1
|
Wang Z, Zhang YJ, Zhang QY, Bilsborrow K, Leslie M, Suhandynata RT, Zhou H. Sequence specificity of an essential nuclear localization sequence in Mcm3. PLoS Genet 2025; 21:e1011499. [PMID: 39836669 PMCID: PMC11761085 DOI: 10.1371/journal.pgen.1011499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of the MCM complex and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Collapse
Affiliation(s)
- Ziyi Wang
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Yun Jing Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Qian-yi Zhang
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
| | - Kate Bilsborrow
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Matthew Leslie
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Raymond T. Suhandynata
- Department of Pathology, University of California San Diego, San Diego, California, United States of America
| | - Huilin Zhou
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, School of Medicine, University of California at San Diego, San Diego, California, United States of America
| |
Collapse
|
2
|
Wang Z, Zhang YJ, Zhang QY, Bilsborrow K, Leslie M, Suhandynata RT, Zhou H. Sequence specificity of an essential nuclear localization sequence in Mcm3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623588. [PMID: 39605614 PMCID: PMC11601334 DOI: 10.1101/2024.11.14.623588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of MCM and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Collapse
Affiliation(s)
- Ziyi Wang
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Yun Jing Zhang
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Qian-yi Zhang
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
| | - Kate Bilsborrow
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Matthew Leslie
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | | | - Huilin Zhou
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
- Moores Cancer Center, School of Medicine, University of California at San Diego
| |
Collapse
|
3
|
Amasino AL, Gupta S, Friedman LJ, Gelles J, Bell SP. Regulation of replication origin licensing by ORC phosphorylation reveals a two-step mechanism for Mcm2-7 ring closing. Proc Natl Acad Sci U S A 2023; 120:e2221484120. [PMID: 37428921 PMCID: PMC10629557 DOI: 10.1073/pnas.2221484120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/03/2023] [Indexed: 07/12/2023] Open
Abstract
Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 is well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. The phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO complex formation and we provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO complex formation.
Collapse
Affiliation(s)
- Audra L. Amasino
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shalini Gupta
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| | - Stephen P. Bell
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
4
|
Amasino A, Gupta S, Friedman LJ, Gelles J, Bell SP. Regulation of replication origin licensing by ORC phosphorylation reveals a two-step mechanism for Mcm2-7 ring closing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522488. [PMID: 36711604 PMCID: PMC9881882 DOI: 10.1101/2023.01.02.522488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 are well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. Phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO-complex formation and provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO-complex formation. Significance Statement Each time a eukaryotic cell divides (by mitosis) it must duplicate its chromosomal DNA exactly once to ensure that one full copy is passed to each resulting cell. Both under-replication or over-replication result in genome instability and disease or cell death. A key mechanism to prevent over-replication is the temporal separation of loading of the replicative DNA helicase at origins of replication and activation of these same helicases during the cell division cycle. Here we define the mechanism by which phosphorylation of the primary DNA binding protein involved in these events inhibits helicase loading. Our studies identify multiple steps of inhibition and provide new insights into the mechanism of helicase loading in the uninhibited condition.
Collapse
Affiliation(s)
- Audra Amasino
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shalini Gupta
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA,Co-corresponding authors: Stephen P. Bell, , Phone: 617-253-2054, Jeff Gelles, , Phone: 781-736-2377
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Co-corresponding authors: Stephen P. Bell, , Phone: 617-253-2054, Jeff Gelles, , Phone: 781-736-2377
| |
Collapse
|
5
|
Quan Y, Zhang QY, Zhou AL, Wang Y, Cai J, Gao YQ, Zhou H. Site-specific MCM sumoylation prevents genome rearrangements by controlling origin-bound MCM. PLoS Genet 2022; 18:e1010275. [PMID: 35696436 PMCID: PMC9232163 DOI: 10.1371/journal.pgen.1010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Timely completion of eukaryotic genome duplication requires coordinated DNA replication initiation at multiple origins. Replication begins with the loading of the Mini-Chromosome Maintenance (MCM) complex, proceeds by the activation of the Cdc45-MCM-GINS (CMG) helicase, and ends with CMG removal after chromosomes are fully replicated. Post-translational modifications on the MCM and associated factors ensure an orderly transit of these steps. Although the mechanisms of CMG activation and removal are partially understood, regulated MCM loading is not, leaving an incomplete understanding of how DNA replication begins. Here we describe a site-specific modification of Mcm3 by the Small Ubiquitin-like MOdifier (SUMO). Mutations that prevent this modification reduce the MCM loaded at replication origins and lower CMG levels, resulting in impaired cell growth, delayed chromosomal replication, and the accumulation of gross chromosomal rearrangements (GCRs). These findings demonstrate the existence of a SUMO-dependent regulation of origin-bound MCM and show that this pathway is needed to prevent genome rearrangements. Faithful replication of the genome is essential for the survival and health of all living organisms. The eukaryotic genome presents a unique and difficult challenge: its enormous size demands the coordinated action of numerous DNA replication origins to ensure timely completion of genome duplication. Although the mechanisms that control the activation and removal of DNA replisome are partially understood, whether and how cells regulate the loading of the Mini-Chromosome Maintenance (MCM) complex, the precursor of the DNA replisome, at replication origins are not. Because mutations to MCM-loading factors and enzymes that catalyze reversible protein sumoylation cause substantial gross chromosomal rearrangements (GCRs) that characterize the cancer genome, understanding regulated MCM loading is one of the most pressing questions in the field. Here, we identified a site-specific SUMO modification of MCM and found that mutation disabling this modification causes severe growth defect and impaired DNA replication. These defects are attributable to reduced MCM at DNA replication origins, resulting in a lower DNA replisome level and a dramatic accumulation of GCRs. Thus, these findings identify a hitherto unknown regulatory mechanism: Site-specific MCM sumoylation regulates origin-bound MCM, and this prevents genome rearrangements.
Collapse
Affiliation(s)
- Yun Quan
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Qian-yi Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Ann L. Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Yuhao Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Yong-qi Gao
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Akerman I, Kasaai B, Bazarova A, Sang PB, Peiffer I, Artufel M, Derelle R, Smith G, Rodriguez-Martinez M, Romano M, Kinet S, Tino P, Theillet C, Taylor N, Ballester B, Méchali M. A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun 2020; 11:4826. [PMID: 32958757 PMCID: PMC7506530 DOI: 10.1038/s41467-020-18527-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
DNA replication initiates from multiple genomic locations called replication origins. In metazoa, DNA sequence elements involved in origin specification remain elusive. Here, we examine pluripotent, primary, differentiating, and immortalized human cells, and demonstrate that a class of origins, termed core origins, is shared by different cell types and host ~80% of all DNA replication initiation events in any cell population. We detect a shared G-rich DNA sequence signature that coincides with most core origins in both human and mouse genomes. Transcription and G-rich elements can independently associate with replication origin activity. Computational algorithms show that core origins can be predicted, based solely on DNA sequence patterns but not on consensus motifs. Our results demonstrate that, despite an attributed stochasticity, core origins are chosen from a limited pool of genomic regions. Immortalization through oncogenic gene expression, but not normal cellular differentiation, results in increased stochastic firing from heterochromatin and decreased origin density at TAD borders. In metazoan the DNA sequence elements characterizing origin specification are unknown. By generating and analysing 19 SNS-seq datasets from different human cell types, the authors reveal a class and features of Core origins of replication which can be predicted by an algorithm.
Collapse
Affiliation(s)
- Ildem Akerman
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France. .,Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.
| | - Bahar Kasaai
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Alina Bazarova
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK.,Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Pau Biak Sang
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Marie Artufel
- Aix-Marseille University, INSERM, TAGC, UMR S1090, Marseille, France
| | - Romain Derelle
- Life and Environmental Sciences (LES), University of Birmingham, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | | | - Manuela Romano
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Peter Tino
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.,Pediatric Oncology Branch, NCI, CCR, NIH, Bethesda, MD, USA
| | - Benoit Ballester
- Aix-Marseille University, INSERM, TAGC, UMR S1090, Marseille, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Wu R, Amin A, Wang Z, Huang Y, Man-Hei Cheung M, Yu Z, Yang W, Liang C. The interaction networks of the budding yeast and human DNA replication-initiation proteins. Cell Cycle 2019; 18:723-741. [PMID: 30890025 DOI: 10.1080/15384101.2019.1586509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.
Collapse
Affiliation(s)
- Rentian Wu
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Aftab Amin
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Ziyi Wang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Yining Huang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Marco Man-Hei Cheung
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Zhiling Yu
- c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Wei Yang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,d Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd , Hong Kong , China
| | - Chun Liang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,e ntelgen Limited , Hong Kong-Guangzhou-Foshan , China
| |
Collapse
|
8
|
Emerging Roles for Ciz1 in Cell Cycle Regulation and as a Driver of Tumorigenesis. Biomolecules 2016; 7:biom7010001. [PMID: 28036012 PMCID: PMC5372713 DOI: 10.3390/biom7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Precise duplication of the genome is a prerequisite for the health and longevity of multicellular organisms. The temporal regulation of origin specification, replication licensing, and firing at replication origins is mediated by the cyclin-dependent kinases. Here the role of Cip1 interacting Zinc finger protein 1 (Ciz1) in regulation of cell cycle progression is discussed. Ciz1 contributes to regulation of the G1/S transition in mammalian cells. Ciz1 contacts the pre-replication complex (pre-RC) through cell division cycle 6 (Cdc6) interactions and aids localization of cyclin A- cyclin-dependent kinase 2 (CDK2) activity to chromatin and the nuclear matrix during initiation of DNA replication. We discuss evidence that Ciz1 serves as a kinase sensor that regulates both initiation of DNA replication and prevention of re-replication. Finally, the emerging role for Ciz1 in cancer biology is discussed. Ciz1 is overexpressed in common tumors and tumor growth is dependent on Ciz1 expression, suggesting that Ciz1 is a driver of tumor growth. We present evidence that Ciz1 may contribute to deregulation of the cell cycle due to its ability to alter the CDK activity thresholds that are permissive for initiation of DNA replication. We propose that Ciz1 may contribute to oncogenesis by induction of DNA replication stress and that Ciz1 may be a multifaceted target in cancer therapy.
Collapse
|
9
|
Ramadan K, Halder S, Wiseman K, Vaz B. Strategic role of the ubiquitin-dependent segregase p97 (VCP or Cdc48) in DNA replication. Chromosoma 2016; 126:17-32. [PMID: 27086594 DOI: 10.1007/s00412-016-0587-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
Abstract
Genome amplification (DNA synthesis) is one of the most demanding cellular processes in all proliferative cells. The DNA replication machinery (also known as the replisome) orchestrates genome amplification during S-phase of the cell cycle. Genetic material is particularly vulnerable to various events that can challenge the replisome during its assembly, activation (firing), progression (elongation) and disassembly from chromatin (termination). Any disturbance of the replisome leads to stalling of the DNA replication fork and firing of dormant replication origins, a process known as DNA replication stress. DNA replication stress is considered to be one of the main causes of sporadic cancers and other pathologies related to tissue degeneration and ageing. The mechanisms of replisome assembly and elongation during DNA synthesis are well understood. However, once DNA synthesis is complete, the process of replisome disassembly, and its removal from chromatin, remains unclear. In recent years, a growing body of evidence has alluded to a central role in replisome regulation for the ubiquitin-dependent protein segregase p97, also known as valosin-containing protein (VCP) in metazoans and Cdc48 in lower eukaryotes. By orchestrating the spatiotemporal turnover of the replisome, p97 plays an essential role in DNA replication. In this review, we will summarise our current knowledge about how p97 controls the replisome from replication initiation, to elongation and finally termination. We will also further examine the more recent findings concerning the role of p97 and how mutations in p97 cofactors, also known as adaptors, cause DNA replication stress induced genomic instability that leads to cancer and accelerated ageing. To our knowledge, this is the first comprehensive review concerning the mechanisms involved in the regulation of DNA replication by p97.
Collapse
Affiliation(s)
- Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Swagata Halder
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Katherine Wiseman
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
10
|
Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 2015; 161:513-525. [PMID: 25892223 DOI: 10.1016/j.cell.2015.03.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 01/31/2023]
Abstract
Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1, and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting that Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation.
Collapse
Affiliation(s)
- Simina Ticau
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Nikola A Ivica
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 2014; 28:2291-303. [PMID: 25319829 PMCID: PMC4201289 DOI: 10.1101/gad.242313.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex (pre-RC) that contains a Mcm2–7 double hexamer. In this study, Sun et al. examined the helicase loading reaction in the presence of ATP, revealing the basic architecture of a number of pre-RC assembly reaction intermediates, including a newly identified ORC–Cdc6–Mcm2–7–Mcm2–7 complex. The detailed architecture of the Mcm2–7 double hexamer was also established. Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alejandra Fernandez-Cid
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Alberto Riera
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Zuanning Yuan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christian Speck
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom;
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
12
|
Uno S, You Z, Masai H. Purification of replication factors using insect and mammalian cell expression systems. Methods 2012; 57:214-21. [PMID: 22800621 DOI: 10.1016/j.ymeth.2012.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022] Open
Abstract
Purification of factors for DNA replication in an amount sufficient for detailed biochemical characterization is essential to elucidating its mechanisms. Insect cell expression systems are commonly used for purification of the factors proven to be difficult to deal with in bacteria. We describe first the detailed protocols for purification of mammalian Mcm complexes including the Mcm2/3/4/5/6/7 heterohexamer expressed in insect cells. We then describe a convenient and economical system in which large-sized proteins and multi-factor complexes can be transiently overexpressed in human 293T cells and be rapidly purified in a large quantity. We describe various expression vectors and detailed methods for transfection and purification of various replication factors which have been difficult to obtain in a sufficient amount in other systems. Availability of efficient methods to overproduce and purify the proteins that have been challenging would facilitate the enzymatic analyses of the processes of DNA replication.
Collapse
Affiliation(s)
- Shuji Uno
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|