1
|
Seim I, Zhang V, Jalihal AP, Stormo BM, Cole SJ, Ekena J, Nguyen HT, Thirumalai D, Gladfelter AS. RNA encodes physical information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627970. [PMID: 39713325 PMCID: PMC11661273 DOI: 10.1101/2024.12.11.627970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Most amino acids are encoded by multiple codons, making the genetic code degenerate. Synonymous mutations affect protein translation and folding, but their impact on RNA itself is often neglected. We developed a genetic algorithm that introduces synonymous mutations to control the diversity of structures sampled by an mRNA. The behavior of the designed mRNAs reveals a physical code layered in the genetic code. We find that mRNA conformational heterogeneity directs physical properties and functional outputs of RNA-protein complexes and biomolecular condensates. The role of structure and disorder of proteins in biomolecular condensates is well appreciated, but we find that RNA conformational heterogeneity is equally important. This feature of RNA enables both evolution and engineers to build cellular structures with specific material and responsive properties.
Collapse
Affiliation(s)
- Ian Seim
- Duke University, Department of Cell Biology, Durham, NC
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vita Zhang
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | | - Joanne Ekena
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | |
Collapse
|
2
|
Liu X, Peng T, Xu M, Lin S, Hu B, Chu T, Liu B, Xu Y, Ding W, Li L, Cao C, Wu P. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J Hematol Oncol 2024; 17:72. [PMID: 39182134 PMCID: PMC11344930 DOI: 10.1186/s13045-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
The emergence of spatial multi-omics has helped address the limitations of single-cell sequencing, which often leads to the loss of spatial context among cell populations. Integrated analysis of the genome, transcriptome, proteome, metabolome, and epigenome has enhanced our understanding of cell biology and the molecular basis of human diseases. Moreover, this approach offers profound insights into the interactions between intracellular and intercellular molecular mechanisms involved in the development, physiology, and pathogenesis of human diseases. In this comprehensive review, we examine current advancements in multi-omics technologies, focusing on their evolution and refinement over the past decade, including improvements in throughput and resolution, modality integration, and accuracy. We also discuss the pivotal contributions of spatial multi-omics in revealing spatial heterogeneity, constructing detailed spatial atlases, deciphering spatial crosstalk in tumor immunology, and advancing translational research and cancer therapy through precise spatial mapping.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bai Hu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Stormo BM, McLaughlin GA, Jalihal AP, Frederick LK, Cole SJ, Seim I, Dietrich FS, Chilkoti A, Gladfelter AS. Intrinsically disordered sequences can tune fungal growth and the cell cycle for specific temperatures. Curr Biol 2024; 34:3722-3734.e7. [PMID: 39089255 PMCID: PMC11372857 DOI: 10.1016/j.cub.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Temperature can impact every reaction essential to a cell. For organisms that cannot regulate their own temperature, adapting to temperatures that fluctuate unpredictably and on variable timescales is a major challenge. Extremes in the magnitude and frequency of temperature changes are increasing across the planet, raising questions as to how the biosphere will respond. To examine mechanisms of adaptation to temperature, we collected wild isolates from different climates of the fungus Ashbya gossypii, which has a compact genome of only ∼4,600 genes. We found control of the nuclear division cycle and polarized morphogenesis, both critical processes for fungal growth, were temperature sensitive and varied among the isolates. The phenotypes were associated with naturally varying sequences within the glutamine-rich region (QRR) IDR of an RNA-binding protein called Whi3. This protein regulates both nuclear division and polarized growth via its ability to form biomolecular condensates. In cells and in cell-free reconstitution assays, we found that temperature tunes the properties of Whi3-based condensates. Exchanging Whi3 sequences between isolates was sufficient to rescue temperature-sensitive phenotypes, and specifically, a heptad repeat sequence within the QRR confers temperature-sensitive behavior. Together, these data demonstrate that sequence variation in the size and composition of an IDR can promote cell adaptation to growth at specific temperature ranges. These data demonstrate the power of IDRs as tuning knobs for rapid adaptation to environmental fluctuations.
Collapse
Affiliation(s)
- Benjamin M Stormo
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA
| | - Grace A McLaughlin
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA; University of North Carolina-Chapel Hill, Department of Biology, 120 South Road, Chapel Hill, NC 27599, USA
| | - Ameya P Jalihal
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA
| | - Logan K Frederick
- University of North Carolina-Chapel Hill, Department of Biology, 120 South Road, Chapel Hill, NC 27599, USA
| | - Sierra J Cole
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA; University of North Carolina-Chapel Hill, Department of Biochemistry and Biophysics, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Ian Seim
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Fred S Dietrich
- Duke University, Department of Molecular Genetics and Microbiology, 213 Research Drive, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Duke University, Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27705, USA
| | - Amy S Gladfelter
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA.
| |
Collapse
|
4
|
van Otterdijk S, Motealleh M, Wang Z, Visser TD, Savakis P, Tutucci E. Single-Molecule Fluorescent In Situ Hybridization (smFISH) for RNA Detection in the Fungal Pathogen Candida albicans. Methods Mol Biol 2024; 2784:25-44. [PMID: 38502476 DOI: 10.1007/978-1-0716-3766-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Candida albicans is the most prevalent human fungal pathogen. Its pathogenicity is linked to the ability of C. albicans to reversibly change morphology and to grow as yeast, pseudohyphae, or hyphal cells in response to environmental stimuli. Understanding the molecular regulation controlling those morphological switches remains a challenge that, if solved, could help eradicate C. albicans infections.While numerous studies investigated gene expression changes occurring during C. albicans morphological switches using bulk approaches (e.g., RNA sequencing), here we describe a single-cell and single-molecule RNA imaging and analysis protocol to measure absolute mRNA counts in morphologically intact cells. To detect endogenous mRNAs in single fixed cells, we optimized a single-molecule fluorescent in situ hybridization (smFISH) protocol for C. albicans, which allows one to quantify the differential expression of mRNAs in yeast, pseudohyphae, or hyphal cells. We quantified the expression of two mRNAs, a cell cycle-controlled mRNA (CLB2) and a transcription factor (EFG1), which show expression changes in the different morphological cell types and nutrient conditions. In this protocol, we described in detail the major steps of this approach: growth and fixation, hybridization, imaging, cell segmentation, and mRNA spot analysis. Raw data is provided with the protocol to favor reproducibility. This approach could benefit the molecular characterization of C. albicans and other filamentous fungi, pathogenic or nonpathogenic.
Collapse
Affiliation(s)
- Sander van Otterdijk
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maryam Motealleh
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Zixu Wang
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas D Visser
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- TNW-BT-IMB, Delft University of Technology, Delft, The Netherlands
| | - Philipp Savakis
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evelina Tutucci
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. PRD-2 mediates clock-regulated perinuclear localization of clock gene RNAs within the circadian cycle of Neurospora. Proc Natl Acad Sci U S A 2022; 119:e2203078119. [PMID: 35881801 PMCID: PMC9351534 DOI: 10.1073/pnas.2203078119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/24/2022] [Indexed: 02/02/2023] Open
Abstract
The transcription-translation negative feedback loops underlying animal and fungal circadian clocks are remarkably similar in their molecular regulatory architecture and, although much is understood about their central mechanism, little is known about the spatiotemporal dynamics of the gene products involved. A common feature of these circadian oscillators is a significant temporal delay between rhythmic accumulation of clock messenger RNAs (mRNAs) encoding negative arm proteins, for example, frq in Neurospora and Per1-3 in mammals, and the appearance of the clock protein complexes assembled from the proteins they encode. Here, we report use of single-molecule RNA fluorescence in situ hybridization (smFISH) to show that the fraction of nuclei actively transcribing the clock gene frq changes in a circadian manner, and that these mRNAs cycle in abundance with fewer than five transcripts per nucleus at any time. Spatial point patterning statistics reveal that frq is spatially clustered near nuclei in a time of day-dependent manner and that clustering requires an RNA-binding protein, PRD-2 (PERIOD-2), recently shown also to bind to mRNA encoding another core clock component, casein kinase 1. An intrinsically disordered protein, PRD-2 displays behavior in vivo and in vitro consistent with participation in biomolecular condensates. These data are consistent with a role for phase-separating RNA-binding proteins in spatiotemporally organizing clock mRNAs to facilitate local translation and assembly of clock protein complexes.
Collapse
Affiliation(s)
- Bradley M. Bartholomai
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jennifer J. Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
6
|
Antel M, Raj R, Masoud MYG, Pan Z, Li S, Mellone BG, Inaba M. Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation. Nat Commun 2022; 13:3981. [PMID: 35810185 PMCID: PMC9271046 DOI: 10.1038/s41467-022-31737-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/30/2022] [Indexed: 01/24/2023] Open
Abstract
Pairing of homologous chromosomes in somatic cells provides the opportunity of interchromosomal interaction between homologous gene regions. In the Drosophila male germline, the Stat92E gene is highly expressed in a germline stem cell (GSC) and gradually downregulated during the differentiation. Here we show that the pairing of Stat92E is always tight in GSCs and immediately loosened in differentiating daughter cells, gonialblasts (GBs). Disturbance of Stat92E pairing by relocation of one locus to another chromosome or by knockdown of global pairing/anti-pairing factors both result in a failure of Stat92E downregulation, suggesting that the pairing is required for the decline in transcription. Furthermore, the Stat92E enhancer, but not its transcription, is required for the change in pairing state, indicating that pairing is not a consequence of transcriptional changes. Finally, we show that the change in Stat92E pairing is dependent on asymmetric histone inheritance during the asymmetric division of GSCs. Taken together, we propose that the changes in Stat92E pairing status is an intrinsically programmed mechanism for enabling prompt cell fate switch during the differentiation of stem cells. Asymmetric inheritance of organelles, proteins and RNAs occurs during stem cell division. Here the authors show the strength of pairing of homologous Stat92E loci, a stem cell-specific gene, changes immediately after the asymmetric division due to asymmetric inheritance of new histones to one of the daughter cells and is important for turning off gene expression in this cell as it differentiates.
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Romir Raj
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Madona Y G Masoud
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziwei Pan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
7
|
Lee C, Lynch T, Crittenden SL, Kimble J. Image-Based Single-Molecule Analysis of Notch-Dependent Transcription in Its Natural Context. Methods Mol Biol 2022; 2472:131-149. [PMID: 35674897 DOI: 10.1007/978-1-0716-2201-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Notch signaling is crucial to animal development and homeostasis. Notch triggers the transcription of its target genes, which produce diverse outcomes depending on context. The high resolution and spatially precise assessment of Notch-dependent transcription is essential for understanding how Notch operates normally in its native context in vivo and how Notch defects lead to pathogenesis. Here we present biological and computational methods to assess Notch-dependent transcriptional activation in stem cells within their niche, focusing on germline stem cells in the nematode Caenorhabditis elegans. Specifically, we describe visualization of single RNAs in fixed gonads using single-molecule RNA fluorescence in situ hybridization (smFISH), live imaging of transcriptional bursting in the intact organism using the MS2 system, and custom-made MATLAB codes, implementing new image processing algorithms to capture the spatiotemporal patterns of Notch-dependent transcriptional activation. These methods allow a powerful analysis of in vivo transcriptional activation and its dynamics in a whole tissue. Our methods can be adapted to essentially any tissue or cell type for any transcript.
Collapse
Affiliation(s)
- ChangHwan Lee
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Tina Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. Quantitative single molecule RNA-FISH and RNase-free cell wall digestion in Neurospora crassa. Fungal Genet Biol 2021; 156:103615. [PMID: 34425213 PMCID: PMC8463489 DOI: 10.1016/j.fgb.2021.103615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Single molecule RNA-FISH (smFISH) is a valuable tool for analysis of mRNA spatial patterning in fixed cells that is underutilized in filamentous fungi. A primary complication for fixed-cell imaging in filamentous fungi is the need for enzymatic cell wall permeabilization, which is compounded by considerable variability in cell wall composition between species. smFISH adds another layer of complexity due to a requirement for RNase free conditions. Here, we describe the cloning, expression, and purification of a chitinase suitable for supplementation of a commercially available RNase-free enzyme preparation for efficient permeabilization of the Neurospora cell wall. We further provide a method for smFISH in Neurospora which includes a tool for generating numerical data from images that can be used in downstream customized analysis protocols.
Collapse
Affiliation(s)
- Bradley M Bartholomai
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Amy S Gladfelter
- University of North Carolina, Department of Biology, Chapel Hill, NC, USA
| | - Jennifer J Loros
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH, USA
| | - Jay C Dunlap
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA.
| |
Collapse
|
9
|
Feng L, Zhang J, Lee C, Kim G, Liu F, Petersen AJ, Lim E, Anderson CL, Orland KM, Robertson GA, Eckhardt LL, January CT, Kamp TJ. Long QT Syndrome KCNH2 Variant Induces hERG1a/1b Subunit Imbalance in Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Arrhythm Electrophysiol 2021; 14:e009343. [PMID: 33729832 PMCID: PMC8058932 DOI: 10.1161/circep.120.009343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Li Feng
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jianhua Zhang
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - ChangHwan Lee
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY
| | - Gina Kim
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - Fang Liu
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI
| | | | - Evi Lim
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - Corey L. Anderson
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kate M. Orland
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - Gail A. Robertson
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI
| | - Lee L. Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - Craig T. January
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
10
|
Badstöber J, Gachon CMM, Ludwig-Müller J, Sandbichler AM, Neuhauser S. Demystifying biotrophs: FISHing for mRNAs to decipher plant and algal pathogen-host interaction at the single cell level. Sci Rep 2020; 10:14269. [PMID: 32868853 PMCID: PMC7459097 DOI: 10.1038/s41598-020-70884-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Plant-pathogen interactions follow spatial and temporal developmental dynamics where gene expression in pathogen and host undergo crucial changes. Therefore, it is of great interest to detect, quantify and localise where and when key genes are active to understand these processes. Many pathosystems are not accessible for genetic amendments or other spatially-resolved gene expression monitoring methods. Here, we adapt single molecule FISH techniques to demonstrate the presence and activity of mRNAs at the single-cell level using phytomyxids in their plant and algal host in lab and field material. This allowed us to monitor and quantify the expression of genes from the clubroot pathogen Plasmodiophora brassicae, several species of its Brassica hosts, and of several brown algae, including the genome model Ectocarpus siliculosus, infected with the phytomyxid Maullinia ectocarpii. We show that mRNAs are localised along a spatiotemporal gradient, thus providing a proof-of-concept of the usefulness of single-molecule FISH to increase knowledge about the interactions between plants, algae and phytomyxids. The methods used are easily applicable to any interaction between microbes and their algal or plant host, and have therefore the potential to rapidly increase our understanding of key, spatially- and temporally-resolved processes underpinning complex plant-microbe interactions.
Collapse
Affiliation(s)
- Julia Badstöber
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
- UMR 7245 - Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, 75005, France
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217, Dresden, Germany
| | | | - Sigrid Neuhauser
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Jiang X, Brust-Mascher I, Jao LE. Three-dimensional Reconstruction and Quantification of Proteins and mRNAs at the Single-cell Level in Cultured Cells. Bio Protoc 2019; 9:e3330. [PMID: 33654837 DOI: 10.21769/bioprotoc.3330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/02/2022] Open
Abstract
Gene expression is often regulated by the abundance, localization, and translation of mRNAs in both space and time. Being able to visualize mRNAs and protein products in single cells is critical to understand this regulatory process. The development of single-molecule RNA fluorescence in situ hybridization (smFISH) allows the detection of individual RNA molecules at the single-molecule and single-cell levels. When combined with immunofluorescence (IF), both mRNAs and proteins in individual cells can be analyzed simultaneously. However, a precise and streamlined quantification method for the smFISH and IF combined dataset is scarce, as existing workflows mostly focus on quantifying the smFISH data alone. Here we detail a method for performing sequential IF and smFISH in cultured cells (as described in Sepulveda et al., 2018 ) and the subsequent statistical analysis of the smFISH and IF data via three-dimensional (3D) reconstruction in a semi-automatic image processing workflow. Although our method is based on analyzing centrosomally enriched mRNAs and proteins, the workflow can be readily adapted for performing and analyzing smFISH and IF data in other biological contexts.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, CA 95616, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
12
|
Haimovich G, Gerst JE. Single-molecule Fluorescence in situ Hybridization (smFISH) for RNA Detection in Adherent Animal Cells. Bio Protoc 2018; 8:e3070. [PMID: 34532531 DOI: 10.21769/bioprotoc.3070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/02/2023] Open
Abstract
Transcription and RNA decay play critical roles in the process of gene expression and the ability to accurately measure cellular mRNA levels is essential for understanding this regulation. Here, we describe a single-molecule fluorescent in situ hybridization (smFISH) method (as performed in Haimovich et al., 2017 ) that detects single RNA molecules in individual cells. This technique employs multiple single-stranded, fluorescent labeled, short DNA probes that hybridize to target RNAs in fixed cells, allowing for both the quantification and localization of cytoplasmic and nuclear RNAs at the single-cell level and single-molecule resolution. Analyzing smFISH data provides absolute quantitative data of the number of cytoplasmic ("mature") mRNAs, the number of nascent RNA molecules at distinct transcription sites, and the spatial localization of these RNAs in the cytoplasm and/or nucleoplasm.
Collapse
Affiliation(s)
- Gal Haimovich
- Dept. of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeffrey E Gerst
- Dept. of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Lee C, Seidel HS, Lynch TR, Sorensen EB, Crittenden SL, Kimble J. Single-molecule RNA Fluorescence in situ Hybridization (smFISH) in Caenorhabditis elegans. Bio Protoc 2017; 7:e2357. [PMID: 34541104 DOI: 10.21769/bioprotoc.2357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 05/18/2017] [Indexed: 11/02/2022] Open
Abstract
Single-molecule RNA fluorescence in situ hybridization (smFISH) is a technique to visualize individual RNA molecules using multiple fluorescently-labeled oligonucleotide probes specific to the target RNA ( Raj et al., 2008 ; Lee et al., 2016a ). We adapted this technique to visualize RNAs in the C. elegans whole adult worm or its germline, which enabled simultaneous recording of nascent transcripts at active transcription sites and mature mRNAs in the cytoplasm ( Lee et al., 2013 and 2016b). Here we describe each step of the smFISH procedure, reagents, and microscope settings optimized for C. elegans extruded gonads.
Collapse
Affiliation(s)
- ChangHwan Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hannah S Seidel
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Current address: Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Tina R Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erika B Sorensen
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Current address: Department of Biology, Wabash College, Crawfordsville, Indiana, USA
| | - Sarah L Crittenden
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Lee C, Sorensen EB, Lynch TR, Kimble J. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. eLife 2016; 5:e18370. [PMID: 27705743 PMCID: PMC5094854 DOI: 10.7554/elife.18370] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling.
Collapse
Affiliation(s)
- ChangHwan Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Erika B Sorensen
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Tina R Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
15
|
Dundon SER, Chang SS, Kumar A, Occhipinti P, Shroff H, Roper M, Gladfelter AS. Clustered nuclei maintain autonomy and nucleocytoplasmic ratio control in a syncytium. Mol Biol Cell 2016; 27:2000-7. [PMID: 27193301 PMCID: PMC4927274 DOI: 10.1091/mbc.e16-02-0129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023] Open
Abstract
Nuclei in syncytia found in fungi, muscles, and tumors can behave independently despite cytoplasmic translation and the homogenizing potential of diffusion. We use a dynactin mutant strain of the multinucleate fungus Ashbya gossypii with highly clustered nuclei to assess the relative contributions of nucleus and cytoplasm to nuclear autonomy. Remarkably, clustered nuclei maintain cell cycle and transcriptional autonomy; therefore some sources of nuclear independence function even with minimal cytosol insulating nuclei. In both nuclear clusters and among evenly spaced nuclei, a nucleus' transcriptional activity dictates local cytoplasmic contents, as assessed by the localization of several cyclin mRNAs. Thus nuclear activity is a central determinant of the local cytoplasm in syncytia. Of note, we found that the number of nuclei per unit cytoplasm was identical in the mutant to that in wild-type cells, despite clustered nuclei. This work demonstrates that nuclei maintain autonomy at a submicrometer scale and simultaneously maintain a normal nucleocytoplasmic ratio across a syncytium up to the centimeter scale.
Collapse
Affiliation(s)
| | - Shyr-Shea Chang
- Departments of Mathematics and Biomathematics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Abhishek Kumar
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | | | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Marcus Roper
- Departments of Mathematics and Biomathematics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 The Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
16
|
|