1
|
Yamashita T, Pires-daSilva A, Oomura S, Kusano T, Haruta N, Hasumi M, Kikuchi T, Adams S, Sugimoto A, Shinya R. Microparticle Bombardment as a Method for Transgenesis in Auanema and Tokorhabditis. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001585. [PMID: 40415902 PMCID: PMC12100158 DOI: 10.17912/micropub.biology.001585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/27/2025]
Abstract
Functional gene analysis tools in Caenorhabditis elegans are often ineffective in other nematodes due to differences in gonadal morphology and transgene silencing. Here, we established a method to generate stable transgenic lines in the nematodes Auanema freiburgense and Tokorhabditis tufae using microparticle bombardment coupled with hygromycin B selection. Despite using non-codon-optimized GFP, transgenic strains expressing fluorescent markers were obtained in both species. Additionally, an Auanema codon-optimized RFP construct showed robust expression in all tissues. This method will be valuable for future studies into the unusual sex determination, viviparity, and stress resistance in Auanema and Tokorhabditis .
Collapse
Affiliation(s)
| | - Andre Pires-daSilva
- School of Life Sciences, University of Warwick, Gibbet Hill, England, United Kingdom
| | - Shun Oomura
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Taichi Kusano
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Nami Haruta
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mayu Hasumi
- School of Agriculture, Meiji University, Kanagawa, Japan
| | - Taisei Kikuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Sally Adams
- School of Life Sciences, University of Warwick, Gibbet Hill, England, United Kingdom
| | - Asako Sugimoto
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
2
|
Oomura S, Tsuyama K, Haruta N, Sugimoto A. Transgenesis of the gonochoristic nematode Caenorhabditis inopinata by microparticle bombardment with hygromycin B selection. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000564. [PMID: 35622530 PMCID: PMC9073556 DOI: 10.17912/micropub.biology.000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022]
Abstract
The gonochoristic nematode Caenorhabditis inopinata is the phylogenetically closest species to the well-studied nematode Caenorhabditis elegans (Kanzaki et al. , 2018). While C. inopinata has been expected to be a useful comparative model for C. elegans , efficient transgenesis methods have not been available. Here, we established a method to integrate transgenes into the C. inopinata genome by microparticle bombardment with hygromycin B selection. C. elegans- derived genetic elements tested in this study, including universal and germline-specific promoters, ORFs, and 3’UTRs, were all functional in C. inopinata. Using this method, transgenic C. inopinata strains that express fluorescent subcellular markers were established.
Collapse
Affiliation(s)
- Shun Oomura
- Graduate School of Life Sciences, Tohoku University
| | | | - Nami Haruta
- Graduate School of Life Sciences, Tohoku University
| | - Asako Sugimoto
- Graduate School of Life Sciences, Tohoku University
,
Correspondence to: Asako Sugimoto (
)
| |
Collapse
|
3
|
Namai S, Sugimoto A. Transgenesis by microparticle bombardment for live imaging of fluorescent proteins in Pristionchus pacificus germline and early embryos. Dev Genes Evol 2018; 228:75-82. [PMID: 29353439 DOI: 10.1007/s00427-018-0605-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/09/2018] [Indexed: 01/26/2023]
Abstract
Pristionchus pacificus is a free-living nematode used as a model organism for evolutionary developmental and ecological biology. Although a transgenic technique to form complex arrays by microinjection has been established in P. pacificus, transgene expression from the array in the germline and early embryos tends to be silenced. Here, we established a method to integrate transgenes into the genome of P. pacificus using microparticle bombardment with hygromycin B selection. Additionally, we isolated a mutant exhibiting significantly lower autofluorescence in the germline and early embryos, facilitating visualization of transgene-derived fluorescent proteins for live imaging. Transgenic lines constructed using these tools successfully expressed GFP-tagged proteins in the germline and early embryos and enabled live imaging of chromosomes, microtubules, and centrosomes.
Collapse
Affiliation(s)
- Satoshi Namai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
4
|
Berber S, Wood M, Llamosas E, Thaivalappil P, Lee K, Liao BM, Chew YL, Rhodes A, Yucel D, Crossley M, Nicholas HR. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans. Sci Rep 2016; 6:19582. [PMID: 26791749 PMCID: PMC4726358 DOI: 10.1038/srep19582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.
Collapse
Affiliation(s)
- Slavica Berber
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Mallory Wood
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Estelle Llamosas
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | - Karen Lee
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Bing Mana Liao
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Aaron Rhodes
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Duygu Yucel
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Australia
| | - Hannah R Nicholas
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Reid A, Sherry TJ, Yücel D, Llamosas E, Nicholas HR. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans. Neuroscience 2015; 311:216-30. [PMID: 26480814 DOI: 10.1016/j.neuroscience.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans.
Collapse
Affiliation(s)
- A Reid
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - T J Sherry
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - D Yücel
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - E Llamosas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - H R Nicholas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping. Genetics 2015; 201:39-46. [PMID: 26163188 PMCID: PMC4566274 DOI: 10.1534/genetics.115.179648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/06/2015] [Indexed: 11/24/2022] Open
Abstract
A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering.
Collapse
|
7
|
Reid A, Yücel D, Wood M, Llamosas E, Kant S, Crossley M, Nicholas H. The transcriptional repressor CTBP-1 functions in the nervous system of Caenorhabditis elegans to regulate lifespan. Exp Gerontol 2014; 60:153-65. [PMID: 25456848 DOI: 10.1016/j.exger.2014.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 01/08/2023]
Abstract
C-terminal binding proteins (CtBPs) are recruited by a variety of transcription factors to mediate gene repression. Nematode CTBP-1 has previously been shown to play a role in the regulation of lifespan; Caenorhabditis elegans strains carrying a deletion in the ctbp-1 gene showed a 10-20% increase in mean and maximal lifespan compared with wild-type control strains. We set out to identify the tissues in which CTBP-1 functions to regulate lifespan in C. elegans. Our analysis of reporter genes shows that CTBP-1 is predominantly expressed in the nervous system with lower levels detectable in the hypodermis. Tissue-specific rescue experiments demonstrated that CTBP-1 functions in the nervous system to regulate lifespan. Previously, the lifespan extension in a ctbp-1 mutant was attributed, at least in part, to the misregulation of a lipase gene, lips-7. We therefore focussed on lips-7 and found that expressing CTBP-1 solely in the nervous system of a ctbp-1 mutant significantly reduced lips-7 transcription. In addition, we studied another ctbp-1 mutant allele that also displayed a long-lived phenotype. In this case, lips-7 expression was unaffected. This observation argues that, while lips-7 may play a role in lifespan, its de-repression is not essential for the extension of lifespan phenotype. We show that a prominent site of LIPS-7 expression is the hypodermis, one of the sites of fat storage in C. elegans. Interestingly, we did not observe co-localisation of CTBP-1 and lips-7 transcription in the nervous system, indicating that CTBP-1 may be acting indirectly, in a cell non-autonomous manner. In summary, our data confirm that CTBP-1 is involved in the regulation of lips-7 transcription but suggest that it may perform additional roles in the nervous system that contribute to the regulation of longevity.
Collapse
Affiliation(s)
- Anna Reid
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duygu Yücel
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mallory Wood
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Estelle Llamosas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sashi Kant
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, NSW 2052, Australia
| | - Hannah Nicholas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Affiliation(s)
- Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Judith Yanowitz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Gary A Silverman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|