1
|
Cambronero-Heinrichs JC, Biedermann PHW, Besana L, Battisti A, Rassati D. Bacterial communities associated with ambrosia beetles: current knowledge and existing gaps. Front Microbiol 2025; 16:1569105. [PMID: 40270818 PMCID: PMC12014639 DOI: 10.3389/fmicb.2025.1569105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are wood-boring insects studied as examples of fungus-insect symbiosis and for their success as invasive species. While most research on their microbiota has focused on fungal associates, their bacterial communities remain largely understudied. In this review, we synthesize current knowledge on the bacterial microbiota of ambrosia beetles, identify critical gaps in the field, and provide recommendations for future research. To date, eight metabarcoding studies have explored bacterial communities in ambrosia beetles, analyzing a total of 13 species, mostly within the tribe Xyleborini (Scolytinae). These studies have examined the presence of bacteria in ambrosia beetle mycetangia, organs specialized for transporting fungal symbionts, as well as bacterial diversity in fungal gardens and whole beetles, across different life stages, and under varying environmental conditions. In general, bacterial communities appear to be highly specific to the beetle species, and differ between the beetles and their fungal gardens. Most studies employed 16S rRNA gene metabarcoding, and the optimal primer combination for characterizing bacterial communities in environmental samples is 515F/806RB (V4). Various methods for collecting beetles have been used, such as ethanol-baited traps, direct collection from galleries, logs kept in emergence cages, and rearing, but which of them to select when planning a study depends on the specific aim. A significant knowledge gap remains regarding the functional roles of dominant bacterial taxa, as metabarcoding studies often assume that these roles are similar to those played in other beetle species, such as bark beetles. More studies should be conducted to test hypotheses regarding the various factors influencing microbial composition and function, and advanced molecular techniques, including (meta-) genome and transcriptome sequencing, which have been employed in only a limited number of studies, could offer great potential to help bridging this knowledge gap.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Laura Besana
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Davide Rassati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
2
|
Cen X, Li H, Zhang Y, Huang L, Luo Y. Isolation and Plant Growth Promotion Effect of Endophytic Siderophore-Producing Bacteria: A Study on Halophyte Sesuvium portulacastrum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2703. [PMID: 39409573 PMCID: PMC11478406 DOI: 10.3390/plants13192703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
The objective of the present study was to isolate endophytes from the roots of the halophyte Sesuvium portulacastrum, which is applied for aquatic phytoremediation. From these endophytes, siderophore-producing bacteria were specifically isolated for their potential capacity to promote plant growth. The siderophore production capacity of the isolated bacteria was quantified, and a high-yield siderophore-producing strain was selected for further investigation. A total of 33 endophytic bacteria were successfully isolated and identified using a culturable approach. Of these, 10 siderophore-producing bacteria were identified using the selective agar assay, displaying siderophore unit (SU) values ranging from 11.90% to 80.39%. It is noteworthy that Erwinia sp. QZ-E9 exhibited the highest siderophore production capacity, achieving an SU of 80.39%. A microcosm co-cultivation experiment was conducted with the strain QZ-E9 in iron-deficient conditions (2 μmol/L Fe3⁺). The results demonstrated that strain QZ-E9 significantly enhanced the growth of S. portulacastrum, by increases in both fresh weight (1.41 g) and root length (18.7 cm). Furthermore, fluorescence in situ hybridization (FISH) was utilized to ascertain the colonization pattern of strain QZ-E9 within the plant roots. The analysis demonstrated that strain QZ-E9 exhibited extensive colonization of the epidermal and outer cortical cells of S. portulacastrum roots, as well as the intercellular spaces and vascular tissues. This colonization indicated that Erwinia sp. QZ-E9 plays a crucial role in promoting the growth of S. portulacastrum, presumably through its siderophore-mediated iron acquisition mechanism.
Collapse
Affiliation(s)
- Xinyi Cen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hua Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yanhua Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuanrong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Guo H, Zhang Y, Li B, Li C, Shi Q, Zhu-Salzman K, Ge F, Sun Y. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses. Proc Natl Acad Sci U S A 2023; 120:e2222040120. [PMID: 36976769 PMCID: PMC10083582 DOI: 10.1073/pnas.2222040120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Aphids are the most common insect vector transmitting hundreds of plant viruses. Aphid wing dimorphism (winged vs. wingless) not only showcases the phenotypic plasticity but also impacts virus transmission; however, the superiority of winged aphids in virus transmission over the wingless morph is not well understood. Here, we show that plant viruses were efficiently transmitted and highly infectious when associated with the winged morph of Myzus persicae and that a salivary protein contributed to this difference. The carbonic anhydrase II (CA-II) gene was identified by RNA-seq of salivary glands to have higher expression in the winged morph. Aphids secreted CA-II into the apoplastic region of plant cells, leading to elevated accumulation of H+. Apoplastic acidification further increased the activities of polygalacturonases, the cell wall homogalacturonan (HG)-modifying enzymes, promoting degradation of demethylesterified HGs. In response to apoplastic acidification, plants accelerated vesicle trafficking to enhance pectin transport and strengthen the cell wall, which also facilitated virus translocation from the endomembrane system to the apoplast. Secretion of a higher quantity of salivary CA-II by winged aphids promoted intercellular vesicle transport in the plant. The higher vesicle trafficking induced by winged aphids enhanced dispersal of virus particles from infected cells to neighboring cells, thus resulting in higher virus infection in plants relative to the wingless morph. These findings imply that the difference in the expression of salivary CA-II between winged and wingless morphs is correlated with the vector role of aphids during the posttransmission infection process, which influences the outcome of plant endurance of virus infection.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanjing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingyu Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Chenwei Li
- School of Life Sciences, Hebei University, Baoding071002, China
| | - Qingyun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agriculture Sciences, Jinan250100, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Jeckel AM, Beran F, Züst T, Younkin G, Petschenka G, Pokharel P, Dreisbach D, Ganal-Vonarburg SC, Robert CAM. Metabolization and sequestration of plant specialized metabolites in insect herbivores: Current and emerging approaches. Front Physiol 2022; 13:1001032. [PMID: 36237530 PMCID: PMC9552321 DOI: 10.3389/fphys.2022.1001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.
Collapse
Affiliation(s)
- Adriana Moriguchi Jeckel
- Laboratory of Chemical Ecology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Franziska Beran
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Gordon Younkin
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Prayan Pokharel
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Domenic Dreisbach
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Stephanie Christine Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
5
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
6
|
Chauhan VK, Dhania NK, Lokya V, Bhuvanachandra B, Padmasree K, Dutta-Gupta A. Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure. J Biosci 2021. [DOI: 10.1007/s12038-021-00148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Abstract
RNAscope has been recently introduced by Advanced Cell Diagnostics (Newark, CA, USA) for in situ hybridization (ISH) of target RNAs using a proprietary technology for probe design and hybridization assay. The method has been extensively used as a basis for sensitive diagnostic assays in the medical field, while applications of this technique in plant sciences are still rare. Here, we describe a multiplex ISH protocol for detection of two plant viruses in formalin-fixed paraffin-embedded tissue sections from cassava. The dual-color protocol described can be used as reference for virus/host interaction studies including the visualization of virus nucleic acids and plant endogenous mRNAs. RNAscope provides a specificity and sensitivity of target detection that otherwise cannot be reached.
Collapse
|
8
|
O'Connor E, Coates CJ, Eastwood DC, Fitzpatrick DA, Grogan H. FISHing in fungi: Visualisation of mushroom virus X in the mycelium of Agaricus bisporus by fluorescence in situ hybridisation. J Microbiol Methods 2020; 173:105913. [DOI: 10.1016/j.mimet.2020.105913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
9
|
Clark DP, Pazdernik NJ, McGehee MR. Manipulation of Nucleic Acids. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci U S A 2018; 116:490-495. [PMID: 30584091 DOI: 10.1073/pnas.1714990116] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phloem-feeding insects feed on plant phloem using their stylets. While ingesting phloem sap, these insects secrete saliva to circumvent plant defenses. Previous studies have shown that, to facilitate their feeding, many phloem-feeding insects can elicit the salicylic acid- (SA-) signaling pathway and thus suppress effective jasmonic acid defenses. However, the molecular basis for the regulation of the plant's defense by phloem-feeding insects remains largely unknown. Here, we show that Bt56, a whitefly-secreted low molecular weight salivary protein, is highly expressed in the whitefly primary salivary gland and is delivered into host plants during feeding. Overexpression of the Bt56 gene in planta promotes susceptibility of tobacco to the whitefly and elicits the SA-signaling pathway. In contrast, silencing the whitefly Bt56 gene significantly decreases whitefly performance on host plants and interrupts whitefly phloem feeding with whiteflies losing the ability to activate the SA pathway. Protein-protein interaction assays show that the Bt56 protein directly interacts with a tobacco KNOTTED 1-like homeobox transcription factor that decreases whitefly performance and suppresses whitefly-induced SA accumulation. The Bt56 orthologous genes are highly conserved but differentially expressed in different species of whiteflies. In conclusion, Bt56 is a key salivary effector that promotes whitefly performance by eliciting salicylic acid-signaling pathway.
Collapse
|
11
|
Pentzold S, Grabe V, Ogonkov A, Schmidt L, Boland W, Burse A. Silencing cuticular pigmentation genes enables RNA FISH in intact insect appendages. ACTA ACUST UNITED AC 2018; 221:jeb.185710. [PMID: 30026238 DOI: 10.1242/jeb.185710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023]
Abstract
Optical imaging of gene expression by fluorescence in situ hybridisation (FISH) in insects is often impeded by their pigmented cuticle. As most chemical bleaching agents are incompatible with FISH, we developed an RNA interference (RNAi)-based method for clearing cuticular pigmentation which enables the use of whole-mount body appendages for RNA FISH (termed RNA-i-FISH). Silencing laccase2 or tyrosine hydroxylase in two leaf beetles species (Chrysomela populi and Phaedon cochleariae) cleared their pigmented cuticle and decreased light absorbance. Subsequently, intact appendages (palps, antennae, legs) from RNAi-cleared individuals were used to image the expression and spatial distribution of antisense mRNA of two chemosensory genes encoding gustatory receptor and odorant-binding protein. Imaging did not work for RNAi controls because the pigmentation was retained, or for FISH controls (sense mRNA). Several bleaching agents were incompatible with FISH, because of degradation of RNA, lack of clearing efficacy or long incubation times. Overall, silencing pigmentation genes is a significant improvement over bleaching agents, enabling FISH in intact insect appendages.
Collapse
Affiliation(s)
- Stefan Pentzold
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Veit Grabe
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Andrei Ogonkov
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Lydia Schmidt
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Antje Burse
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
12
|
Munganyinka E, Margaria P, Sheat S, Ateka EM, Tairo F, Ndunguru J, Winter S. Localization of cassava brown streak virus in Nicotiana rustica and cassava Manihot esculenta (Crantz) using RNAscope® in situ hybridization. Virol J 2018; 15:128. [PMID: 30107851 PMCID: PMC6092782 DOI: 10.1186/s12985-018-1038-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination and quantification of cassava brown streak viruses (CBSVs) in infected plants. However, precise determination of the viral RNA localization in infected host tissues is still not possible pending appropriate methods. RESULTS We have developed an in situ hybridization (ISH) assay based on RNAscope® technology that allows the sensitive detection and localization of CBSV RNA in plant tissues. The method was initially developed in the experimental host Nicotiana rustica and was then further adapted to cassava. Highly sensitive and specific detection of CBSV RNA was achieved without background and hybridization signals in sections prepared from non-infected tissues. The tissue tropism of CBSV RNAs appeared different between N. rustica and cassava. CONCLUSIONS This study provides a robust method for CBSV detection in the experimental host and in cassava. The protocol will be used to study CBSV tropism in various cassava genotypes, as well as CBSVs/cassava interactions in single and mixed infections.
Collapse
Affiliation(s)
- Esperance Munganyinka
- Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Samar Sheat
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Elijah M. Ateka
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
13
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
14
|
Bagheri G, Lehner JD, Zhong J. Enhanced detection of Rickettsia species in Ixodes pacificus using highly sensitive fluorescence in situ hybridization coupled with Tyramide Signal Amplification. Ticks Tick Borne Dis 2017; 8:915-921. [PMID: 28882513 DOI: 10.1016/j.ttbdis.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Ixodes pacificus is a host of many bacteria including Rickettsia species phylotypes G021 and G022. As part of the overall goal of understanding interactions of phylotypes with their tick host, this study focused on molecular detection of rickettsiae in ovarian and midgut tissue of I. pacificus by fluorescent in situ hybridization (FISH), PCR, and ultrastructural analysis. Of three embedding media (Technovit 8100, Unicryl, and paraffin) tested for generating thin sections, tissues embedded in paraffin resulted in the visualization of bacteria with low autofluorescence in FISH. Digoxigenin-labeled probes were used in FISH to intensify bacterial hybridization signals using Tyramide Signal Amplification reaction. Using this technique, rickettsiae were detected in the cytoplasm of oocytes of I. pacificus. The presence of rickettsiae in the ovary and midgut was further confirmed by PCR and transmission electron microscopic analysis. Overall, the methods in this study can be used to identify locations of tick-borne bacteria in tick tissues and understand transmission routes of bacterial species in ticks.
Collapse
Affiliation(s)
- Ghazaleh Bagheri
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Jeremy D Lehner
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Jianmin Zhong
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA.
| |
Collapse
|
15
|
Pietri JE, DeBruhl H, Sullivan W. The rich somatic life of Wolbachia. Microbiologyopen 2016; 5:923-936. [PMID: 27461737 PMCID: PMC5221451 DOI: 10.1002/mbo3.390] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 01/18/2023] Open
Abstract
Wolbachia is an intracellular endosymbiont infecting most arthropod and some filarial nematode species that is vertically transmitted through the maternal lineage. Due to this primary mechanism of transmission, most studies have focused on Wolbachia interactions with the host germline. However, over the last decade many studies have emerged highlighting the prominence of Wolbachia in somatic tissues, implicating somatic tissue tropism as an important aspect of the life history of this endosymbiont. Here, we review our current understanding of Wolbachia-host interactions at both the cellular and organismal level, with a focus on Wolbachia in somatic tissues.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| | - Heather DeBruhl
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Sullivan
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|
16
|
|