1
|
Chung G, Piano F, Gunsalus KC. TeloSearchLR: an algorithm to detect novel telomere repeat motifs using long sequencing reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.617943. [PMID: 39554068 PMCID: PMC11565940 DOI: 10.1101/2024.10.29.617943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Telomeres are eukaryotic chromosome end structures that guard against sequence loss and aberrant chromosome fusions. Telomeric repeat motifs (TRMs), the minimal repeating unit of a telomere, vary from species to species, with some evolutionary clades experiencing a rapid sequence divergence. To explore the full scope of this evolutionary divergence, many bioinformatic tools have been developed to infer novel TRMs using repetitive sequence search on short sequencing reads. However, novel telomeric motifs remain unidentified in up to half of the sequencing libraries assayed with these tools. A possible reason may be that short reads, derived from extensively sheared DNA, preserve little to no positional context of the repetitive sequences assayed. On the other hand, if a sequencing read is sufficiently long, telomeric sequences must appear at either end rather than in the middle. The TeloSearchLR algorithm relies on this to help identify novel TRMs on long reads, in many cases where short-read search tools have failed. In addition, we demonstrate that TeloSearchLR can reveal unusually long telomeric motifs not maintained by telomerase, and it can also be used to anchor terminal scaffolds in new genome assemblies.
Collapse
|
2
|
Lyčka M, Bubeník M, Závodník M, Peska V, Fajkus P, Demko M, Fajkus J, Fojtová M. TeloBase: a community-curated database of telomere sequences across the tree of life. Nucleic Acids Res 2024; 52:D311-D321. [PMID: 37602392 PMCID: PMC10767889 DOI: 10.1093/nar/gkad672] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023] Open
Abstract
Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Michal Bubeník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Michal Závodník
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, BrnoCZ-61200, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, BrnoCZ-61200, Czech Republic
| | - Martin Demko
- Core Facility Bioinformatics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- Faculty of Informatics, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, BrnoCZ-61200, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| |
Collapse
|
3
|
Závodník M, Fajkus P, Franek M, Kopecký D, Garcia S, Dodsworth S, Orejuela A, Kilar A, Ptáček J, Mátl M, Hýsková A, Fajkus J, Peška V. Telomerase RNA gene paralogs in plants - the usual pathway to unusual telomeres. THE NEW PHYTOLOGIST 2023; 239:2353-2366. [PMID: 37391893 DOI: 10.1111/nph.19110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.
Collapse
Affiliation(s)
- Michal Závodník
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
| | - David Kopecký
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, CZ-779 00, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia S/N, Barcelona, 08038, Catalonia, Spain
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I St., Portsmouth, PO1 2DY, UK
| | - Andrés Orejuela
- Grupo de Investigación en Recursos Naturales Amazónicos - GRAM, Facultad de Ingenierías y Ciencias Básicas and Herbario Etnobotánico del Piedemonte Andino Amazónico (HEAA), Instituto Tecnológico del Putumayo - ITP, Mocoa, Putumayo, Colombia
| | - Agata Kilar
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jiří Ptáček
- Potato Research Institute Havlíčkův Brod Ltd, Havlíčkův Brod, CZ-58001, Czech Republic
| | - Martin Mátl
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| | - Anna Hýsková
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno, CZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, CZ-61265, Czech Republic
| |
Collapse
|
4
|
Magdy Mohamed Abdelaziz Barakat S, Sallehuddin R, Yuhaniz SS, R. Khairuddin RF, Mahmood Y. Genome assembly composition of the String "ACGT" array: a review of data structure accuracy and performance challenges. PeerJ Comput Sci 2023; 9:e1180. [PMID: 37547391 PMCID: PMC10403225 DOI: 10.7717/peerj-cs.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Background The development of sequencing technology increases the number of genomes being sequenced. However, obtaining a quality genome sequence remains a challenge in genome assembly by assembling a massive number of short strings (reads) with the presence of repetitive sequences (repeats). Computer algorithms for genome assembly construct the entire genome from reads in two approaches. The de novo approach concatenates the reads based on the exact match between their suffix-prefix (overlapping). Reference-guided approach orders the reads based on their offsets in a well-known reference genome (reads alignment). The presence of repeats extends the technical ambiguity, making the algorithm unable to distinguish the reads resulting in misassembly and affecting the assembly approach accuracy. On the other hand, the massive number of reads causes a big assembly performance challenge. Method The repeat identification method was introduced for misassembly by prior identification of repetitive sequences, creating a repeat knowledge base to reduce ambiguity during the assembly process, thus enhancing the accuracy of the assembled genome. Also, hybridization between assembly approaches resulted in a lower misassembly degree with the aid of the reference genome. The assembly performance is optimized through data structure indexing and parallelization. This article's primary aim and contribution are to support the researchers through an extensive review to ease other researchers' search for genome assembly studies. The study also, highlighted the most recent developments and limitations in genome assembly accuracy and performance optimization. Results Our findings show the limitations of the repeat identification methods available, which only allow to detect of specific lengths of the repeat, and may not perform well when various types of repeats are present in a genome. We also found that most of the hybrid assembly approaches, either starting with de novo or reference-guided, have some limitations in handling repetitive sequences as it is more computationally costly and time intensive. Although the hybrid approach was found to outperform individual assembly approaches, optimizing its performance remains a challenge. Also, the usage of parallelization in overlapping and reads alignment for genome assembly is yet to be fully implemented in the hybrid assembly approach. Conclusion We suggest combining multiple repeat identification methods to enhance the accuracy of identifying the repeats as an initial step to the hybrid assembly approach and combining genome indexing with parallelization for better optimization of its performance.
Collapse
Affiliation(s)
| | - Roselina Sallehuddin
- Computer Science, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Siti Sophiayati Yuhaniz
- Advanced Informatics Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | - Yasir Mahmood
- Faculty of Information Technology, The University of Lahore, Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Lyčka M, Fajkus P, Jenner LP, Sýkorová E, Fojtová M, Peska V. Identification of the Sequence and the Length of Telomere DNA. Methods Mol Biol 2023; 2672:285-302. [PMID: 37335484 DOI: 10.1007/978-1-0716-3226-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Telomeres are essential nucleoprotein structures at the very ends of linear eukaryote chromosomes. They shelter the terminal genome territories against degradation and prevent the natural chromosome ends from being recognized by repair mechanisms as double-strand DNA breaks.There are two basic characteristics of telomeric DNA, its sequence and its length. The telomere sequence is important as a "landing area" for specific telomere-binding proteins, which function as signals and moderate the interactions required for correct telomere function. While the sequence forms the proper "landing surface" of telomeric DNA, its length is similarly important. Too short or exceptionally long telomere DNA cannot perform its function properly. In this chapter, methods for the investigation of these two basic telomere DNA characteristics are described, namely, telomere motif identification and telomere length measurement.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Leon P Jenner
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Sýkorová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
6
|
Fajkus P, Adámik M, Nelson ADL, Kilar AM, Franek M, Bubeník M, Frydrychová RČ, Votavová A, Sýkorová E, Fajkus J, Peška V. Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis. Nucleic Acids Res 2022; 51:420-433. [PMID: 36546771 PMCID: PMC9841428 DOI: 10.1093/nar/gkac1202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.
Collapse
Affiliation(s)
- Petr Fajkus
- To whom correspondence should be addressed. Tel: +420 41517183;
| | - Matej Adámik
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Andrew D L Nelson
- The Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14850, USA
| | - Agata M Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Michal Bubeník
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice CZ-37005, Czech Republic
| | - Alena Votavová
- Agricultural Research, Ltd., Troubsko, CZ-664 41, Czech Republic
| | - Eva Sýkorová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Correspondence may also be addressed to Jiří Fajkus. Tel: +420 549494003;
| | - Vratislav Peška
- Correspondence may also be addressed to Vratislav Peška. Tel: +420 541517183;
| |
Collapse
|
7
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
8
|
de Souza TB, Parteka LM, de Assis R, Vanzela ALL. Diversity of the repetitive DNA fraction in Cestrum, the genus with the largest genomes within Solanaceae. Mol Biol Rep 2022; 49:8785-8799. [PMID: 35809181 DOI: 10.1007/s11033-022-07728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Cestrum species present large genomes (2 C = ~ 24 pg), a high occurrence of B chromosomes and great diversity in heterochromatin bands. Despite this diversity, karyotypes maintain the chromosome number 2n = 16 (except when they present B chromosomes), and a relative similarity in chromosome morphology and symmetry. To deepen our knowledge of the Cestrum genome composition, low-coverage sequencing data of C. strigilatum and C. elegans were compared, including cytogenomic analyses of seven species. METHODS AND RESULTS Bioinformatics analyses showed retrotransposons comprising more than 70% of the repetitive fraction, followed by DNA transposons (~ 17%), but FISH assays using retrotransposon probes revealed inconspicuous and scattered signals. The four satellite DNA families here analyzed represented approximately 2.48% of the C. strigilatum dataset, and these sequences were used as probes in FISH assays. Hybridization signals were colocalized with all AT- and GC-rich sequences associated with heterochromatin, including AT-rich Cold-Sensitive Regions (CSRs). Although satellite probes hybridized in almost all tested species, a satDNA family named CsSat49 was highlighted because it predominates in centromeric regions. CONCLUSIONS Data suggest that the satDNA fraction is conserved in the genus, although there is variation in the number of FISH signals between karyotypes. Except to the absence of FISH signals with probes CsSat1 and CsSat72 in two species, the other satellites occurred in species of different phylogenetic clades. Some satDNA sequences have been detected in the B chromosomes, indicating that they are rich in preexisting sequences in the chromosomes of the A complement. This comparative study provides an important advance in the knowledge on genome organization and heterochromatin composition in Cestrum, especially on the distribution of satellite fractions between species and their importance for the B chromosome composition.
Collapse
Affiliation(s)
- Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Letícia Maria Parteka
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.
| |
Collapse
|
9
|
Zhou Y, Wang Y, Xiong X, Appel AG, Zhang C, Wang X. Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Sci Alliance 2022; 5:5/7/e202101163. [PMID: 35365574 PMCID: PMC8977481 DOI: 10.26508/lsa.202101163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Telomeres consist of highly conserved simple tandem telomeric repeat motif (TRM): (TTAGG)n in arthropods, (TTAGGG)n in vertebrates, and (TTTAGGG)n in most plants. TRM can be detected from chromosome-level assembly, which typically requires long-read sequencing data. To take advantage of short-read data, we developed an ultra-fast Telomeric Repeats Identification Pipeline and evaluated its performance on 91 species. With proven accuracy, we applied Telomeric Repeats Identification Pipeline in 129 insect species, using 7 Tbp of short-read sequences. We confirmed (TTAGG)n as the TRM in 19 orders, suggesting it is the ancestral form in insects. Systematic profiling in Hymenopterans revealed a diverse range of TRMs, including the canonical 5-bp TTAGG (bees, ants, and basal sawflies), three independent losses of tandem repeat form TRM (Ichneumonoids, hunting wasps, and gall-forming wasps), and most interestingly, a common 8-bp (TTATTGGG)n in Chalcid wasps with two 9-bp variants in the miniature wasp (TTACTTGGG) and fig wasps (TTATTGGGG). Our results identified extraordinary evolutionary fluidity of Hymenopteran TRMs, and rapid evolution of TRM and repeat abundance at all evolutionary scales, providing novel insights into telomere evolution.
Collapse
Affiliation(s)
- Yihang Zhou
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiao Xiong
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA
| | - Arthur G Appel
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA.,Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA.,Department of Entomology and Plant Pathology, Auburn University, AL, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| |
Collapse
|
10
|
Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, Fojtová M, Zachová D, Fulnečková J, Fajkus J. Evolution of plant telomerase RNAs: farther to the past, deeper to the roots. Nucleic Acids Res 2021; 49:7680-7694. [PMID: 34181710 PMCID: PMC8287931 DOI: 10.1093/nar/gkab545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | | | - Marcela Holá
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague CZ-16000, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Ivana Goffová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| |
Collapse
|
11
|
Prušáková D, Peska V, Pekár S, Bubeník M, Čížek L, Bezděk A, Čapková Frydrychová R. Telomeric DNA sequences in beetle taxa vary with species richness. Sci Rep 2021; 11:13319. [PMID: 34172809 PMCID: PMC8233369 DOI: 10.1038/s41598-021-92705-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.
Collapse
Affiliation(s)
- Daniela Prušáková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Michal Bubeník
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lukáš Čížek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Bezděk
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Peska V, Fajkus P, Bubeník M, Brázda V, Bohálová N, Dvořáček V, Fajkus J, Garcia S. Extraordinary diversity of telomeres, telomerase RNAs and their template regions in Saccharomycetaceae. Sci Rep 2021; 11:12784. [PMID: 34140564 PMCID: PMC8211666 DOI: 10.1038/s41598-021-92126-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Telomerase RNA (TR) carries the template for synthesis of telomere DNA and provides a scaffold for telomerase assembly. Fungal TRs are long and have been compared to higher eukaryotes, where they show considerable diversity within phylogenetically close groups. TRs of several Saccharomycetaceae were recently identified, however, many of these remained uncharacterised in the template region. Here we show that this is mainly due to high variability in telomere sequence. We predicted the telomere sequences using Tandem Repeats Finder and then we identified corresponding putative template regions in TR candidates. Remarkably long telomere units and the corresponding putative TRs were found in Tetrapisispora species. Notably, variable lengths of the annealing sequence of the template region (1–10 nt) were found. Consequently, species with the same telomere sequence may not harbour identical TR templates. Thus, TR sequence alone can be used to predict a template region and telomere sequence, but not to determine these exactly. A conserved feature of telomere sequences, tracts of adjacent Gs, led us to test the propensity of individual telomere sequences to form G4. The results show highly diverse values of G4-propensity, indicating the lack of ubiquitous conservation of this feature across Saccharomycetaceae.
Collapse
Affiliation(s)
- Vratislav Peska
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.
| | - Petr Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, 62500, Czech Republic
| | - Michal Bubeník
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, 62500, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Vojtěch Dvořáček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, 62500, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021; 12:652335. [PMID: 34054532 PMCID: PMC8149611 DOI: 10.3389/fphar.2021.652335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research- National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
14
|
Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021; 12:652335. [PMID: 34054532 DOI: 10.3389/fphar2021652335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 05/06/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research- National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
15
|
Fajkus P, Peška V, Fajkus J, Sýkorová E. Origin and Fates of TERT Gene Copies in Polyploid Plants. Int J Mol Sci 2021; 22:1783. [PMID: 33670111 PMCID: PMC7916837 DOI: 10.3390/ijms22041783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.
Collapse
Affiliation(s)
- Petr Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Jiří Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| |
Collapse
|
16
|
Peska V, Mátl M, Mandáková T, Vitales D, Fajkus P, Fajkus J, Garcia S. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5786-5793. [PMID: 32589715 DOI: 10.1093/jxb/eraa293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/16/2020] [Indexed: 05/26/2023]
Abstract
A previous study describing the genome of Zostera marina, the most widespread seagrass in the Northern hemisphere, revealed some genomic signatures of adaptation to the aquatic environment such as the loss of stomatal genes, while other functions such as an algal-like cell wall composition were acquired. Beyond these, the genome structure and organization were comparable with those of the majority of plant genomes sequenced, except for one striking feature that went unnoticed at that time: the presence of human-like instead of the expected plant-type telomeric sequences. By using different experimental approaches including fluorescence in situ hybridization (FISH), genome skimming by next-generation sequencing (NGS), and analysis of non-coding transcriptome, we have confirmed its telomeric location in the chromosomes of Z. marina. We have also identified its telomerase RNA (TR) subunit, confirming the presence of the human-type telomeric sequence in the template region. Remarkably, this region was found to be very variable even in clades with a highly conserved telomeric sequence across their species. Based on this observation, we propose that alternative annealing preferences in the template borders can explain the transition between the plant and human telomeric sequences. The further identification of paralogues of TR in several plant genomes led us to the hypothesis that plants may retain an increased ability to change their telomeric sequence. We discuss the implications of this occurrence in the evolution of telomeres while introducing a mechanistic model for the transition from the plant to the human telomeric sequences.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Mátl
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Plant Molecular Genetics, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, Barcelona, Catalonia, Spain
| | - Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Peska V, Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:117. [PMID: 32153618 PMCID: PMC7046594 DOI: 10.3389/fpls.2020.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Telomeres are basic structures of eukaryote genomes. They distinguish natural chromosome ends from double-stranded breaks in DNA and protect chromosome ends from degradation or end-to-end fusion with other chromosomes. Telomere sequences are usually tandemly arranged minisatellites, typically following the formula (TxAyGz)n. Although they are well conserved across large groups of organisms, recent findings in plants imply that their diversity has been underestimated. Changes in telomeres are of enormous evolutionary importance as they can affect whole-genome stability. Even a small change in the telomere motif of each repeat unit represents an important interference in the system of sequence-specific telomere binding proteins. Here, we provide an overview of telomere sequences, considering the latest phylogenomic evolutionary framework of plants in the broad sense (Archaeplastida), in which new telomeric sequences have recently been found in diverse and economically important families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in many groups of green algae, deviations from the typical plant telomeric sequence have also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well as extant gaps in knowledge are discussed. With the increasing availability of genomic approaches, it is likely that more telomeric diversity will be uncovered in the future. We also discuss basic methods used for telomere identification and we explain the implications of the recent discovery of plant telomerase RNA on further research about the role of telomerase in eukaryogenesis or on the molecular causes and consequences of telomere variability.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, The Czech Academy of Sciences, Institute of Biophysics, Brno, Czechia
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
18
|
Abstract
Conventional approaches to identify a telomere motif in a new genome are laborious and time-intensive. An efficient new methodology based on next-generation sequencing (NGS), de novo sequence repeat finder (SERF) and fluorescence in situ hybridization (FISH) is presented. Unlike existing heuristic approaches, SERF utilizes an exhaustive analysis of raw NGS reads or assembled contigs for rapid de novo detection of conserved tandem repeats representing telomere motifs. SERF was validated using the NGS data from Ipheion uniflorum and Allium cepa with known telomere motifs. The analysis program was then used on NGS data to investigate the telomere motifs in several additional plant species and together with FISH proved to be an efficient approach to identify as yet unknown telomere motifs.
Collapse
|
19
|
Peška V, Mandáková T, Ihradská V, Fajkus J. Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum. Int J Mol Sci 2019; 20:E733. [PMID: 30744119 PMCID: PMC6387171 DOI: 10.3390/ijms20030733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. ursinum (wild garlic). We present an overview and classification of major repeats in these species and have paid specific attention to sequence conservation and copy numbers of major representatives in each type of repeat, including retrotransposons, rDNA, or newly identified satellite sequences. Prevailing repeats in all three studied species belonged to Ty3/gypsy elements, however they significantly diverged and we did not detect them in common clusters in comparative analysis. Actually, only a low number of clusters was shared by all three species. Such conserved repeats were for example 5S and 45S rDNA genes and surprisingly a specific and quite rare Ty1/copia lineage. Species-specific long satellites were found mainly in A. cepa and A. sativum. We also show in situ localization of selected repeats that could potentially be applicable as chromosomal markers, e.g., in interspecific breeding.
Collapse
Affiliation(s)
- Vratislav Peška
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Veronika Ihradská
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Jiří Fajkus
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
20
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
21
|
Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS One 2018; 13:e0207318. [PMID: 30440003 PMCID: PMC6237374 DOI: 10.1371/journal.pone.0207318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies, but karyotypic data are limited to chromosome numbers and a few published genome sizes. In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluorescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand the evolution of the karyotype diversity of the group. Philodendron presented a high number variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region of the short arms, with nine species presenting heteromorphisms. In the case of Thaumatophyllum species, we observed a considerably lower variation, which ranged from two to four terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites for most species, being preferably located interstitially in the long chromosome arms. For the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n = 30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were randomly distributed considering the phylogenetic context, probably due to rapid evolution and great diversity of these genomes. The observed heteromorphisms suggest the accumulation of repetitive DNA in the genomes of some species and the occurrence of chromosomal rearrangements along the karyotype evolution of the group.
Collapse
|
22
|
Telomeres and telomerase. Methods 2017; 114:1-3. [PMID: 28107827 DOI: 10.1016/j.ymeth.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|