's polyglutamine aggregate propagation in a [PIN(+)] background but not in a [pin(-)] background. Rnq1Delta100, however, does not eliminate [PIN(+)]. These findings are interpreted as showing a possible involvement of the Rnq1 prion in the maintenance of heterologous prions and polyQ aggregates. Rnq1 and Rnq1Delta100 form a sodium dodecyl sulfate-stable and Sis1 (an Hsp40 chaperone protein)-containing coaggregate in [PIN(+)] cells. Importantly, Rnq1Delta100 is highly QN-rich and prone to self-aggregate or coaggregate with Rnq1 when coexpressed in [pin(-)] cells. However, the [pin(-)] Rnq1-Rnq1Delta100 coaggregate does not represent a prion-like aggregate. These findings suggest that [PIN(+)] Rnq1-Rnq1Delta100 aggregates interact with other transmissible and nontransmissible amyloids to destabilize them and that the nonprion domain of Rnq1 plays a crucial role in self-regulation of the highly reactive QN-rich prion domain of Rnq1.
Collapse
|
28
|
Alternative assembly pathways of the amyloidogenic yeast prion determinant Sup35-NM. EMBO Rep 2007; 8:1196-201. [PMID: 17975557 DOI: 10.1038/sj.embor.7401096] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 09/03/2007] [Accepted: 09/20/2007] [Indexed: 11/08/2022] Open
Abstract
The self-perpetuating conformational change of the translation termination factor Sup35 is associated with a prion phenomenon of Saccharomyces cerevisiae. In vitro, the prion-determining region (NM) of Sup35 assembles into amyloid-like fibres through a mechanism of nucleated conformational conversion. Here, we describe an alternative assembly pathway of NM that produces filaments that are composed of beta-strands and random coiled regions with several-fold smaller diameters than the amyloid fibres. NM filaments are not detectable with either thioflavin T or Congo Red and do not show SDS or protease resistance. As filaments do not self-convert into fibres and do not act as seed, they are not intermediates of amyloid fibre formation. Instead, they represent a stable off-pathway form. Similar to mammalian prion proteins, Sup35 contains oligopeptide repeats located in the NM region. We found that the number of repeats determines the partitioning of the protein between filaments and amyloid-like fibres. Low numbers of repeats favour the formation of the filamentous structure, whereas high numbers of repeats favour the formation of amyloid-like fibres.
Collapse
|
29
|
Taneja V, Maddelein ML, Talarek N, J. Saupe S, Liebman SW. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Mol Cell 2007; 27:67-77. [PMID: 17612491 PMCID: PMC1995001 DOI: 10.1016/j.molcel.2007.05.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/22/2007] [Accepted: 05/25/2007] [Indexed: 11/29/2022]
Abstract
Prions are self-propagating, infectious aggregates of misfolded proteins. The mammalian prion, PrP(Sc), causes fatal neurodegenerative disorders. Fungi also have prions. While yeast prions depend upon glutamine/asparagine (Q/N)-rich regions, the Podospora anserina HET-s and PrP prion proteins lack such sequences. Nonetheless, we show that the HET-s prion domain fused to GFP propagates as a prion in yeast. Analogously to native yeast prions, transient overexpression of the HET-s fusion induces ring-like aggregates that propagate in daughter cells as cytoplasmically inherited, detergent-resistant dot aggregates. Efficient dot propagation, but not ring formation, is dependent upon the Hsp104 chaperone. The yeast prion [PIN(+)] enhances HET-s ring formation, suggesting that prions with and without Q/N-rich regions interact. Finally, HET-s aggregates propagated in yeast are infectious when introduced into Podospora. Taken together, these results demonstrate prion propagation in a truly foreign host. Since yeast can host non-Q/N-rich prions, such native yeast prions may exist.
Collapse
Affiliation(s)
- Vibha Taneja
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Marie-Lise Maddelein
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR NRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Nicolas Talarek
- Hérédité Structurale et Prions Institut de Biochimie et de Génétique Cellulaire UMR 5095 CNRS-Universities de Bordeaux 2 33077 Bordeaux France, Present address, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, BOSTON, MA 02115, USA
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR NRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| |
Collapse
|
30
|
Abstract
The term prion has been used to describe self-replicating protein conformations that can convert other protein molecules of the same primary structure into its prion conformation. Several different proteins have now been found to exist as prions in Saccharomyces cerevisiae. Surprisingly, these heterologous prion proteins have a strong influence on each others' appearance and propagation, which may result from structural similarity between the prions. Both positive and negative effects of a prion on the de novo appearance of a heterologous prion have been observed in genetic studies. Other examples of reported interactions include mutual or unilateral inhibition and destabilization when two prions are present together in a single cell. In vitro work showing that one purified prion stimulates the conversion of a purified heterologous protein into a prion form, suggests that facilitation of de novo prion formation by heterologous prions in vivo is a result of a direct interaction between the prion proteins (a cross-seeding mechanism) and does not require other cellular components. However, other cellular structures, e.g., the cytoskeleton, may provide a scaffold for these interactions in vivo and chaperones can further facilitate or inhibit this process. Some negative prion-prion interactions may also occur via a direct interaction between the prion proteins. Another explanation is a competition between the prions for cellular factors involved in prion propagation or differential effects of chaperones stimulated by one prion on the heterologous prions.
Collapse
Affiliation(s)
- Irina L Derkatch
- Department of Microbiology, New York University School of Medicine, New York University Medical Center, New York, New York 10016, USA.
| | | |
Collapse
|
31
|
von der Haar T, Jossé L, Wright P, Zenthon J, Tuite MF. Development of a Novel Yeast Cell-Based System for Studying the Aggregation of Alzheimer’s Disease-Associated Aβ Peptides in vivo. NEURODEGENER DIS 2007; 4:136-47. [PMID: 17596708 DOI: 10.1159/000101838] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is the most common neurodegenerative disease, affecting approximately 50% of humans by age 85. The disease process is associated with aggregation of the Abeta peptides, short 39-43 residue peptides generated through endoproteolytic cleavage of the Alzheimer's precursor protein. While the process of aggregation of purified Abeta peptides in vitro is beginning to be well understood, little is known about this process in vivo. In the present study, we use the yeast Saccharomyces cerevisiae as a model system for studying Abeta-mediated aggregation in an organism in vivo. One of this yeast's endogenous prions, Sup35/[PSI+], loses the ability to aggregate when the prion-forming domain of this protein is deleted. We show that insertion of Abeta peptide sequences in place of the original prion domain of this protein restores its ability to aggregate. However, the aggregates are qualitatively different from [PSI+] prions in their sensitivity to detergents and in their requirements on trans-acting factors that are normally needed for [PSI+] propagation. We conclude that we have established a useful new tool for studying the aggregation of Abeta peptides in an organism in vivo.
Collapse
Affiliation(s)
- Tobias von der Haar
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, UK
| | | | | | | | | |
Collapse
|
32
|
Kurahashi H, Nakamura Y. Channel mutations in Hsp104 hexamer distinctively affect thermotolerance and prion-specific propagation. Mol Microbiol 2007; 63:1669-83. [PMID: 17367387 DOI: 10.1111/j.1365-2958.2007.05629.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The yeast prion [PSI(+)] represents an aggregated state of the translation termination factor Sup35 resulting in the tendency of ribosomes to readthrough stop codons. In this study, we constructed an auxotrophic chromosomal marker, ura3-197 (nonsense allele), applicable to selection for loss of [PSI(+)] to [psi(-)]. Unlike [psi(-)] yeast strains, [PSI(+)] yeast strains exhibit nonsense suppression of the ura3-197 allele and are not viable in the presence of 5-fluoroorotic acid (5-FOA) that is converted to a toxic material by the readthrough product of Ura3. We selected 20 5-FOA-resistant, loss-of-[PSI(+)], mutants spontaneously or by transposon-mediated mutagenesis from ura3-197[PSI(+)] cells. All of the 20 [psi(-)] isolates were affected in Hsp104, a protein-remodelling factor. Although most of them were disabled in a normal Hsp104 function for thermotolerance, three single mutants, L462R, P557L and D704N, remained thermotolerant. Importantly, L462R and D704N also eliminate other yeast prions [URE3] and [PIN(+)], while P557L does not, suggesting that Hsp104 harbours a unique activity to prion propagation independent of its function in thermotolerance. The mutations that are specific to prion propagation are clustered around the lateral channel of the Hsp104 hexamer, suggesting a crucial and specific role of this channel for prion propagation.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
33
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|