1
|
Ohnuma K, Hirano-Kodaira M, Bannai M, Shimizu Y, Yamada M, Kinoshita K, Ngai-Wa Leung G, Ishii H. A broad-spectrum peptide screening method using an optimized solid-phase extraction and liquid chromatography-high-field asymmetric ion mobility spectrometry-mass spectrometry for doping control in equine urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8250-8267. [PMID: 39503331 DOI: 10.1039/d4ay01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The abuse of prohibited peptide-based drugs with a broad spectrum of chemical characteristics poses a significant concern for the horseracing industry. Recently, there has been a notable increase in positive cases of small-peptide drugs reported in equine and canine sports. In addition to small peptides, large peptides (over 2 kDa) with structural diversity have also entered the market in increasing numbers as drugs for humans and livestock. However, the simultaneous analysis of both small- and large-peptide-based drugs is still challenging. In this study, a screening method was developed to cover 74 analytes, including peptides, their catabolites, and/or their mimetics, with molecular weights ranging from 0.3 kDa to greater than 5 kDa. The simultaneous extraction of both small and large peptides was achieved using a weak cation-exchange solid-phase extraction cartridge with a mixture of different pore sizes (suitable for large peptides), followed by analysis using liquid chromatography high-field asymmetric ion mobility spectrometry tandem mass spectrometry (LC-FAIMS-MS/MS). For method validation, the limits of detection (LoDs), reproducibility, recovery, matrix effect, selectivity, and carryover were evaluated. Remarkably, the LoDs of ∼80% of the analytes were less than or equal to 50 pg ml-1, with the lowest LoD (1 pg ml-1) being observed for selected peptides in horse urine. These results indicate a substantial advancement in achieving comprehensive coverage for both small and large peptides with high sensitivity for the purpose of doping control in horseracing and equestrian sports.
Collapse
Affiliation(s)
- Kohei Ohnuma
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | | | - Michiko Bannai
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Yoshibumi Shimizu
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Masayuki Yamada
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Kenji Kinoshita
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Gary Ngai-Wa Leung
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Hideaki Ishii
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| |
Collapse
|
2
|
Okyem S, Sweedler JV. Recent Advancements in the Characterization of D-Amino Acid and Isoaspartate Post-Translational Modifications. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39558451 DOI: 10.1002/mas.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
One of the great triumphs of mass spectrometry-based peptide and protein characterization is the characterization of their modifications as most modifications have a characteristic mass shift. What happens when the modification does not change the mass of the peptide? Here, the characterization of several peptide and proteins modifications that do not involve a mass shift are highlighted. Protein and peptide synthesis on ribosomes involves L-amino acids; however, posttranslational modifications (PTMs) can convert these L-amino acids into their D-isomers. As another example, nonenzymatic PTM of aspartate leads to the formation of three different isomers, with isoaspartate being the most prevalent. Both modifications do not alter the mass of the peptide and yet can have profound impact on the physicochemical characteristics of the peptide. Several MS and ion mobility techniques are highlighted, as are other methods such as chromatography, enzymatic enrichment, and labeling. The challenges inherent to these analytical methods and prospective developments in bioinformatics and computational strategies are discussed for these zero-dalton PTMs.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Li J, Liu R, Gao W, Yu J, Tang K. Ion storage biases in the ion funnel trap of a Hybrid ion mobility spectrometer/time of flight mass spectrometer. Talanta 2023; 260:124621. [PMID: 37149942 DOI: 10.1016/j.talanta.2023.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
A detailed experimental characterization on the ion storage biases in an ion funnel trap, related to ion structure, charge state and RF voltage applied to the ion funnel trap, is reported by using both cytochrome C and ubiquitin samples. It was first observed experimentally that an unavoidable ion overflow would occur when the incoming ions exceeded the capacity of ion funnel trap. The conformers with extended structures would lose preferentially in the ion overflow process. Accordingly, a significant structural bias in the ion mobility spectrometry/time of flight mass spectrometry (IMS-TOF MS) spectrum was created, as the peak intensities for conformers with compact structures and extended structures would continuously increase and decrease, respectively, when the ion overflow time of the ion funnel trap was increased. Furthermore, the experimental results also showed that the effect of this ion structural bias was more significant when the RF voltage applied to the ion funnel trap was increased. In addition, an ion charge state bias in the ion funnel trap was also observed. The effect of the ion structural bias depends significantly on the specific charge state of the ions. For a given analyte, its lower charge state ions show a greater sensitivity to the ion structural bias than the higher charge state ones under the same ion funnel trap operating conditions. Therefore, it is extremely important to set a reasonable operation condition for the ion funnel trap to avoid ion storage biases in IMS-TOF MS.
Collapse
Affiliation(s)
- Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, 315211, PR China; Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
4
|
Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Gao H, Liu Z, Song F, Xing J, Zheng Z, Liu S. A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry. Molecules 2022; 27:molecules27134302. [PMID: 35807548 PMCID: PMC9268332 DOI: 10.3390/molecules27134302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS), and ultra-high performance liquid chromatography-mass spectrometry with ion-mobility spectrometry (UHPLC-IM-MS) was established and used to separate and identify the structures of compounds from PAL. The extracts of PAL were firstly separated into three parts by AB-8 macroporous resin and further separated and identified by UHPLC-Q-TOF MS and UHPLC-IM-MS, respectively. Additionally, UHPLC-IM-MS was used to identify isomers and coeluting compounds, so that the product ions appearing at the same retention time (RT)can clearly distinguish where the parent ion belongs by their different drift times. UNIFI software was used for data processing and structure identification. A total of 86 compounds, including triterpenes, iridoids, phenylethanoid glycosides, guanidine derivatives, organic acids, and fatty acids, were identified by using MS information and fragment ion information provided by UHPLC-Q-TOF MS and UHPLC-IM-MS. In particular, a pair of isoforms of plantagoside from PAL were detected and identified by UHPLC-IM-MS combined with the theoretical calculation method for the first time. In conclusion, the AB-8 macroporous resin column chromatography can separate the main compounds of PAL and enrich the trace compounds. Combining UHPLC-IM-MS and UHPLC-Q-TOF MS can obtain not only more fragments but also their unique drift times and RT, which is more conducive to the identification of complex systems, especially isomers. This proposed strategy can provide an effective method to separate and identify chemical components, and distinguish isomers in the complex system of traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Hongxue Gao
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.); (F.S.); (J.X.); (Z.Z.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.); (F.S.); (J.X.); (Z.Z.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (S.L.); Tel.: +86-431-85262613 (S.L.); Fax: +86-431-85262044 (Z.L.)
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.); (F.S.); (J.X.); (Z.Z.)
| | - Junpeng Xing
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.); (F.S.); (J.X.); (Z.Z.)
| | - Zhong Zheng
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.); (F.S.); (J.X.); (Z.Z.)
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.); (F.S.); (J.X.); (Z.Z.)
- Correspondence: (Z.L.); (S.L.); Tel.: +86-431-85262613 (S.L.); Fax: +86-431-85262044 (Z.L.)
| |
Collapse
|
6
|
De La Toba EA, Bell SE, Romanova EV, Sweedler JV. Mass Spectrometry Measurements of Neuropeptides: From Identification to Quantitation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:83-106. [PMID: 35324254 DOI: 10.1146/annurev-anchem-061020-022048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.
Collapse
Affiliation(s)
- Eduardo A De La Toba
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sara E Bell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Phetsanthad A, Li G, Jeon CK, Ruotolo BT, Li L. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:944-951. [PMID: 35508074 PMCID: PMC9167759 DOI: 10.1021/jasms.2c00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Structural analysis by native ion mobility-mass spectrometry provides a direct means to characterize protein interactions, stability, and other biophysical properties of disease-associated biomolecules. Such information is often extracted from collision-induced unfolding (CIU) experiments, performed by ramping a voltage used to accelerate ions entering a trap cell prior to an ion mobility separator. Traditionally, to simplify data analysis and achieve confident ion identification, precursor ion selection with a quadrupole is performed prior to collisional activation. Only one charge state can be selected at one time, leading to an imbalance between the total time required to survey CIU data across all protein charge states and the resulting structural analysis efficiency. Furthermore, the arbitrary selection of a single charge state can inherently bias CIU analyses. We herein aim to compare two conformation sampling methods for protein gas-phase unfolding: (1) traditional quadrupole selection-based CIU and (2) nontargeted, charge selection-free and shotgun workflow, all ion unfolding (AIU). Additionally, we provide a new data interpretation method that integrates across all charge states to project collisional cross section (CCS) data acquired over a range of activation voltages to produce a single unfolding fingerprint, regardless of charge state distributions. We find that AIU in combination with CCS accumulation across all charges offers an opportunity to maximize protein conformational information with minimal time cost, where additional benefits include (1) an improved signal-to-noise ratios for unfolding fingerprints and (2) a higher tolerance to charge state shifts induced by either operating parameters or other factors that affect protein ionization efficiency.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Gongyu Li
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Corresponding authors: Prof. Dr. Gongyu Li, ; Prof. Dr. Lingjun Li,
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Corresponding authors: Prof. Dr. Gongyu Li, ; Prof. Dr. Lingjun Li,
| |
Collapse
|
8
|
Omuro S, Yamaguchi T, Kawase T, Terasaki M, Hirose K, Obika S. Physicochemical property evaluation of modified oligonucleotides by traveling-wave ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9279. [PMID: 35203101 DOI: 10.1002/rcm.9279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Therapeutic oligonucleotides have molecular weights of more than 6000 Da. They typically contain chemically modified structures such as phosphorothioate (PS) and a locked nucleic acid (LNA). To determine the effect of the length and chemical modification on the physicochemical properties, various nucleic acids with different lengths and modified structures were analyzed using traveling-wave ion mobility mass spectrometry (TWIMS). METHODS The physicochemical characteristics of the modified oligonucleotides were determined using IM-MS. Each oligonucleotide was evaluated by confirming the multivalent charge state drift times, collision cross-section (CCS) values, and CCS widths. RESULTS By plotting the m/z for oligonucleotides of different lengths and the CCS values at each charge state, a bottoming-out shape plot at one charge per 4.0-3.5 bases was confirmed. Moreover, significant differences were observed in the CCS values between the PS-modified and unmodified oligonucleotides. The PS-modified oligonucleotide showed a wider CCS range that was proportional to the PS modification ratio of the oligonucleotide sequence. CONCLUSIONS The TWIMS results showed a correlation between the length and modification of oligonucleotides and the CCS values. In addition, it suggested that each charge state of the oligonucleotide ion has different physicochemical properties.
Collapse
Affiliation(s)
- Shogo Omuro
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Weber P, Hoyas S, Halin É, Coulembier O, De Winter J, Cornil J, Gerbaux P. On the Conformation of Anionic Peptoids in the Gas Phase. Biomacromolecules 2022; 23:1138-1147. [PMID: 35041390 DOI: 10.1021/acs.biomac.1c01442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although N-(S)-phenylethyl peptoids are known to adopt helical structures in solutions, the corresponding positively charged ions lose their helical structure during the transfer from the solution to the gas phase due to the so-called charge solvation effect. We, here, considered negatively charged peptoids to investigate by ion mobility spectrometry-mass spectrometry whether the structural changes described in the positive ionization mode can be circumvented in the negative mode by a fine-tuning of the peptoid sequence, that is, by positioning the negative charge at the positive side of the helical peptoid macrodipole. N-(S)-(1-carboxy-2-phenylethyl) (Nscp) and N-(S)-phenylethyl (Nspe) were selected as the negative charge carrier and as the helix inductor, respectively. We, here, report the results of a joint theoretical and experimental study demonstrating that the structures adopted by the NspenNscp anions remain compactly folded in the gas phase for chains containing up to 10 residues, whereas no evidence of the presence of a helical structure was obtained, even if, for selected sequences and lengths, different gas phase conformations are detected.
Collapse
Affiliation(s)
- Perrine Weber
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium.,Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Sébastien Hoyas
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium.,Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Émilie Halin
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, 23 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
10
|
Conant CR, Attah IK, Garimella SVB, Nagy G, Bilbao A, Smith RD, Ibrahim YM. Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:225-236. [PMID: 33126794 PMCID: PMC8170696 DOI: 10.1021/jasms.0c00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Structures for lossless ion manipulations (SLIM) have recently enabled a powerful implementation of traveling wave ion mobility spectrometry (TWIMS) for ultrahigh resolution separations; however, experimental parameters have not been optimized, and potential significant gains may be feasible. Most TWIMS separations have utilized square-shaped waveforms applied by time-dependent voltage stepping across repeating sets of electrodes, but alternative waveforms may provide further improvements to resolution. Here, we characterize five waveforms (including square and sine) in terms of their transmission efficiency, IMS resolution, and resolving power, and explore the effects of TW amplitude and speed on the performance of each. We found, consistent with previous work, separations were generally improved with higher TW amplitudes, moderately improved by lower speeds (limited by ion "surfing" with the waves), and found decreases in signal intensity at the extremes of operating conditions. The triangle and asymmetric "ramp forward" shaped profiles were found to provide modestly greater resolution and resolving power, an observation we tentatively attribute to their relatively uniform fields and minimal low-field regions.
Collapse
Affiliation(s)
- Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aivett Bilbao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Dueñas ME, Lee YJ. Single-Cell Metabolomics by Mass Spectrometry Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:69-82. [PMID: 33791975 DOI: 10.1007/978-3-030-51652-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multicellular organisms achieve their complex living activities through the highly organized metabolic interplay of individual cells and tissues. This complexity has driven the need to spatially resolve metabolomics down to the cellular and subcellular level. Recent technological advances have enabled mass spectrometry imaging (MSI), especially matrix-assisted laser desorption/ionization (MALDI), to become a powerful tool for the visualization of molecular species down to subcellular spatial resolution. In the present chapter, we summarize recent advances in the field of MALDI-MSI, with respect to single-cell level resolution metabolomics directly on tissue. In more detail, we focus on advancements in instrumentation for MSI at single-cell resolution, and the applications towards metabolomic scale imaging. Finally, we discuss new computational tools to aid in metabolite identification, future perspective, and the overall direction that the field of single-cell metabolomics directly on tissue may take in the years to come.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Department of Chemistry, Iowa State University, Ames, IA, USA.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
|
13
|
Direct Drug Analysis in Polymeric Implants Using Desorption Electrospray Ionization - Mass Spectrometry Imaging (DESI-MSI). Pharm Res 2020; 37:107. [PMID: 32462273 DOI: 10.1007/s11095-020-02823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) coupled with gas-phase ion mobility spectrometry was used to characterize the drug distribution in polymeric implants before and after exposure to accelerated in vitro release (IVR) media. DESI-MSI provides definitive chemical identification and localization of formulation components, including 2D chemical mapping of individual components with essentially no sample preparation. METHODS Polymeric implants containing 40% (w/w) entecavir and poly(D,L-lactide) (PLA) were prepared and then exposed to either acidified PBS (pH 2.5) or MeOH:H2O (50:50, v/v) medias during a 7-day IVR test using continuous flow-through (CFT) cell dissolution. The amount of drug released from the polymer matrix during the 7-day IVR test was monitored by online-ultraviolet spectroscopy (UV) and HPLC-UV. After that period, intact implants and radial sections of implants were analyzed by DESI-MSI with ion mobility spectrometry. The active ingredient along with impurities and contaminants were used to generate chemical maps before and after exposure to the release medias. RESULTS Bi-phasic release profiles were observed for implants during IVR release using both medias. During the second phase of release, implants exposed to PBS, pH 2.5, released the entecavir faster than the implants exposed to MeOH:H2O (50:50, v/v). Radial images of the polymer interior show that entecavir is localized along the central core of the implant after exposure to MeOH:H2O (50:50, v/v) and that the drug is more uniformly distributed throughout the implant after exposure to acidified PBS (pH 2.5). CONCLUSIONS DESI-MSI coupled with ion mobility analysis produced chemical images of the drug distribution on the exterior and interior of cylindrical polymeric implants before and after exposure to various release medias. These results demonstrated the utility of this technique for rapid characterization of drug and impurity/degradant distribution within polymeric implants with direct implications for formulation development as well as analytical method development activities for various solid parenteral and oral dosage forms. These results are especially meaningful since samples were analyzed with essentially no preparative procedures.
Collapse
|
14
|
Atakay M, Aksakal F, Bozkaya U, Salih B, Wesdemiotis C. Conformational Characterization of Polyelectrolyte Oligomers and Their Noncovalent Complexes Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:441-449. [PMID: 32031387 DOI: 10.1021/jasms.9b00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly-l-lysine (PLL), polystyrenesulfonate (PSS), and a mixture of these polyelectrolytes were investigated by electrospray ionization ion mobility mass spectrometry. The IM step confirmed the formation of noncovalent (i.e., supramolecular) complexes between these polyelectrolytes, which were detected in various charge states and stoichiometries in the presence of their constituents. Experimental and theoretical collision cross sections (CCSs) were derived for both PLL and PSS oligomers as well as their noncovalent assemblies. PSS chains showed higher compactness with increasing size as compared to PLL chains, indicating that the intrinsic conformations of the polyelectrolytes depend on the nature of the functional groups on their side chains. The CCS data for the noncovalent complexes further revealed that assemblies with higher PLL content have higher CCS values than other compositions of similar mass and that PLL-PSS complex formation is accompanied by significant size contraction.
Collapse
Affiliation(s)
- Mehmet Atakay
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Fatma Aksakal
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Uğur Bozkaya
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Bekir Salih
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Chrys Wesdemiotis
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
15
|
Kwantwi-Barima P, Reinecke T, Clowers BH. Increased ion throughput using tristate ion-gate multiplexing. Analyst 2019; 144:6660-6670. [PMID: 31595887 DOI: 10.1039/c9an01585j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For time dispersive ion mobility experiments detail control over the mechanism of ion beam modulation is necessary to establish optimum performance as this parameter greatly influences the temporal width of the ion beam arriving at the detector. When sampling continuous ion sources the temporal sampling or the incoming ion beam is often achieved by the electronic modulation of a grid or electric field. Not surprisingly, the rate at which a given ion population traverses this gating region is directly proportional to an ion's population and the applied electric field. This scenario establishes conditions where discrimination of the incoming ion beam may occur when the ion gate modulation rate is minimized. Recent developments in the mechanical construction of ion gates and their subsequent operation suggest that the mobility discrimination during ion gating may be minimized, however, it is remains unclear how this behavior will translate to ion beam multiplexing approaches. In this present work, we compare the performance levels of the tri-state ion shutter (3S-IS) to the two-state ion shutter (2S-IS) using a series of Fourier transform ion mobility mass spectrometry (FT-IMMS) experiments. The performance of the two different shutter operating principles were evaluated using ion multiplexing using tetraalkylammonium salts (TXA ions; T5-T8, T10, T12) bradykinin, and a set of reversed sequence isomeric pentapeptides using a variety of different ion gate frequency sweeps. Noticeable increases in ion throughput were observed for the 3S-IS with 95% and 45% increases in ion counts for the T5 and T12 ions respectively compared to the 2S-IS. Similarly, a 27% and 55% increase in ion counts was observed for the [M + 2H]2+ and [M + H]+ ions of bradykinin, respectively. In addition, a 10% increase in resolving power was also observed for the 3S-IS compared to the 2S-IS. Overall, utilization of the 3S-IS effectively minimizes both discrimination of slower ions and the impact of gate depletion effect common to traditional ion gating techniques.
Collapse
|
16
|
Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:501-513. [PMID: 31347067 DOI: 10.1007/978-3-030-15950-4_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The diversity of biological samples and dynamic range of analytes being analyzed can prove to be an analytical challenge and is particularly prevalent to proteomic studies. Maximizing the peak capacity of the workflow employed can extend the dynamic range and increase identification rates. The focus of this chapter is to present means of achieving this for various analytical techniques such as liquid chromatography, mass spectrometry and ion mobility. A combination of these methods can be used as part of a data independent acquisition strategy, thereby limiting issues such as chimericy when analyzing regions of extreme analyte density.
Collapse
|
17
|
Talbert LE, Julian RR. Methionine and Selenomethionine as Energy Transfer Acceptors for Biomolecular Structure Elucidation in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1601-1608. [PMID: 31222676 PMCID: PMC6697561 DOI: 10.1007/s13361-019-02262-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Mass spectrometry affords rapid and sensitive analysis of peptides and proteins. Coupling spectroscopy with mass spectrometry allows for the development of new methods to enhance biomolecular structure determination. Herein, we demonstrate two new energy acceptors that can be utilized for action-excitation energy transfer experiments. In the first system, C-S bonds in methionine act as energy acceptors from native chromophores, including tyrosine, tryptophan, and phenylalanine. Comparison among chromophores reveals that tyrosine transfers energy most efficiently at 266 nm, but phenylalanine and tryptophan also transfer energy with comparable efficiencies. Overall, the C-S bond dissociation yields following energy transfer are low for methionine, which led to an investigation of selenomethionine, a common analog that is found in many naturally occurring proteins. Sulfur and selenium are chemically similar, but C-Se bonds are weaker than C-S bonds and have lower lying σ* anti-bonding orbitals. Excitation of peptides containing tyrosine and tryptophan results in efficient energy transfer to selenomethionine and abundant C-Se bond dissociation. A series of helical peptides were examined where the positions of the donor or acceptor were systematically scanned to explore the influence of distance and helix orientation on energy transfer. The distance was found to be the primary factor affecting energy transfer efficiency, suggesting that selenomethionine may be a useful acceptor for probing protein structure in the gas phase.
Collapse
Affiliation(s)
- Lance E Talbert
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Maes E, Oeyen E, Boonen K, Schildermans K, Mertens I, Pauwels P, Valkenborg D, Baggerman G. The challenges of peptidomics in complementing proteomics in a clinical context. MASS SPECTROMETRY REVIEWS 2019; 38:253-264. [PMID: 30372792 DOI: 10.1002/mas.21581] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Naturally occurring peptides, including growth factors, hormones, and neurotransmitters, represent an important class of biomolecules and have crucial roles in human physiology. The study of these peptides in clinical samples is therefore as relevant as ever. Compared to more routine proteomics applications in clinical research, peptidomics research questions are more challenging and have special requirements with regard to sample handling, experimental design, and bioinformatics. In this review, we describe the issues that confront peptidomics in a clinical context. After these hurdles are (partially) overcome, peptidomics will be ready for a successful translation into medical practice.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Food and Bio-Based Products, AgResearch Ltd., Lincoln, New Zealand
| | - Eline Oeyen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Karin Schildermans
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Molecular Pathology Unit, Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Center for Statistics, Hasselt University, Diepenbeek, Belgium
| | - Geert Baggerman
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
20
|
Harrison JA, Kelso C, Pukala TL, Beck JL. Conditions for Analysis of Native Protein Structures Using Uniform Field Drift Tube Ion Mobility Mass Spectrometry and Characterization of Stable Calibrants for TWIM-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:256-267. [PMID: 30324262 DOI: 10.1007/s13361-018-2074-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Determination of collisional cross sections (CCS) by travelling wave ion mobility mass spectrometry (TWIM-MS) requires calibration against standards for which the CCS has been measured previously by drift tube ion mobility mass spectrometry (DTIM-MS). The different extents of collisional activation in TWIM-MS and DTIM-MS can give rise to discrepancies in the CCS of calibrants across the two platforms. Furthermore, the conditions required to ionize and transmit large, folded proteins and assemblies may variably affect the structure of the calibrants and analytes. Stable hetero-oligomeric phospholipase A2 (PDx) and its subunits were characterized as calibrants for TWIM-MS. Conditions for acquisition of native-like TWIM (Synapt G1 HDMS) and DTIM (Agilent 6560 IM-Q-TOF) mass spectra were optimized to ensure the spectra exhibited similar charge state distributions. CCS measurements (DTIM-MS) for ubiquitin, cytochrome c, holo-myoglobin, serum albumin and glutamate dehydrogenase were in good agreement with other recent results determined using this and other DTIM-MS instruments. PDx and its β and γ subunits were stable across a wide range of cone and trap voltages in TWIM-MS and were stable in the presence of organic solvents. The CCS of PDx and its subunits were determined by DTIM-MS and were used as calibrants in determination of CCS of native-like cytochrome c, holo-myoglobin, carbonic anhydrase, serum albumin and haemoglobin in TWIM-MS. The CCS values were in good agreement with those measured by DTIM-MS where available. These experiments demonstrate conditions for analysis of native-like proteins using a commercially available DTIM-MS instrument, characterize robust calibrants for TWIM-MS, and present CCS values determined by DTIM-MS and TWIM-MS for native proteins to add to the current literature database. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Julian A Harrison
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Celine Kelso
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Tara L Pukala
- Discipline of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jennifer L Beck
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
21
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
22
|
Cheng GJ, Zhong XM, Wu YD, Zhang X. Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chem Commun (Camb) 2019; 55:12749-12764. [PMID: 31560354 DOI: 10.1039/c9cc05458h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of mass spectrometry and computational chemistry has been proven to be powerful for exploring reaction mechanisms. The former provides information of reaction intermediates, while the latter gives detailed reaction energy profiles.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiu-Mei Zhong
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
23
|
Hinnenkamp V, Klein J, Meckelmann SW, Balsaa P, Schmidt TC, Schmitz OJ. Comparison of CCS Values Determined by Traveling Wave Ion Mobility Mass Spectrometry and Drift Tube Ion Mobility Mass Spectrometry. Anal Chem 2018; 90:12042-12050. [DOI: 10.1021/acs.analchem.8b02711] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vanessa Hinnenkamp
- IWW Water Centre, Moritzstraße 26, 45476 Muelheim an der Ruhr, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, Universitaetsstrasse 5, 45141 Essen, Germany
| | | | | | - Peter Balsaa
- IWW Water Centre, Moritzstraße 26, 45476 Muelheim an der Ruhr, Germany
| | - Torsten C. Schmidt
- IWW Water Centre, Moritzstraße 26, 45476 Muelheim an der Ruhr, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, Universitaetsstrasse 5, 45141 Essen, Germany
| | | |
Collapse
|
24
|
Pfammatter S, Bonneil E, McManus FP, Prasad S, Bailey DJ, Belford M, Dunyach JJ, Thibault P. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Mol Cell Proteomics 2018; 17:2051-2067. [PMID: 30007914 DOI: 10.1074/mcp.tir118.000862] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Indexed: 01/17/2023] Open
Abstract
The depth of proteomic analyses is often limited by the overwhelming proportion of confounding background ions that compromise the identification and quantification of low abundance peptides. To alleviate these limitations, we present a new high field asymmetric waveform ion mobility spectrometry (FAIMS) interface that can be coupled to the Orbitrap Tribrid mass spectrometers. The interface provides several advantages over previous generations of FAIMS devices, including ease of operation, robustness, and high ion transmission. Replicate LC-FAIMS-MS/MS analyses (n = 100) of HEK293 protein digests showed stable ion current over extended time periods with uniform peptide identification on more than 10,000 distinct peptides. For complex tryptic digest analyses, the coupling of FAIMS to LC-MS/MS enabled a 30% gain in unique peptide identification compared with non-FAIMS experiments. Improvement in sensitivity facilitated the identification of low abundance peptides, and extended the limit of detection by almost an order of magnitude. The reduction in chimeric MS/MS spectra using FAIMS also improved the precision and the number of quantifiable peptides when using isobaric labeling with tandem mass tag (TMT) 10-plex reagent. We compared quantitative proteomic measurements for LC-MS/MS analyses performed using synchronous precursor selection (SPS) and LC-FAIMS-MS/MS to profile the temporal changes in protein abundance of HEK293 cells following heat shock for periods up to 9 h. FAIMS provided 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments (30,848 peptides from 2,646 proteins for FAIMS versus 12,400 peptides from 1,229 proteins with SPS). Altogether, the enhancement in ion transmission and duty cycle of the new FAIMS interface extended the depth and comprehensiveness of proteomic analyses and improved the precision of quantitative measurements.
Collapse
Affiliation(s)
- Sibylle Pfammatter
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada.,§University of Montréal, Department of Chemistry, H3T 1J4, Québec, Canada
| | - Eric Bonneil
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada
| | - Francis P McManus
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada
| | - Satendra Prasad
- ¶Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Derek J Bailey
- ¶Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael Belford
- ¶Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada; .,§University of Montréal, Department of Chemistry, H3T 1J4, Québec, Canada
| |
Collapse
|
25
|
Yu H, Wang J, Guo X, Zhang R, He C, Duan C. Diversity of metal-organic macrocycles assembled from carbazole based ligands with different lengths. Dalton Trans 2018; 47:4040-4044. [PMID: 29473087 DOI: 10.1039/c8dt00252e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of carbazole based ligands with different lengths were assembled with nickel ions to construct metal-organic macrocycles. High-resolution mass spectrometry and ion mobility-mass spectrometry have been used to analyse the resulting MnLn assembly coexisting in solution. Combining with the structural analysis of their solid confirmation, it was revealed that the diversity of the metal-organic macrocycles was increased with the flexibility of the ligands.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Xiangyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| |
Collapse
|
26
|
Sans M, Feider CL, Eberlin LS. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr Opin Chem Biol 2018; 42:138-146. [PMID: 29275246 PMCID: PMC5828985 DOI: 10.1016/j.cbpa.2017.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
Abstract
Tissues present complex biochemical and morphological composition associated with their various cell types and physiological functions. Mass spectrometry (MS) imaging technologies are powerful tools to investigate the molecular information from biological tissue samples and visualize their complex spatial distributions. Coupling of gas-phase ion mobility spectrometry (IMS) technologies to MS imaging has been increasingly explored to improve performance for biological tissue imaging. This approach allows improved detection of low abundance ions and separation of isobaric molecular species, thus resulting in more accurate determination of the spatial distribution of molecular ions. In this review, we highlight recent advances in the field focusing on promising applications of these technologies for metabolite, lipid and protein tissue imaging.
Collapse
Affiliation(s)
- Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
27
|
Tian Y, Ruotolo BT. The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst 2018; 143:2459-2468. [DOI: 10.1039/c8an00295a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensive structural characterization of therapeutic antibodies is of critical importance for the successful discovery and development of such biopharmaceuticals, yet poses many challenges to modern measurement science. Here, we review the current state-of-the-art mass spectrometry technologies focusing on the characterization of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | |
Collapse
|
28
|
Microscale differential ion mobility spectrometry for field deployable chemical analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Barran P. From Microsolvation to Cell Permeation: Novel Separation Science for Drug Discovery. ACS CENTRAL SCIENCE 2017; 3:158-160. [PMID: 28386592 PMCID: PMC5364446 DOI: 10.1021/acscentsci.7b00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
30
|
Song LJ, Wang T, Zhang X, Chung LW, Wu YD. A Combined DFT/IM-MS Study on the Reaction Mechanism of Cationic Ru(II)-Catalyzed Hydroboration of Alkynes. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03214] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Juan Song
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ting Wang
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lung Wa Chung
- Department
of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab
of Computational Chemistry and Drug Design, Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College
of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
|
32
|
D'Addio SM, Bothe JR, Neri C, Walsh PL, Zhang J, Pierson E, Mao Y, Gindy M, Leone A, Templeton AC. New and Evolving Techniques for the Characterization of Peptide Therapeutics. J Pharm Sci 2016; 105:2989-3006. [DOI: 10.1016/j.xphs.2016.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
|
33
|
Akashi S, Downard KM. Effect of charge on the conformation of highly basic peptides including the tail regions of histone proteins by ion mobility mass spectrometry. Anal Bioanal Chem 2016; 408:6637-48. [DOI: 10.1007/s00216-016-9777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
34
|
Wang L, Liu S, Zhang X, Xing J, Liu Z, Song F. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry. J Chromatogr A 2016; 1452:47-57. [DOI: 10.1016/j.chroma.2016.05.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/09/2016] [Accepted: 05/05/2016] [Indexed: 11/26/2022]
|
35
|
Reading E, Munoz-Muriedas J, Roberts AD, Dear GJ, Robinson CV, Beaumont C. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry. Anal Chem 2016; 88:2273-80. [DOI: 10.1021/acs.analchem.5b04068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Eamonn Reading
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Jordi Munoz-Muriedas
- Chemical
Sciences, Computational Chemistry, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew D. Roberts
- Drug
Metabolism and Pharmacokinetics, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, U.K
| | - Gordon J. Dear
- Drug
Metabolism and Pharmacokinetics, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, U.K
| | - Carol V. Robinson
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Claire Beaumont
- Drug
Metabolism and Pharmacokinetics, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, U.K
| |
Collapse
|
36
|
Bonneil E, Pfammatter S, Thibault P. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS). JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1181-1195. [PMID: 26505763 DOI: 10.1002/jms.3646] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
Remarkable advances in mass spectrometry sensitivity and resolution have been accomplished over the past two decades to enhance the depth and coverage of proteome analyses. As these technological developments expanded the detection capability of mass spectrometers, they also revealed an increasing complexity of low abundance peptides, solvent clusters and sample contaminants that can confound protein identification. Separation techniques that are complementary and can be used in combination with liquid chromatography are often sought to improve mass spectrometry sensitivity for proteomics applications. In this context, high-field asymmetric waveform ion mobility spectrometry (FAIMS), a form of ion mobility that exploits ion separation at low and high electric fields, has shown significant advantages by focusing and separating multiply charged peptide ions from singly charged interferences. This paper examines the analytical benefits of FAIMS in proteomics to separate co-eluting peptide isomers and to enhance peptide detection and quantitative measurements of protein digests via native peptides (label-free) or isotopically labeled peptides from metabolic labeling or chemical tagging experiments.
Collapse
Affiliation(s)
- Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Sibylle Pfammatter
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
37
|
Cole H, Porrini M, Morris R, Smith T, Kalapothakis J, Weidt S, Mackay CL, MacPhee CE, Barran PE. Early stages of insulin fibrillogenesis examined with ion mobility mass spectrometry and molecular modelling. Analyst 2015; 140:7000-11. [PMID: 26369607 PMCID: PMC11226345 DOI: 10.1039/c5an01253h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/09/2015] [Indexed: 07/07/2024]
Abstract
A prevalent type of protein misfolding causes the formation of β-sheet-rich structures known as amyloid fibrils. Research into the mechanisms of fibril formation has implications for both disease prevention and nanoscale templating technologies. This investigation into the aggregation of insulin utilises ion mobility mass spectrometry coupled with molecular modelling to identify and characterise oligomers formed during the 'lag' phase that precedes fibril growth. High resolution mass spectrometry and collision induced dissociation is used to unequivocally assign species as m/z coincident multimers or confomers, providing a robust analytical approach that supports the use of molecular dynamics to atomistically resolve the observed oligomers. We show that insulin oligomerises to form species In where 2 ≤ n ≤ 12 and within this set of oligomers we delineate over 60 distinct conformations, the most dominant of which are compact species. Modelling trained with experimental data suggests that the dominant compact dimers are enriched in β-sheet secondary structure and dominated by hydrophobic interactions, and provides a linear relationship between Rg and collision cross section. This approach provides detailed insight to the early stages of assembly of this much studied amyloidogenic protein, and can be used to inform models of nucleation and growth.
Collapse
Affiliation(s)
- Harriet Cole
- EastChem School of ChemistryJoseph Black BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JJUK
- SUPA, School of Physics and AstronomyJames Clark Maxwell BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JZUK
| | - Massimiliano Porrini
- SUPA, School of Physics and AstronomyJames Clark Maxwell BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JZUK
| | - Ryan Morris
- SUPA, School of Physics and AstronomyJames Clark Maxwell BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JZUK
| | - Tom Smith
- EastChem School of ChemistryJoseph Black BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JJUK
| | - Jason Kalapothakis
- EastChem School of ChemistryJoseph Black BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JJUK
- SUPA, School of Physics and AstronomyJames Clark Maxwell BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JZUK
| | - Stefan Weidt
- EastChem School of ChemistryJoseph Black BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JJUK
| | - C. Logan Mackay
- EastChem School of ChemistryJoseph Black BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JJUK
| | - Cait E. MacPhee
- SUPA, School of Physics and AstronomyJames Clark Maxwell BuildingThe King's BuildingsWest Mains RdEdinburgh EH9 3JZUK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Manchester Institute of Mass Spectrometry, The University of ManchesterManchesterM1 7DNUK+44(0) 161 275 0256
| |
Collapse
|
38
|
Guo K, Guo Z, Ludlow JM, Xie T, Liao S, Newkome GR, Wesdemiotis C. Characterization of Metallosupramolecular Polymers by Top-Down Multidimensional Mass Spectrometry Methods. Macromol Rapid Commun 2015; 36:1539-52. [PMID: 26248126 DOI: 10.1002/marc.201500084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/15/2015] [Indexed: 11/07/2022]
Abstract
Top-down multidimensional mass spectrometry, interfacing electrospray ionization (ESI) with ion mobility mass spectrometry (IM-MS), and energy resolved (gradient) tandem mass spectrometry (gMS(2) ) are employed to characterize the stoichiometries, architectures, and intrinsic stabilities of coordinatively bound supramolecular polymers containing terpyridine functionalized ligands. As a soft ionization method, ESI prevents or minimizes unwanted assembly destruction. The IM dimension affords separation of the supramolecular ions by charge and collision cross-section (a function of size and shape). The mobility separated ions are subsequently identified by their mass-to-charge-ratios and isotope patterns in the orthogonal MS dimension. Finally, the gMS(2) dimension reveals bond breaking proclivities and disintegration pathways of the assemblies. The described methodology does not require high sample purity due to the dispersive nature of the IM and MS steps. Its utility is demonstrated with the comprehensive analysis of bisterpyridine-based metallomacrocycle mixtures and a tristerpyridine based complex with 3-D nanosphere-like architecture.
Collapse
Affiliation(s)
- Kai Guo
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Zaihong Guo
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - James M Ludlow
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Tingzheng Xie
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Shengyun Liao
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - George R Newkome
- Departments of Chemistry and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Chrys Wesdemiotis
- Departments of Chemistry and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
39
|
Cheng GJ, Chen P, Sun TY, Zhang X, Yu JQ, Wu YD. A combined IM-MS/DFT study on [Pd(MPAA)]-catalyzed enantioselective C-H activation: relay of chirality through a rigid framework. Chemistry 2015; 21:11180-8. [PMID: 26186414 DOI: 10.1002/chem.201501123] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/07/2022]
Abstract
A combined ion-mobility mass spectrometry (IM-MS) and DFT study has been employed to investigate the mechanism and the origin of selectivity of palladium/mono-N-protected amino acid (MPAA)-catalyzed enantioselective CH activation reactions of several prochiral substrates. We captured the [Pd(MPAA)(substrate)] complex at different stages, and demonstrated that the CH bond can be activated in the absence of an external base. DFT studies lead to the establishment of a significantly modified relay mechanism invoking a key conformational effect to account for the origin of enantioselectivity. This relay mechanism successfully accounts for the enantioselectivity for all the relevant reactions reported. The enantioselectivity originates from the rigid square-planar Pd coordination in the CH activation transition state: Bidentate MPAA and substrate coordination.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (P.R. China)
| | - Ping Chen
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (P.R. China)
| | - Tian-Yu Sun
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (P.R. China)
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (P.R. China).
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, California 92037 (USA).
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055 (P.R. China). .,College of Chemistry, Peking University, Beijing 100871 (P.R. China).
| |
Collapse
|
40
|
Hanozin E, Morsa D, De Pauw E. Energetics and structural characterization of isomers using ion mobility and gas-phase H/D exchange: Learning from lasso peptides. Proteomics 2015; 15:2823-34. [DOI: 10.1002/pmic.201400534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory, Department of Chemistry; University of Liege; Liege Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory, Department of Chemistry; University of Liege; Liege Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Department of Chemistry; University of Liege; Liege Belgium
| |
Collapse
|
41
|
Hendricks NG, Julian RR. Two-step energy transfer enables use of phenylalanine in action-EET for distance constraint determination in gaseous biomolecules. Chem Commun (Camb) 2015; 51:12720-3. [DOI: 10.1039/c5cc03779d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-step energy transfer is observed between phenylalanine, tyrosine, and modified cysteine. This gas-phase system enables use of phenylalanine in energy transfer experiments, provides specific distance information for structure determination, and is easily examined with mass spectrometry.
Collapse
Affiliation(s)
| | - Ryan R. Julian
- Department of Chemistry
- University of California, Riverside
- Riverside
- USA
| |
Collapse
|
42
|
Fisher S, Witkowska HE. Protein Biomarkers for Detecting Cancer. THE MOLECULAR BASIS OF CANCER 2015:331-346.e5. [DOI: 10.1016/b978-1-4557-4066-6.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 2014; 6:281-94. [DOI: 10.1038/nchem.1889] [Citation(s) in RCA: 655] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/11/2014] [Indexed: 02/07/2023]
|
44
|
Beveridge R, Chappuis Q, Macphee C, Barran P. Mass spectrometry methods for intrinsically disordered proteins. Analyst 2014; 138:32-42. [PMID: 23108160 DOI: 10.1039/c2an35665a] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the last ten years mass spectrometry has emerged as a powerful biophysical technique capable of providing unique insights into the structure and dynamics of proteins. Part of this explosion in use involves investigations of the most recently 'discovered' subset of proteins: the so-called 'Intrinsically Disordered' or 'Natively Unstructured' proteins. A key advantage of the use of mass spectrometry to study intrinsically disordered proteins (IDPs) is its ability to test biophysical assertions made about why they differ from structured proteins. For example, from the charge state distribution presented by a protein following nano-electrospray (n-ESI) it is possible to infer the range of conformations present in solution and hence the extent of disorder; n-ESI is highly sensitive to the degree of folding at the moment of transfer from the liquid to the gas phase. The combination of mass spectrometry with ion mobility (IM-MS) provides rotationally averaged collision cross-sections of molecular ions which can be correlated with conformation; this too can be applied to IDPs. Another feature which can be monitored by IM-MS is the tendency of disordered proteins to form amyloid fibrils, the protein aggregates involved in the onset of neurodegenerative diseases such as Parkinson's and Alzheimer's. IM-MS provides a useful insight into events that occur during the early stages of aggregation including delineating the structure of the monomer, identifying oligomer distributions, and revealing mechanistic details of the aggregation process. Here we will review the use of MS and IM-MS to study IDPs using examples from our own and other laboratories.
Collapse
Affiliation(s)
- Rebecca Beveridge
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland
| | | | | | | |
Collapse
|
45
|
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86:196-212. [PMID: 24313268 PMCID: PMC3924431 DOI: 10.1021/ac403969n] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - L. Renee Ruhaak
- Department of Chemistry, University of California at Davis, Davis, CA 95616
| | | | | |
Collapse
|
46
|
Gethings LA, Connolly JB. Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:59-77. [DOI: 10.1007/978-3-319-06068-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
47
|
Lapthorn C, Pullen F, Chowdhry BZ. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. MASS SPECTROMETRY REVIEWS 2013; 32:43-71. [PMID: 22941854 DOI: 10.1002/mas.21349] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 01/29/2012] [Accepted: 03/08/2012] [Indexed: 05/11/2023]
Abstract
The phenomenon of ion mobility (IM), the movement/transport of charged particles under the influence of an electric field, was first observed in the early 20th Century and harnessed later in ion mobility spectrometry (IMS). There have been rapid advances in instrumental design, experimental methods, and theory together with contributions from computational chemistry and gas-phase ion chemistry, which have diversified the range of potential applications of contemporary IMS techniques. Whilst IMS-mass spectrometry (IMS-MS) has recently been recognized for having significant research/applied industrial potential and encompasses multi-/cross-disciplinary areas of science, the applications and impact from decades of research are only now beginning to be utilized for "small molecule" species. This review focuses on the application of IMS-MS to "small molecule" species typically used in drug discovery (100-500 Da) including an assessment of the limitations and possibilities of the technique. Potential future developments in instrumental design, experimental methods, and applications are addressed. The typical application of IMS-MS in relation to small molecules has been to separate species in fairly uniform molecular classes such as mixture analysis, including metabolites. Separation of similar species has historically been challenging using IMS as the resolving power, R, has been low (3-100) and the differences in collision cross-sections that could be measured have been relatively small, so instrument and method development has often focused on increasing resolving power. However, IMS-MS has a range of other potential applications that are examined in this review where it displays unique advantages, including: determination of small molecule structure from drift time, "small molecule" separation in achiral and chiral mixtures, improvement in selectivity, identification of carbohydrate isomers, metabonomics, and for understanding the size and shape of small molecules. This review provides a broad but selective overview of current literature, concentrating on IMS-MS, not solely IMS, and small molecule applications.
Collapse
Affiliation(s)
- Cris Lapthorn
- School of Science, University of Greenwich, Medway Campus, Chatham, Kent ME4 4TB, UK
| | | | | |
Collapse
|
48
|
Van Riper SK, de Jong EP, Carlis JV, Griffin TJ. Mass Spectrometry-Based Proteomics: Basic Principles and Emerging Technologies and Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:1-35. [DOI: 10.1007/978-94-007-5896-4_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Harvey SR, Porrini M, Stachl C, MacMillan D, Zinzalla G, Barran PE. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J Am Chem Soc 2012; 134:19384-92. [PMID: 23106332 DOI: 10.1021/ja306519h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The leucine zipper interaction between MAX and c-MYC has been studied using mass spectrometry and drift time ion mobility mass spectrometry (DT IM-MS) in addition to circular dichroism spectroscopy. Peptides comprising the leucine zipper sequence with (c-MYC-Zip residues 402-434) and without a postulated small-molecule binding region (c-MYC-ZipΔDT residues 406-434) have been synthesized, along with the corresponding MAX leucine zipper (MAX-Zip residues 74-102). c-MYC-Zip:MAX-Zip complexes are observed both in the absence and in the presence of the reported small-molecule inhibitor 10058-F4 for both forms of c-MYC-Zip. DT IM-MS, in combination with molecular dynamics (MD), shows that the c-MYC-Zip:MAX-Zip complex [M+5H](5+) exists in two conformations, one extended with a collision cross section (CCS) of 1164 ± 9.3 Å(2) and one compact with a CCS of 982 ± 6.6 Å(2); similar values are observed for the two forms of c-MYC-ZipΔDT:MAX-Zip. Candidate geometries for the complexes have been evaluated with MD simulations. The helical leucine zipper structure previously determined from NMR measurements (Lavigne, P.; et al. J. Mol. Biol. 1998, 281, 165), altered to include the DT region and subjected to a gas-phase minimization, yields a CCS of 1247 Å(2), which agrees with the extended conformation we observe experimentally. More extensive MD simulations provide compact complexes which are found to be highly disordered, with CCSs that correspond to the compact form from experiment. In the presence of the ligand, the leucine zipper conformation is completely inhibited and only the more disordered species is observed, providing a novel method to study the effect of interactions of disordered systems and subsequent inhibition of the formation of an ordered helical complex.
Collapse
Affiliation(s)
- Sophie R Harvey
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | |
Collapse
|
50
|
Márquez-Sillero I, Cárdenas S, Valcárcel M. Headspace-multicapillary column-ion mobility spectrometry for the direct analysis of 2,4,6-trichloroanisole in wine and cork samples. J Chromatogr A 2012; 1265:149-54. [PMID: 23089513 DOI: 10.1016/j.chroma.2012.09.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Headspace-multicapillary column-ion mobility spectrometry coupling has been evaluated for the direct analysis of wine and cork stopper samples for the determination of 2,4,6-trichloroanisole (2,4,6-TCA). The instrumental configuration permits the sample to be introduced in headspace vials which are placed into the autosampler oven in order to facilitate the transference of the volatile compounds from the sample to its headspace. Further, an aliquot of 200 μL of the homogenized gaseous phase is injected into the multicapillary column in order to separate the target compounds from potential interferents. The detection of 2,4,6-TCA was carried out in an ion mobility spectrometer with a radioactive source and working under negative mode. All the system was computer controlled, including data acquisition and treatment. The limits of detection achieved were 0.012 ng L(-1) for wine and 0.28 ng g(-1) for the cork stopper. The procedure was applied to the analysis of commercial wine samples in different packages and 2,4,6-TCA was found in all of those closed with a cork stopper. The excellent recovery values obtained testify for the goodness of the method as no interference from the sample matrix exits.
Collapse
Affiliation(s)
- Isabel Márquez-Sillero
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus de Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | | | | |
Collapse
|