1
|
Li Y, Kardell MB, Wang F, Wang L, Zhu S, Bessho T, Peng A. The Sm core components of small nuclear ribonucleoproteins promote homologous recombination repair. DNA Repair (Amst) 2021; 108:103244. [PMID: 34768043 DOI: 10.1016/j.dnarep.2021.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
DNA Double strand breaks (DSBs) are highly hazardous to the cell, and are repaired predominantly via non-homologous end joining (NHEJ) and homologous recombination (HR). Using DSB-mimicking DNA templates, our proteomic studies identified a group of Sm core proteins of small nuclear ribonucleoproteins (snRNPs) as potential DSB-associated proteins. We further confirmed that these Sm proteins were recruited to laser-induced DNA damage sites, and co-localized with established DNA damage repair factors. Depletion of Sm-D3 or Sm-B induced accumulation of γ-H2AX, and impaired the repair efficiency of HR, but not NHEJ. Furthermore, disruption of Sm-D3 reduced the protein level of HR factors, especially RAD51 and CHK1, but caused no change in the expression of repair factors involved in NHEJ. Mechanistically, Sm-D3 proteins bound RAD51, suppressed the ubiquitination of RAD51, and mediated the stabilization of RAD51; Sm-D3 depletion particularly impacted the level of RAD51 and CHK1 on damaged chromatin. As such, our studies characterized a role of Sm proteins in HR repair, via a new mechanism that is distinct from their conventional functions in RNA processing and gene regulation, but consistent with their direct recruitment to DNA damage sites and association with repair factors.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Mary Bridget Kardell
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Songli Zhu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA.
| |
Collapse
|
2
|
Abstract
The DNA damage response (DDR) is a coordinated cellular response to a variety of insults to the genome. DDR initiates the activation of cell cycle checkpoints preventing the propagation of damaged DNA followed by DNA repair, which are both critical in maintaining genome integrity. Several model systems have been developed to study the mechanisms and complexity of checkpoint function. Here we describe the application of cell-free extracts derived from Xenopus eggs as a model system to investigate signaling from DNA damage, modulation of DNA replication, checkpoint activation, and ultimately DNA repair. We outline the preparation of cell-free extracts, DNA substrates, and their subsequent use in assays aimed at understanding the cellular response to DNA damage. Cell-free extracts derived from the eggs of Xenopus laevis remain a robust and versatile system to decipher the biochemical steps underlying this essential characteristic of all cells, critical for genome stability.
Collapse
|
3
|
Zhu S, Paydar M, Wang F, Li Y, Wang L, Barrette B, Bessho T, Kwok BH, Peng A. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. eLife 2020; 9:53402. [PMID: 31951198 PMCID: PMC7012618 DOI: 10.7554/elife.53402] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.
Collapse
Affiliation(s)
- Songli Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Feifei Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yanqiu Li
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Benoit Barrette
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, United States
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| |
Collapse
|
4
|
French BT, Straight AF. The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:59-84. [PMID: 28840233 DOI: 10.1007/978-3-319-58592-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Faithful transmission of genetic information during cell division requires attachment of chromosomes to the mitotic spindle via the kinetochore. In vitro reconstitution studies are beginning to uncover how the kinetochore is assembled upon the underlying centromere, how the kinetochore couples chromosome movement to microtubule dynamics, and how cells ensure the site of kinetochore assembly is maintained from one generation to the next. Here we give special emphasis to advances made in Xenopus egg extract, which provides a unique, biochemically tractable in vitro system that affords the complexity of cytoplasm and nucleoplasm to permit reconstitution of the dynamic, cell cycle-regulated functions of the centromere and kinetochore.
Collapse
Affiliation(s)
- Bradley T French
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Rankin S. Reconstituting Nuclear and Chromosome Dynamics Using Xenopus Extracts. Cold Spring Harb Protoc 2019; 2019:pdb.top097105. [PMID: 30150319 DOI: 10.1101/pdb.top097105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extracts prepared from the eggs of frogs, particularly Xenopus species, have provided critical material for seminal studies of nuclear and chromosome dynamics over several decades. Their usefulness for these types of analyses lies in several important characteristics: stockpiled nuclear components, absence of endogenous DNA, and intact and functioning signaling networks. These factors have allowed detailed molecular analyses of many aspects of chromosome biology, including DNA replication, checkpoint signaling, epigenetic control, and chromosome condensation, cohesion, and segregation. In this introduction, the preparation and application of Xenopus egg extracts for the study of chromosomes and chromatin are described in detail.
Collapse
Affiliation(s)
- Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104; .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
6
|
Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress. Sci Rep 2018; 8:2683. [PMID: 29422626 PMCID: PMC5805732 DOI: 10.1038/s41598-018-21040-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022] Open
Abstract
The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55β in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling. Among the B55α and B55β-associated proteins were numerous mitotic regulators, including many substrates of CDK1. Consistently, upregulation of B55α accelerated M-phase exit and inhibited M-phase entry. Moreover, specific substrates of CDK2, including factors of DNA replication and chromatin remodeling were identified within the interactomes of B55α and B55β, suggesting a role for these phosphatase subunits in DNA replication. In particular, we confirmed in human cells that B55α binds RPA and mediates the dephosphorylation of RPA2. The B55-RPA association is disrupted after replication stress, consistent with the induction of RPA2 phosphorylation. Thus, we report here a new mechanism that accounts for both how RPA phosphorylation is modulated by PP2A and how the phosphorylation of RPA2 is abruptly induced after replication stress.
Collapse
|
7
|
Paudyal SC, Li S, Yan H, Hunter T, You Z. Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Res 2017; 45:11766-11781. [PMID: 28981724 PMCID: PMC5714177 DOI: 10.1093/nar/gkx830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5' strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5' strand DNA ∼10-20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5' strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP-MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms.
Collapse
Affiliation(s)
- Sharad C. Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tony Hunter
- Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Zhu S, Fisher LA, Bessho T, Peng A. Protein phosphatase 1 and phosphatase 1 nuclear targeting subunit-dependent regulation of DNA-dependent protein kinase and non-homologous end joining. Nucleic Acids Res 2017; 45:10583-10594. [PMID: 28985363 PMCID: PMC5737533 DOI: 10.1093/nar/gkx686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a key role in mediating non-homologous end joining (NHEJ), a major repair pathway for DNA double-strand breaks (DSBs). The activation, function and dynamics of DNA-PKcs is regulated largely by its reversible phosphorylation at numerous residues, many of which are targeted by DNA-PKcs itself. Interestingly, these DNA-PKcs phosphorylation sites function in a distinct, and sometimes opposing manner, suggesting that they are differentially regulated via complex actions of both kinases and phosphatases. In this study we identified several phosphatase subunits as potential DSB-associated proteins. In particular, protein phosphatase 1 (PP1) is recruited to a DSB-mimicking substrate in Xenopus egg extracts and sites of laser microirradiation in human cells. Depletion of PP1 impairs NHEJ in both Xenopus egg extracts and human cells. PP1 binds multiple motifs of DNA-PKcs, regulates DNA-PKcs phosphorylation, and is required for DNA-PKcs activation after DNA damage. Interestingly, phosphatase 1 nuclear targeting subunit (PNUTS), an inhibitory regulator of PP1, is also recruited to DNA damage sites to promote NHEJ. PNUTS associates with the DNA-PK complex and is required for DNA-PKcs phosphorylation at Ser-2056 and Thr-2609. Thus, PNUTS and PP1 together fine-tune the dynamic phosphorylation of DNA-PKcs after DNA damage to mediate NHEJ.
Collapse
Affiliation(s)
- Songli Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Laura A Fisher
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| |
Collapse
|
9
|
Zhu S, Peng A. Non-homologous end joining repair in Xenopus egg extract. Sci Rep 2016; 6:27797. [PMID: 27324260 PMCID: PMC4914968 DOI: 10.1038/srep27797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair mechanism. We characterized here a series of plasmid-based DSB templates that were repaired in Xenopus egg extracts via the canonical, Ku-dependent NHEJ pathway. We showed that the template with compatible ends was efficiently repaired without end processing, in a manner that required the kinase activity of DNA-PKcs but not ATM. Moreover, non-compatible ends with blunt/3'-overhang, blunt/5'-overhang, and 3'-overhang/5'-overhang were predominantly repaired with fill-in and ligation without the removal of end nucleotides. In contrast, 3'-overhang/3'-overhang and 5'-overhang/5'-overhang templates were processed by resection of 3-5 bases and fill-in of 1-4 bases prior to end ligation. Therefore, the NHEJ machinery exhibited a strong preference for precise repair; the presence of neither non-compatible ends nor protruding single strand DNA sufficiently warranted the action of nucleases. ATM was required for the efficient repair of all non-compatible ends including those repaired without end processing by nucleases, suggesting its role beyond phosphorylation and regulation of Artemis. Finally, dephosphorylation of the 5'-overhang/3'-overhang template reduced the efficiency of DNA repair without increasing the risk of end resection, indicating that end protection via prompt end ligation is not the sole mechanism that suppresses the action of nucleases.
Collapse
Affiliation(s)
- Songli Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| |
Collapse
|
10
|
Olivera Harris M, Kallenberger L, Artola Borán M, Enoiu M, Costanzo V, Jiricny J. Mismatch repair-dependent metabolism of O6-methylguanine-containing DNA in Xenopus laevis egg extracts. DNA Repair (Amst) 2015; 28:1-7. [PMID: 25697728 DOI: 10.1016/j.dnarep.2015.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 11/27/2022]
Abstract
The cytotoxicity of SN1-type alkylating agents such as N-methyl-N'-nitrosourea (MNU), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or the cancer chemotherapeutics temozolomide, dacarbazine and streptozotocin has been ascribed to the persistence of O(6)-methylguanine ((me)G) in genomic DNA. One hypothesis posits that (me)G toxicity is caused by futile attempts of the mismatch repair (MMR) system to process (me)G/C or (me)G/T mispairs arising during replication, while an alternative proposal suggests that the latter lesions activate DNA damage signaling, cell cycle arrest and apoptosis directly. Attempts to elucidate the molecular mechanism of (me)G-induced cell killing in vivo have been hampered by the fact that the above reagents induce several types of modifications in genomic DNA, which are processed by different repair pathways. In contrast, defined substrates studied in vitro did not undergo replication. We set out to re-examine this phenomenon in replication-competent Xenopus laevis egg extracts, using either phagemid substrates containing a single (me)G residue, or methylated sperm chromatin. Our findings provide further support for the futile cycling hypothesis.
Collapse
Affiliation(s)
- Maite Olivera Harris
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Swiss Federal Institute of Technology (ETH), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lia Kallenberger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mariela Artola Borán
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Milica Enoiu
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Vincenzo Costanzo
- IFOM-European Institute of Oncology Campus, Via Adamello 16, 20139 Milano, Italy
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Swiss Federal Institute of Technology (ETH), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
11
|
Willis J, DeStephanis D, Patel Y, Gowda V, Yan S. Study of the DNA damage checkpoint using Xenopus egg extracts. J Vis Exp 2012:e4449. [PMID: 23149695 DOI: 10.3791/4449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis egg extracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin. MMS is an alkylating agent that inhibits DNA replication and activates the ATR/Chk1-mediated DNA damage checkpoint. UV irradiation also triggers the ATR/Chk1-dependent DNA damage checkpoint. The DNA damage-mimicking structure AT70 is an annealed complex of two oligonucleotides poly-(dA)70 and poly-(dT)70. The AT70 system was developed in Bill Dunphy's laboratory and is widely used to induce ATR/Chk1 checkpoint signaling. Here, we describe protocols (1) to prepare cell-free egg extracts (LSE), (2) to treat Xenopus sperm chromatin with two different DNA damaging approaches (MMS and UV), (3) to prepare the DNA damage-mimicking structure AT70, and (4) to trigger the ATR/Chk1-mediated DNA damage checkpoint in LSE with damaged sperm chromatin or a DNA damage-mimicking structure.
Collapse
Affiliation(s)
- Jeremy Willis
- Department of Biology, University of North Carolina at Charlotte, USA
| | | | | | | | | |
Collapse
|
12
|
Peng A, Wang L, Fisher LA. Greatwall and Polo-like kinase 1 coordinate to promote checkpoint recovery. J Biol Chem 2011; 286:28996-29004. [PMID: 21708943 DOI: 10.1074/jbc.m111.257121] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Checkpoint recovery upon completion of DNA repair allows the cell to return to normal cell cycle progression and is thus a crucial process that determines cell fate after DNA damage. We previously studied this process in Xenopus egg extracts and established Greatwall (Gwl) as an important regulator. Here we show that preactivated Gwl kinase can promote checkpoint recovery independently of cyclin-dependent kinase 1 (Cdk1) or Plx1 (Xenopus polo-like kinase 1), whereas depletion of Gwl from extracts exhibits no synergy with that of Plx1 in delaying checkpoint recovery, suggesting a distinct but related relationship between Gwl and Plx1. In further revealing their functional relationship, we found mutual dependence for activation of Gwl and Plx1 during checkpoint recovery, as well as their direct association. We characterized the protein association in detail and recapitulated it in vitro with purified proteins, which suggests direct interaction. Interestingly, Gwl interaction with Plx1 and its phosphorylation by Plx1 both increase at the stage of checkpoint recovery. More importantly, Plx1-mediated phosphorylation renders Gwl more efficient in promoting checkpoint recovery, suggesting a functional involvement of such regulation in the recovery process. Finally, we report an indirect regulatory mechanism involving Aurora A that may account for Gwl-dependent regulation of Plx1 during checkpoint recovery. Our results thus reveal novel mechanisms underlying the involvement of Gwl in checkpoint recovery, in particular, its functional relationship with Plx1, a well characterized regulator of checkpoint recovery. Coordinated interplays between Plx1 and Gwl are required for reactivation of these kinases from the G(2)/M DNA damage checkpoint and efficient checkpoint recovery.
Collapse
Affiliation(s)
- Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583.
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Laura A Fisher
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| |
Collapse
|
13
|
Abstract
A crucial process to ensure cell survival and genome stability is the correct replication of the genome. DNA replication relies on complex machinery whose mechanisms are being elucidated using different model systems. A major aspect of this process, which is an intense subject of investigation, is what happens when replication forks encounter obstacles impairing their progression such as modified bases, pausing sites, and single strand breaks. The detailed biochemical analysis of DNA replication in the presence of DNA damage has been impeded by the lack of a cell-free system recapitulating DNA replication. Here we describe assays based on the vertebrate Xenopus laevis egg extract to study the biochemical aspects of replication fork stability.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- Clare Hall Laboratories, London Research Institute, EN6 3LD, Hertsfordshire, UK.
| | | |
Collapse
|
14
|
Abstract
Cell cycle checkpoints are involved in the coordinated response to DNA damage and thus play a key role in maintaining genome integrity. Several model systems have been developed to study the mechanisms and complexity of checkpoint function. Here we describe the application of cell-free extracts derived from Xenopus eggs as a model system to investigate DNA replication, damage, and checkpoint activation. We outline the preparation of cell-free extracts, DNA substrates and their subsequent use in assays aimed at understanding cell cycle checkpoints, and related processes. Several advances made over the years have enabled the continued use of the Xenopus system to answer a variety of questions in DNA replication, repair and checkpoint signaling. It is anticipated that the versatile Xenopus system is amenable to future modification as well to continue studies attempting to understand these important physiological processes.
Collapse
|
15
|
Peng A, Yamamoto TM, Goldberg ML, Maller JL. A novel role for greatwall kinase in recovery from DNA damage. Cell Cycle 2010; 9:4364-9. [PMID: 20980823 DOI: 10.4161/cc.9.21.13632] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the DNA damage response (DDR) is critical for genomic integrity and tumor suppression. The occurrence of DNA damage quickly evokes the DDR through ATM/ATR-dependent signal transduction, which promotes DNA repair and activates the checkpoint to halt cell cycle progression. The "turn off" process of the DDR upon satisfaction of DNA repair, also known as "checkpoint recovery", involves deactivation of DDR elements, but the mechanism is poorly understood. Greatwall kinase (Gwl) has been identified as a key element in the G(2)/M transition and helps maintain M phase through inhibition of PP 2A/B55δ, the principal phosphatase for Cdk-phosphorylated substrates. Here we show that Gwl also promotes recovery from DNA damage and is itself directly inhibited by the DNA damage response (DDR). In Xenopus egg extracts, immunodepletion of Gwl increased the DDR to damaged DNA, whereas addition of wild type, but not kinase dead Gwl, inhibited the DDR. The removal of damaged DNA from egg extracts leads to recovery from checkpoint arrest and entry into mitosis, a process impaired by Gwl depletion and enhanced by Gwl overexpression. Moreover, activation of Cdk1 after the removal of damaged DNA is regulated by Gwl. Collectively, these results defines Gwl as a new regulator of the DDR, which plays an important role in recovery from DNA damage.
Collapse
Affiliation(s)
- Aimin Peng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Colorado School of Medicine, Aurora, USA.
| | | | | | | |
Collapse
|
16
|
Banaszynski LA, Allis CD, Shechter D. Analysis of histones and chromatin in Xenopus laevis egg and oocyte extracts. Methods 2010; 51:3-10. [PMID: 20051265 PMCID: PMC2868095 DOI: 10.1016/j.ymeth.2009.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/14/2009] [Accepted: 12/30/2009] [Indexed: 11/18/2022] Open
Abstract
Histones are the major protein components of chromatin, the physiological form of the genome in all eukaryotic cells. Chromatin is the substrate of information-directed biological processes, such as gene regulation and transcription, replication, and mitosis. A long-standing experimental model system to study many of these processes is the extract made from the eggs of the anuran Xenopus laevis. Since work in recent years has solidified the importance of post-translational modification of histones in directing biological processes, the study of histones in a biochemically dissectible model such as Xenopus is crucial for the understanding of their biological significance. Here we present a rationale and methods for isolating and studying histones and chromatin in different Xenopus egg and oocyte extracts. In particular, we present protocols for the preparation of: cell-free egg and oocyte extract; nucleoplasmic extract ("NPE"); biochemical purification of maternally-deposited, stored histones in the oocyte and the egg; assembly of pronuclei in egg extract and the isolation of pronuclear chromatin and histones; and an extract chromatin assembly assay. We also demonstrate aspects of the variability of the system to be mindful of when working with extract and the importance of proper laboratory temperature in preparing quality extracts. We expect that these methods will be of use in promoting further understanding of embryonic chromatin in a unique experimental system.
Collapse
Affiliation(s)
- Laura A. Banaszynski
- The Laboratory of Chromatin Biology, The Rockefeller University, New York, NY, USA
| | - C. David Allis
- The Laboratory of Chromatin Biology, The Rockefeller University, New York, NY, USA
| | - David Shechter
- The Laboratory of Chromatin Biology, The Rockefeller University, New York, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461
| |
Collapse
|
17
|
Van C, Yan S, Michael WM, Waga S, Cimprich KA. Continued primer synthesis at stalled replication forks contributes to checkpoint activation. ACTA ACUST UNITED AC 2010; 189:233-46. [PMID: 20385778 PMCID: PMC2856894 DOI: 10.1083/jcb.200909105] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An increased number of primer–template junctions generated by PCNA, Pol-δ, and Pol-ε at stalled replication forks activates Chk1. Stalled replication forks activate and are stabilized by the ATR (ataxia-telangiectasia mutated and Rad3 related)-mediated checkpoint, but ultimately, they must also recover from the arrest. Although primed single-stranded DNA (ssDNA) is sufficient for checkpoint activation, it is still unknown how this signal is generated at a stalled replication fork. Furthermore, it is not clear how recovery and fork restart occur in higher eukaryotes. Using Xenopus laevis egg extracts, we show that DNA replication continues at a stalled fork through the synthesis and elongation of new primers independent of the checkpoint. This synthesis is dependent on the activity of proliferating cell nuclear antigen, Pol-δ, and Pol-ε, and it contributes to the phosphorylation of Chk1. We also used defined DNA structures to show that for a fixed amount of ssDNA, increasing the number of primer–template junctions strongly enhances Chk1 phosphorylation. These results suggest that new primers are synthesized at stalled replication forks by the leading and lagging strand polymerases and that accumulation of these primers may contribute to checkpoint activation.
Collapse
Affiliation(s)
- Christopher Van
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
18
|
Peng A, Lewellyn AL, Schiemann WP, Maller JL. Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol 2010; 20:387-96. [PMID: 20188555 PMCID: PMC2860455 DOI: 10.1016/j.cub.2010.01.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/18/2009] [Accepted: 01/05/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND In response to DNA damage, cells activate checkpoints to halt cell-cycle progression and prevent genomic instability. Checkpoint activation induced by DNA double-strand breaks (DSB) is dependent on the ATM kinase, a master regulator of the DNA damage response (DDR) that is activated through autophosphorylation and monomerization. RESULTS Here we show that either protein phosphatase 1 or 2A is sufficient to suppress activation of the DDR and that simultaneous inhibition of both phosphatases fully activates the response. PP1-dependent DDR regulation is mediated by its chromatin-targeting subunit, Repo-Man. Studies in Xenopus egg extracts demonstrate that Repo-Man interacts with ATM and PP1 through distinct domains, leading to PP1-dependent regulation of ATM phosphorylation and activation. Consequently, the level of Repo-Man determines the activation threshold of the DNA damage checkpoint. Repo-Man interacts and extensively colocalizes with ATM in human cells. Expression of wild-type, but not PP1 binding-deficient, Repo-Man attenuates DNA damage-induced ATM activation. Moreover, Repo-Man dissociates from active ATM at DNA damage sites, suggesting that activation of the DDR involves removal of inhibitory regulators. Analysis of primary tumor tissues and cell lines demonstrates that Repo-Man is frequently upregulated in many types of cancers. Elevated Repo-Man expression blunts DDR activation in precancerous cells, whereas knockdown of Repo-Man in malignant cancer cells resensitizes the DDR and restrains growth in soft agar. CONCLUSIONS We report essential DDR regulation mediated by Repo-Man-PP1 and further delineate underlying mechanisms. Moreover, our evidence suggests that elevated Repo-Man contributes to cancer progression.
Collapse
Affiliation(s)
- Aimin Peng
- Howard Hughes Medical Institute, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Andrea L. Lewellyn
- Howard Hughes Medical Institute, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - William P. Schiemann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - James L. Maller
- Howard Hughes Medical Institute, University of Colorado School of Medicine, Aurora, Colorado 80045
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
19
|
Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME. The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways. J Biol Chem 2009; 284:25560-8. [PMID: 19633289 DOI: 10.1074/jbc.m109.007690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genomic stability requires a functional Fanconi anemia (FA) pathway composed of an upstream "core complex" (FA proteins A/B/C/E/F/G/L/M) that mediates monoubiquitination of the downstream targets FANCD2 and FANCI. Unique among FA core complex members, FANCM has processing activities toward replication-associated DNA structures, suggesting a vital role for FANCM during replication. Using Xenopus egg extracts, we analyzed the functions of FANCM in replication and the DNA damage response. xFANCM binds chromatin in a replication-dependent manner and is phosphorylated in response to DNA damage structures. Chromatin binding and DNA damage-induced phosphorylation of xFANCM are mediated in part by the downstream FA pathway protein FANCD2. Moreover, phosphorylation and chromatin recruitment of FANCM is regulated by two mayor players in the DNA damage response: the cell cycle checkpoint kinases ATR and ATM. Our results indicate that functions of FANCM are controlled by FA- and non-FA pathways in the DNA damage response.
Collapse
Affiliation(s)
- Alexandra Sobeck
- Department of Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
20
|
The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol Cell 2009; 32:862-9. [PMID: 19111665 DOI: 10.1016/j.molcel.2008.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 06/27/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022]
Abstract
The Dbf4/Drf1-dependent S-phase-promoting kinase Cdc7 (Ddk) is thought to be an essential target inactivated by the S-phase checkpoint machinery that inhibits DNA replication. However, we show here that the complex formation, chromatin association, and kinase activity of Ddk are not inhibited during the DNA-damage-induced S-phase checkpoint response in Xenopus egg extracts and mammalian cells. Instead, we find that Ddk plays an active role in regulating S-phase checkpoint signaling. Addition of purified Ddk to Xenopus egg extracts or overexpression of Dbf4 in HeLa cells downregulates ATR-Chk1 checkpoint signaling and overrides the inhibition of DNA replication and cell-cycle progression induced by DNA-damaging agents. These results indicate that Ddk functions as an upstream regulator to monitor S-phase checkpoint signaling. We propose that Ddk modulates the S-phase checkpoint control by attenuating checkpoint signaling and triggering DNA replication reinitiation during the S-phase checkpoint recovery.
Collapse
|