1
|
Øvsthus M, van Swieten MMH, Puchades MA, Tocco C, Studer M, Bjaalie JG, Leergaard TB. Spatially integrated cortico-subcortical tracing data for analyses of rodent brain topographical organization. Sci Data 2024; 11:1214. [PMID: 39532918 PMCID: PMC11557934 DOI: 10.1038/s41597-024-04060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cerebral cortex extends axonal projections to several subcortical brain regions, including the striatum, thalamus, superior colliculus, and pontine nuclei. Experimental tract-tracing studies have shown that these subcortical projections are topographically organized, reflecting the spatial organization of sensory surfaces and body parts. Several public collections of mouse- and rat- brain tract-tracing data are available, with the Allen mouse brain connectivity atlas being most prominent. There, a large body of image data can be inspected, but it is difficult to combine data from different experiments and compare spatial distribution patterns. To enable co-visualization and comparison of topographical organization in mouse brain cortico-subcortical projections across experiments, we represent axonal labelling data as point data in a common 3D brain atlas space. We here present a collection of point-cloud data representing spatial distribution of corticostriatal, corticothalamic, corticotectal, and corticopontine projections in mice and exemplify how these spatially integrated point data can be used as references for experimental investigations of topographic organization in transgenic mice, and for cross-species comparison with corticopontine projections in rats.
Collapse
Affiliation(s)
- Martin Øvsthus
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maaike M H van Swieten
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Ganglberger F, Kargl D, Töpfer M, Hernandez-Lallement J, Lawless N, Fernandez-Albert F, Haubensak W, Bühler K. BrainTACO: an explorable multi-scale multi-modal brain transcriptomic and connectivity data resource. Commun Biol 2024; 7:730. [PMID: 38877144 PMCID: PMC11178817 DOI: 10.1038/s42003-024-06355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
Exploring the relationships between genes and brain circuitry can be accelerated by joint analysis of heterogeneous datasets from 3D imaging data, anatomical data, as well as brain networks at varying scales, resolutions, and modalities. Generating an integrated view, beyond the individual resources' original purpose, requires the fusion of these data to a common space, and a visualization that bridges the gap across scales. However, despite ever expanding datasets, few platforms for integration and exploration of this heterogeneous data exist. To this end, we present the BrainTACO (Brain Transcriptomic And Connectivity Data) resource, a selection of heterogeneous, and multi-scale neurobiological data spatially mapped onto a common, hierarchical reference space, combined via a holistic data integration scheme. To access BrainTACO, we extended BrainTrawler, a web-based visual analytics framework for spatial neurobiological data, with comparative visualizations of multiple resources. This enables gene expression dissection of brain networks with, to the best of our knowledge, an unprecedented coverage and allows for the identification of potential genetic drivers of connectivity in both mice and humans that may contribute to the discovery of dysconnectivity phenotypes. Hence, BrainTACO reduces the need for time-consuming manual data aggregation often required for computational analyses in script-based toolboxes, and supports neuroscientists by directly leveraging the data instead of preparing it.
Collapse
Affiliation(s)
- Florian Ganglberger
- Biomedical Image Informatics, VRVis Research Center, Vienna, Austria
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Dominic Kargl
- Department of Neuronal Cell Biology, Vienna Medical University, Vienna, Austria
| | - Markus Töpfer
- Biomedical Image Informatics, VRVis Research Center, Vienna, Austria
| | - Julien Hernandez-Lallement
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Nathan Lawless
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Francesc Fernandez-Albert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Vienna Medical University, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Katja Bühler
- Biomedical Image Informatics, VRVis Research Center, Vienna, Austria.
| |
Collapse
|
3
|
Arthurs JW, Bowen AJ, Palmiter RD, Baertsch NA. Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control. Nat Commun 2023; 14:963. [PMID: 36810601 PMCID: PMC9944916 DOI: 10.1038/s41467-023-36603-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Breathing is regulated automatically by neural circuits in the medulla to maintain homeostasis, but breathing is also modified by behavior and emotion. Mice have rapid breathing patterns that are unique to the awake state and distinct from those driven by automatic reflexes. Activation of medullary neurons that control automatic breathing does not reproduce these rapid breathing patterns. By manipulating transcriptionally defined neurons in the parabrachial nucleus, we identify a subset of neurons that express the Tac1, but not Calca, gene that exerts potent and precise conditional control of breathing in the awake, but not anesthetized, state via projections to the ventral intermediate reticular zone of the medulla. Activating these neurons drives breathing to frequencies that match the physiological maximum through mechanisms that differ from those that underlie the automatic control of breathing. We postulate that this circuit is important for the integration of breathing with state-dependent behaviors and emotions.
Collapse
Affiliation(s)
- Joseph W Arthurs
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Anna J Bowen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Pulmonary Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models. Neurobiol Dis 2021; 161:105558. [PMID: 34767943 PMCID: PMC10112395 DOI: 10.1016/j.nbd.2021.105558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease that is mediated by numerous factors and manifests in various forms. A systems biology approach to studying AD involves analyses of various body systems, biological scales, environmental elements, and clinical outcomes to understand the genotype to phenotype relationship that potentially drives AD development. Currently, there are many research investigations probing how modifiable and nonmodifiable factors impact AD symptom presentation. This review specifically focuses on how imaging modalities can be integrated into systems biology approaches using model mouse populations to link brain level functional and structural changes to disease onset and progression. Combining imaging and omics data promotes the classification of AD into subtypes and paves the way for precision medicine solutions to prevent and treat AD.
Collapse
|
5
|
Chiola S, Napan KL, Wang Y, Lazarenko RM, Armstrong CJ, Cui J, Shcheglovitov A. Defective AMPA-mediated synaptic transmission and morphology in human neurons with hemizygous SHANK3 deletion engrafted in mouse prefrontal cortex. Mol Psychiatry 2021; 26:4670-4686. [PMID: 33558651 PMCID: PMC8349370 DOI: 10.1038/s41380-021-01023-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
Genetic abnormalities in synaptic proteins are common in individuals with autism; however, our understanding of the cellular and molecular mechanisms disrupted by these abnormalities is limited. SHANK3 is a postsynaptic scaffolding protein of excitatory synapses that has been found mutated or deleted in most patients with 22q13 deletion syndrome and about 2% of individuals with idiopathic autism and intellectual disability. Here, we generated CRISPR/Cas9-engineered human pluripotent stem cells (PSCs) with complete hemizygous SHANK3 deletion (SHANK3+/-), which is the most common genetic abnormality in patients, and investigated the synaptic and morphological properties of SHANK3-deficient PSC-derived cortical neurons engrafted in the mouse prefrontal cortex. We show that human PSC-derived neurons integrate into the mouse cortex by acquiring appropriate cortical layer identities and by receiving and sending anatomical projections from/to multiple different brain regions. We also demonstrate that SHANK3-deficient human neurons have reduced AMPA-, but not NMDA- or GABA-mediated synaptic transmission and exhibit impaired dendritic arbors and spines, as compared to isogenic control neurons co-engrafted in the same brain region. Together, this study reveals specific synaptic and morphological deficits caused by SHANK3 hemizygosity in human cortical neurons at different developmental stages under physiological conditions and validates the use of co-engrafted control and mutant human neurons as a new platform for studying connectivity deficits in genetic neurodevelopmental disorders associated with autism.
Collapse
Affiliation(s)
- Simone Chiola
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Kandy L. Napan
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Yueqi Wang
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Neuroscience Graduate Program, University of Utah, Salt Lake City, UT USA
| | - Roman M. Lazarenko
- grid.152326.10000 0001 2264 7217Departments of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Celeste J. Armstrong
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Jun Cui
- grid.41891.350000 0001 2156 6108Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT USA
| | - Aleksandr Shcheglovitov
- Departments of Neurobiology, University of Utah, Salt Lake City, UT, USA. .,Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA. .,Department of Adult Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
An active texture-based digital atlas enables automated mapping of structures and markers across brains. Nat Methods 2019; 16:341-350. [PMID: 30858600 DOI: 10.1038/s41592-019-0328-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/27/2018] [Accepted: 01/25/2019] [Indexed: 11/08/2022]
Abstract
Brain atlases enable the mapping of labeled cells and projections from different brains onto a standard coordinate system. We address two issues in the construction and use of atlases. First, expert neuroanatomists ascertain the fine-scale pattern of brain tissue, the 'texture' formed by cellular organization, to define cytoarchitectural borders. We automate the processes of localizing landmark structures and alignment of brains to a reference atlas using machine learning and training data derived from expert annotations. Second, we construct an atlas that is active; that is, augmented with each use. We show that the alignment of new brains to a reference atlas can continuously refine the coordinate system and associated variance. We apply this approach to the adult murine brainstem and achieve a precise alignment of projections in cytoarchitecturally ill-defined regions across brains from different animals.
Collapse
|
7
|
Regional knockdown of NDUFS4 implicates a thalamocortical circuit mediating anesthetic sensitivity. PLoS One 2017; 12:e0188087. [PMID: 29136012 PMCID: PMC5685608 DOI: 10.1371/journal.pone.0188087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
Knockout of the mitochondrial complex I protein, NDUFS4, profoundly increases sensitivity of mice to volatile anesthetics. In mice carrying an Ndufs4lox/lox gene, adeno-associated virus expressing Cre recombinase was injected into regions of the brain postulated to affect sensitivity to volatile anesthetics. These injections generated otherwise phenotypically wild type mice with region-specific, postnatal inactivation of Ndufs4, minimizing developmental effects of gene loss. Sensitivities to the volatile anesthetics isoflurane and halothane were measured using loss of righting reflex (LORR) and movement in response to tail clamp (TC) as endpoints. Knockdown (KD) of Ndufs4 in the vestibular nucleus produced resistance to both anesthetics for movement in response to TC. Ndufs4 loss in the central and dorsal medial thalami and in the parietal association cortex increased anesthetic sensitivity to both TC and LORR. Knockdown of Ndufs4 only in the parietal association cortex produced striking hypersensitivity for both endpoints, and accounted for half the total change seen in the global KO (Ndufs4(KO)). Excitatory synaptic transmission in the parietal association cortex in slices from Ndufs4(KO) animals was hypersensitive to isoflurane compared to control slices. We identified a direct neural circuit between the parietal association cortex and the central thalamus, consistent with a model in which isoflurane sensitivity is mediated by a thalamic signal relayed through excitatory synapses to the parietal association cortex. We postulate that the thalamocortical circuit is crucial for maintenance of consciousness and is disrupted by the inhibitory effects of isoflurane/halothane on mitochondria.
Collapse
|
8
|
Li Z, Metaxas DN, Lu A, Zhang S. Interactive Exploration for Continuously Expanding Neuron Databases. Methods 2017; 115:100-109. [DOI: 10.1016/j.ymeth.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/02/2023] Open
|
9
|
Amato SP, Pan F, Schwartz J, Ragan TM. Whole Brain Imaging with Serial Two-Photon Tomography. Front Neuroanat 2016; 10:31. [PMID: 27047350 PMCID: PMC4802409 DOI: 10.3389/fnana.2016.00031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. This has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this article, we describe in detail Serial Two-Photon (STP) tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as Optical Coherence Tomography (OCT), in order to provide unique contrast mechanisms. Furthermore, we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches.
Collapse
|
10
|
Spatial mapping of multi-modal data in neuroscience. Methods 2015; 73:1-3. [DOI: 10.1016/j.ymeth.2015.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|