1
|
Kramer SN, Brown J, Rice M, Peteanu LA. Unraveling the Contribution of Residual Monomer to the Emission Spectra of Poly(3-hexylthiophene) Aggregates: Implications for Identifying H- and J-type Coupling. J Phys Chem Lett 2021; 12:5919-5924. [PMID: 34156859 DOI: 10.1021/acs.jpclett.1c01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) is a well-studied benchmark system for semiconducting polymers used in optoelectronic devices. In these materials, aggregation can improve charge transport efficiency or enhance emission yields depending on the interchain packing. This may be inferred from the absorption and emission spectra when analyzed using exciton coupling models such as the well-known H- and J-coupling model of Kasha. The more recently developed weakly coupled H-aggregate (WCH) model quantifies the degree of disorder via the ratio of the electronic origin intensity to that of the first vibronic band. Here, the underlying assumptions of this approach are tested experimentally for P3HT aggregates formed by solvent poisoning using bulk and single-molecule-based spectroscopic techniques. Specifically, we show that the contribution of residual monomeric chains to the aggregate spectrum must be accounted for to properly assign the spectra as H- or J-type. A modification of the WCH model is introduced to account for multiple emissive species.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jasper Brown
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Megan Rice
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Linda A Peteanu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Szeri F, Niaziorimi F, Donnelly S, Orndorff J, van de Wetering K. Generation of fully functional fluorescent fusion proteins to gain insights into ABCC6 biology. FEBS Lett 2021; 595:799-810. [PMID: 33058196 PMCID: PMC7987643 DOI: 10.1002/1873-3468.13957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
ABCC6 mediates release of ATP from hepatocytes into the blood. Extracellularly, ATP is converted into the mineralization inhibitor pyrophosphate. Consequently, inactivating mutations in ABCC6 give low plasma pyrophosphate and underlie the ectopic mineralization disorder pseudoxanthoma elasticum. How ABCC6 mediates cellular ATP release is still unknown. Fluorescent ABCC6 fusion proteins would allow mechanistic studies, but fluorophores attached to the ABCC6 N- or C-terminus result in intracellular retention and degradation. Here we describe that intramolecular introduction of fluorophores yields fully functional ABCC6 fusion proteins. A corresponding ABCC6 variant in which the catalytic glutamate of the second nucleotide binding domain was mutated, correctly routed to the plasma membrane but was inactive. Finally, N-terminal His10 or FLAG tags did not affect activity of the fusion proteins, allowing their purification for biochemical characterization.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (current address)
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| | - Joseph Orndorff
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| |
Collapse
|
3
|
Sikkema HR, Gaastra BF, Pols T, Poolman B. Cell Fuelling and Metabolic Energy Conservation in Synthetic Cells. Chembiochem 2019; 20:2581-2592. [PMID: 31381223 DOI: 10.1002/cbic.201900398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/14/2022]
Abstract
We are aiming for a blue print for synthesizing (moderately complex) subcellular systems from molecular components and ultimately for constructing life. However, without comprehensive instructions and design principles, we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo according to complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Herein, we describe the simplest pathways for the efficient generation of ATP and electrochemical ion gradients. We have estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the need for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow the major physicochemical conditions inside cells to be monitored and tuned.
Collapse
Affiliation(s)
- Hendrik R Sikkema
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tjeerd Pols
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
5
|
Janeczek AA, Scarpa E, Horrocks MH, Tare RS, Rowland CA, Jenner D, Newman TA, Oreffo RO, Lee SF, Evans ND. PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. Nanomedicine (Lond) 2017; 12:845-863. [PMID: 28351228 DOI: 10.2217/nnm-2016-0386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To fabricate PEGylated liposomes which preserve the activity of hydrophobic Wnt3A protein, and to demonstrate their efficacy in promoting expansion of osteoprogenitors from human bone marrow. METHODS PEGylated liposomes composed of several synthetic lipids were tested for their ability to preserve Wnt3A activity in reporter and differentiation assays. Single-molecule microspectroscopy was used to test for direct association of protein with liposomes. RESULTS Labeled Wnt3A protein directly associated with all tested liposome preparations. However, Wnt3A activity was preserved or enhanced in PEGylated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes but not in PEGylated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes. PEGylated Wnt3A liposomes associated with skeletal stem cell populations in human bone marrow and promoted osteogenesis. CONCLUSION Active Wnt protein-containing PEGylated liposomes may have utility for systemic administration for bone repair.
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Edoardo Scarpa
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Rahul S Tare
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Caroline A Rowland
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Dominic Jenner
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Tracey A Newman
- Clinical & Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Building 85, Life Sciences Building, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Richard Oc Oreffo
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nicholas D Evans
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
6
|
Application of Peak Intensity Analysis to Measurements of Protein Binding to Lipid Vesicles and Erythrocytes Using Fluorescence Correlation Spectroscopy: Dependence on Particle Size. J Membr Biol 2016; 250:77-87. [PMID: 27837242 DOI: 10.1007/s00232-016-9938-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool for investigation of processes accompanied by changes in the mobility of molecules and complexes. In the present work, peak intensity analysis (PIA) in combination with the solution stirring using FCS setup was applied to explore the interaction between fluorescently labeled protein ligands and corresponding receptors located on membranes. In the system composed of biotinylated liposomes and fluorescently labeled streptavidin as a ligand, PIA allowed us to determine the optimum receptor concentration and demonstrate the essential dependence of the binding efficacy on the length of the linker between the biotin group and the polar head group of the lipid. The binding was dependent on the size of liposomes which was varied by lipid extrusion through filters of different pore diameters. The sensitivity of the method was higher with the liposomes of larger sizes. The PIA approach can be applied not only to liposomes but also to relatively large objects, e.g., erythrocytes or Sepharose beads derivatized with lactose as a receptor for the binding of viscumin and ricin.
Collapse
|
7
|
Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proc Natl Acad Sci U S A 2015; 112:2046-51. [PMID: 25646430 DOI: 10.1073/pnas.1418100112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters use ATP to drive solute transport across biological membranes. Members of this superfamily have crucial roles in cell physiology, and some of the transporters are linked to severe diseases. However, understanding of the transport mechanism, especially of human ABC exporters, is scarce. We reconstituted the human lysosomal polypeptide ABC transporter TAPL, expressed in Pichia pastoris, into lipid vesicles (liposomes) and performed explicit transport measurements. We analyzed solute transport at the single liposome level by monitoring the coincident fluorescence of solutes and proteoliposomes in the focal volume of a confocal microscope. We determined a turnover number of eight peptides per minute, which is two orders of magnitude higher than previously estimated from macroscopic measurements. Moreover, we show that TAPL translocates peptides against a large concentration gradient. Maximal filling is not limited by an electrochemical gradient but by trans-inhibition. Countertransport and reversibility studies demonstrate that peptide translocation is a strictly unidirectional process. Altogether, these data are included in a refined model of solute transport by ABC exporters.
Collapse
|
8
|
Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy. Anal Bioanal Chem 2014; 406:4797-813. [DOI: 10.1007/s00216-014-7892-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
|
9
|
Wiedman G, Fuselier T, He J, Searson PC, Hristova K, Wimley WC. Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide. J Am Chem Soc 2014; 136:4724-31. [PMID: 24588399 PMCID: PMC3985440 DOI: 10.1021/ja500462s] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Peptides that self-assemble, at low concentration, into bilayer-spanning pores which allow the passage of macromolecules would be beneficial in multiple areas of biotechnology. However, there are few, if any, natural or designed peptides that have this property. Here we show that the 26-residue peptide "MelP5", a synthetically evolved gain-of-function variant of the bee venom lytic peptide melittin identified in a high-throughput screen for small molecule leakage, enables the passage of macromolecules across bilayers under conditions where melittin and other pore-forming peptides do not. In surface-supported bilayers, MelP5 forms unusually high conductance, equilibrium pores at peptide:lipid ratios as low as 1:25000. The increase in bilayer conductance due to MelP5 is dramatically higher, per peptide, than the increase due to the parent sequence of melittin or other peptide pore formers. Here we also develop two novel assays for macromolecule leakage from vesicles, and we use them to characterize MelP5 pores in bilayers. We show that MelP5 allows the passage of macromolecules across vesicle membranes at peptide:lipid ratios as low as 1:500, and under conditions where neither osmotic lysis nor gross vesicle destabilization occur. The macromolecule-sized, equilibrium pores formed by MelP5 are unique as neither melittin nor other pore-forming peptides release macromolecules significantly under the same conditions. MelP5 thus appears to belong to a novel functional class of peptide that could form the foundation of multiple potential biotechnological applications.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Taylor Fuselier
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Jing He
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peter C. Searson
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kalina Hristova
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
10
|
Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2428-35. [DOI: 10.1016/j.bbamem.2013.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022]
|
11
|
Kedrov A, Kusters I, Driessen AJM. Single-Molecule Studies of Bacterial Protein Translocation. Biochemistry 2013; 52:6740-54. [DOI: 10.1021/bi400913x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexej Kedrov
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Ilja Kusters
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
12
|
Friaa O, Furukawa M, Shamas-Din A, Leber B, Andrews DW, Fradin C. Optimizing the acquisition and analysis of confocal images for quantitative single-mobile-particle detection. Chemphyschem 2013; 14:2476-90. [PMID: 23824691 DOI: 10.1002/cphc.201201047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/18/2013] [Indexed: 11/06/2022]
Abstract
Quantification of the fluorescence properties of diffusing particles in solution is an invaluable source of information for characterizing the interactions, stoichiometry, or conformation of molecules directly in their native environment. In the case of heterogeneous populations, single-particle detection should be the method of choice and it can, in principle, be achieved by using confocal imaging. However, the detection of single mobile particles in confocal images presents specific challenges. In particular, it requires an adapted set of imaging parameters for capturing the confocal images and an adapted event-detection scheme for analyzing the image. Herein, we report a theoretical framework that allows a prediction of the properties of a homogenous particle population. This model assumes that the particles have linear trajectories with reference to the confocal volume, which holds true for particles with moderate mobility. We compare the predictions of our model to the results as obtained by analyzing the confocal images of solutions of fluorescently labeled liposomes. Based on this comparison, we propose improvements to the simple line-by-line thresholding event-detection scheme, which is commonly used for single-mobile-particle detection. We show that an optimal combination of imaging and analysis parameters allows the reliable detection of fluorescent liposomes for concentrations between 1 and 100 pM. This result confirms the importance of confocal single-particle detection as a complementary technique to ensemble fluorescence-correlation techniques for the studies of mobile particle.
Collapse
Affiliation(s)
- Ouided Friaa
- Department of Physics & Astronomy, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Moiset G, Cirac AD, Stuart MCA, Marrink SJ, Sengupta D, Poolman B. Dual action of BPC194: a membrane active peptide killing bacterial cells. PLoS One 2013; 8:e61541. [PMID: 23620763 PMCID: PMC3631201 DOI: 10.1371/journal.pone.0061541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/10/2013] [Indexed: 11/30/2022] Open
Abstract
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis.
Collapse
Affiliation(s)
- Gemma Moiset
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Anna D. Cirac
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Institute of Computational Chemistry, University of Girona, Campus Montivili, Girona, Spain
| | - Marc C. A. Stuart
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Durba Sengupta
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- * E-mail: (BP); (DS)
| | - Bert Poolman
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- * E-mail: (BP); (DS)
| |
Collapse
|
14
|
Balleza D. Mechanical properties of lipid bilayers and regulation of mechanosensitive function: from biological to biomimetic channels. Channels (Austin) 2012; 6:220-33. [PMID: 22790280 DOI: 10.4161/chan.21085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
15
|
Perevoshchikova IV, Kotova EA, Antonenko YN. Fluorescence correlation spectroscopy in biology, chemistry, and medicine. BIOCHEMISTRY (MOSCOW) 2011; 76:497-516. [PMID: 21639831 DOI: 10.1134/s0006297911050014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.
Collapse
Affiliation(s)
- I V Perevoshchikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
16
|
Cirac AD, Moiset G, Mika JT, Koçer A, Salvador P, Poolman B, Marrink SJ, Sengupta D. The molecular basis for antimicrobial activity of pore-forming cyclic peptides. Biophys J 2011; 100:2422-31. [PMID: 21575576 DOI: 10.1016/j.bpj.2011.03.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 11/29/2022] Open
Abstract
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1-2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides.
Collapse
Affiliation(s)
- Anna D Cirac
- Department of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 2011; 19:430-9. [PMID: 21397193 DOI: 10.1016/j.str.2010.12.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022]
Abstract
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.
Collapse
|
18
|
Kusters I, Mukherjee N, de Jong MR, Tans S, Koçer A, Driessen AJM. Taming membranes: functional immobilization of biological membranes in hydrogels. PLoS One 2011; 6:e20435. [PMID: 21655266 PMCID: PMC3105061 DOI: 10.1371/journal.pone.0020435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 01/17/2023] Open
Abstract
Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally applicable tool to immobilize biological membrane vesicles of various size and lipid composition. Importantly, membrane proteins immobilized in the hydrogel as well as soluble proteins are fully active. The triggered opening of the mechanosensitive channel of large conductance (MscL) reconstituted in giant unilamellar vesicles (GUVs) was followed in time on single GUVs. Thus, kinetic studies of vectorial transport processes across biological membranes can be assessed on single, hydrogel immobilized, GUVs. Furthermore, protein translocation activity by the membrane embedded protein conducting channel of bacteria, SecYEG, in association with the soluble motor protein SecA was quantitatively assessed in bulk and at the single vesicle level in the hydrogel. This technique provides a new way to investigate membrane proteins in their native environment at the single molecule level by means of fluorescence microscopy.
Collapse
Affiliation(s)
- Ilja Kusters
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, the Netherlands
| | - Nobina Mukherjee
- Department of Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | | | - Armağan Koçer
- Department of Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
19
|
Antonenko YN, Perevoshchikova IV, Davydova LI, Agapov IA, Bogush VG. Interaction of recombinant analogs of spider silk proteins 1F9 and 2E12 with phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1172-8. [DOI: 10.1016/j.bbamem.2010.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
|
20
|
Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, Antonenko Y. Light-triggered liposomal release: membrane permeabilization by photodynamic action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5726-5733. [PMID: 20000430 DOI: 10.1021/la903867a] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photosensitized damage to liposome membranes was studied by using different dye-leakage assays based on fluorescence dequenching of a series of dyes upon their release from liposomes. Irradiation of liposomes with red light in the presence of a photosensitizer, trisulfonated aluminum phthalocyanine (AlPcS(3)), resulted in the pronounced leakage of carboxyfluorescein, but rather weak leakage of sulforhodamine B and almost negligible leakage of calcein from the corresponding dye-loaded liposomes. The same series of selectivity of liposome leakage was obtained with chlorin e6 that appeared to be more potent than AlPcS(3) in bringing about the photosensitized liposome leakage. Electrically neutral zinc phthalocyanine tetrasubstituted with a glycerol moiety (ZnPcGlyc(4)) was less effective than negatively charged AlPcS(3) in provoking the light-induced liposome permeabilization. On the contrary, both ZnPcGlyc(4) and AlPcS(3) were much more effective than chlorin e6 in sensitizing gramicidin channel inactivation in planar bilayer lipid membranes, thus showing that relative photodynamic efficacy of sensitizers can differ substantially for damaging different membrane targets. The photosensitized liposome permeabilization was apparently associated with oxidation of lipid double bonds by singlet oxygen as evidenced by the mandatory presence of unsaturated lipids in the membrane composition for the photosensitized liposome leakage to occur and the sensitivity of the latter to sodium azide. The fluorescence correlation spectroscopy measurements revealed marked permeability of photodynamically induced pores in liposome membranes for such photosensitizer as AlPcS(3).
Collapse
Affiliation(s)
- Alina Pashkovskaya
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
21
|
Perevoshchikova IV, Zorov SD, Kotova EA, Zorov DB, Antonenko YN. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin. FEBS Lett 2010; 584:2397-402. [DOI: 10.1016/j.febslet.2010.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 12/23/2022]
|
22
|
van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters FS, Jahn R. One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 2010; 17:358-64. [PMID: 20139985 PMCID: PMC2924150 DOI: 10.1038/nsmb.1748] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 11/24/2009] [Indexed: 11/30/2022]
Abstract
In eukaryotes, most intracellular membrane fusion reactions are mediated by the interaction of SNARE proteins that are present in both fusing membranes. However, the minimal number of SNARE complexes needed for membrane fusion is not known. Here we show unambiguously that one SNARE complex is sufficient for membrane fusion. We performed controlled in vitro Förster resonance energy transfer (FRET) experiments and found that liposomes bearing only a single SNARE molecule are still capable of fusion with other liposomes or with purified synaptic vesicles. Furthermore, we demonstrated that multiple SNARE complexes do not act cooperatively, showing that synergy between several SNARE complexes is not needed for membrane fusion. Our findings shed new light on the mechanism of SNARE-mediated membrane fusion and call for a revision of current views of fusion events such as the fast release of neurotransmitters.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Matthew G. Holt
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gertrude Bunt
- Laboratory for Molecular and Cellular Systems, Department of Neuro- and Sensory Physiology and DFG Research Center for Molecular Physiology of the Brain (CMPB), University Medicine Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Dietmar Riedel
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fred S. Wouters
- Laboratory for Molecular and Cellular Systems, Department of Neuro- and Sensory Physiology and DFG Research Center for Molecular Physiology of the Brain (CMPB), University Medicine Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Kusters I, van den Bogaart G, de Wit J, Krasnikov V, Poolman B, Driessen A. Purification and functional reconstitution of the bacterial protein translocation pore, the SecYEG complex. Methods Mol Biol 2010; 619:131-43. [PMID: 20419408 DOI: 10.1007/978-1-60327-412-8_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In bacteria, proteins are secreted across the cytoplasmic membrane by a protein complex termed translocase. The ability to study the activity of the translocase in vitro using purified proteins has been instrumental for our understanding of the mechanisms underlying this process. Here, we describe the protocols for the purification and reconstitution of the SecYEG complex in an active state into liposomes. In addition, fluorescence based in vitro assays are described that allow monitoring translocation activity discontinuously and in real time.
Collapse
Affiliation(s)
- Ilja Kusters
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|