1
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou H, Xiang R, Chen W, Peng Y, Chen Z, Chen W, Tang L. CircRNA-mediated heterogeneous ceRNA regulation mechanism in periodontitis and peri-implantitis. Eur J Med Res 2024; 29:594. [PMID: 39695789 DOI: 10.1186/s40001-024-02153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Performing a comprehensive study on the differential expression of mRNAs, miRNAs, and circRNAs in the context of peri-implantitis and periodontitis has beneficial advantages to identify unique molecular signatures and pathways that may contribute to our understanding of these conditions. METHODS Gingival tissues from healthy individuals and peri-implantitis and periodontitis patients were obtained to identify differential expression genes (DEG) by Illumina HiSeq 2500 instrument. Differential expression analysis was conducted using R statistical software, with significance set at P < 0.05 and fold greater than 2. Functional enrichment analysis of the DEGs was conducted using the Reactome, Gene ontology and KEGG databases. RESULTS Significant differences in mRNA, miRNA, and circRNA profiles were identified between healthy gingival tissues. The top DEGs comprising 6 circRNAs, 2 miRNAs, and 4 mRNAs were identified and the constructed ceRNA network, elucidates their involvement in key signaling pathways such as ErbB, Wnt, and mTOR, which are crucial for understanding the inflammatory progression of these conditions. CONCLUSIONS This study highlights a heterogeneous circRNA-mediated ceRNA regulatory mechanism in peri-implantitis and periodontitis, activating signaling pathways and regulating gene expression. Key findings including a detailed analysis of the transcriptional landscape and identification of unique molecular signatures, pathways and cellular components in gingival tissues, offering insights into the molecular differences between peri-implantitis and periodontitis. The study may contribute to the understanding of the pathological mechanisms of these diseases and may aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Hailun Zhou
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Rong Xiang
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Wenjin Chen
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Yuanyuan Peng
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Zhiyong Chen
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Wenxia Chen
- Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China.
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China.
- Department of Endodontics Dentistry, College of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| | - Li Tang
- Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China.
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China.
- Department of Implant Dentistry, College of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Conn VM, Chinnaiyan AM, Conn SJ. Circular RNA in cancer. Nat Rev Cancer 2024; 24:597-613. [PMID: 39075222 DOI: 10.1038/s41568-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, circular RNA (circRNA) research has evolved into a bona fide research field shedding light on the functional consequence of this unique family of RNA molecules in cancer. Although the method of formation and the abundance of circRNAs can differ from their cognate linear mRNA, the spectrum of interacting partners and their resultant cellular functions in oncogenesis are analogous. However, with 10 times more diversity in circRNA variants compared with linear RNA variants, combined with their hyperstability in the cell, circRNAs are equipped to influence every stage of oncogenesis. This is an opportune time to address the breadth of circRNA in cancer focused on their spatiotemporal expression, mutations in biogenesis factors and contemporary functions through each stage of cancer. In this Review, we highlight examples of functional circRNAs in specific cancers, which satisfy critical criteria, including their physical co-association with the target and circRNA abundance at stoichiometrically valid quantities. These considerations are essential to develop strategies for the therapeutic exploitation of circRNAs as biomarkers and targeted anticancer agents.
Collapse
Affiliation(s)
- Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
4
|
de Abreu FMC, de Oliveira DA, de Araujo Romero Ferrari SS, E Silva KHCV, Titze-de-Almeida R, Titze-de-Almeida SS. Exploring circular RNAs as biomarkers for Parkinson's disease and their expression changes after aerobic exercise rehabilitation. Funct Integr Genomics 2024; 24:130. [PMID: 39069524 DOI: 10.1007/s10142-024-01409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Circular RNAs (circRNAs) are circularized single-stranded ribonucleic acids that interacts with DNA, RNA, and proteins to play critical roles in cell biology. CircRNAs regulate microRNA content, gene expression, and may code for specific peptides. Indeed, circRNAs are differentially expressed in neurodegenerative disorders like Parkinson's disease (PD), playing a potential role in the mechanisms of brain pathology. The RNA molecules with aberrant expression in the brain can cross the blood-brain barrier and reach the bloodstream, which enable their use as non-invasive PD disease biomarker. Promising targets with valuable discriminatory ability in combined circRNA signatures include MAPK9_circ_0001566, SLAIN1_circ_0000497, SLAIN2_circ_0126525, PSEN1_circ_0003848, circ_0004381, and circ_0017204. On the other hand, regular exercises are effective therapy for mitigating PD symptoms, promoting neuroprotective effects with epigenetic modulation. Aerobic exercises slow symptom progression in PD by improving motor control, ameliorating higher functions, and enhancing brain activity and neuropathology. These improvements are accompanied by changes circRNA expression, including hsa_circ_0001535 (circFAM13B) and hsa_circ_0000437 (circCORO1C). The sensitivity of current methods for detecting circulating circRNAs is considered a limitation. While amplification kits already exist for low-abundant microRNAs, similar kits are needed for circRNAs. Alternatively, the use of digital PCR can help overcome this constraint. The current review examines the potential use of circRNAs as non-invasive biomarkers of PD and to assess the effects of rehabilitation. Although circRNAs hold promise as targets for PD diagnosis and therapeutics, further validation is needed before their clinical implementation.
Collapse
Affiliation(s)
- Flávia Maria Campos de Abreu
- Graduate Program in Gerontology, Campus Taguatinga, Universidade Católica de Brasília, Brasília DF, Brazil
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
| | - Deborah Almeida de Oliveira
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Sabrina Simplício de Araujo Romero Ferrari
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | | | - Ricardo Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Simoneide Souza Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil.
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil.
| |
Collapse
|
5
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Dong FL, Xu ZZ, Wang YQ, Li T, Wang X, Li J. Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology 2024; 22:298. [PMID: 38811968 PMCID: PMC11137910 DOI: 10.1186/s12951-024-02582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Advanced hepatocellular carcinoma (HCC) can be treated with sorafenib, which is the primary choice for targeted therapy. Nevertheless, the effectiveness of sorafenib is greatly restricted due to resistance. Research has shown that exosomes and circular RNAs play a vital role in the cancer's malignant advancement. However, the significance of exosomal circular RNAs in the development of resistance to sorafenib in HCC remains uncertain. METHODS Ultracentrifugation was utilized to isolate exosomes (Exo-SR) from the sorafenib-resistant HCC cells' culture medium. Transcriptome sequencing and differential expression gene analysis were used to identify the targets of Exo-SR action in HCC cells. To identify the targets of Exo-SR action in HCC cells, transcriptome sequencing and analysis of differential expression genes were employed. To evaluate the impact of exosomal circUPF2 on resistance to sorafenib in HCC, experiments involving gain-of-function and loss-of-function were conducted. RNA pull-down assays and mass spectrometry analysis were performed to identify the RNA-binding proteins interacting with circUPF2. RNA immunoprecipitation (RIP), RNA pull-down, electrophoretic mobility shift assay (EMSA), immunofluorescence (IF) -fluorescence in situ hybridization (FISH), and rescue assays were used to validate the interactions among circUPF2, IGF2BP2 and SLC7A11. Finally, a tumor xenograft assay was used to examine the biological functions and underlying mechanisms of Exo-SR and circUPF2 in vivo. RESULTS A novel exosomal circRNA, circUPF2, was identified and revealed to be significantly enriched in Exo-SR. Exosomes with enriched circUPF2 enhanced sorafenib resistance by promoting SLC7A11 expression and suppressing ferroptosis in HCC cells. Mechanistically, circUPF2 acts as a framework to enhance the creation of the circUPF2-IGF2BP2-SLC7A11 ternary complex contributing to the stabilization of SLC7A11 mRNA. Consequently, exosomal circUPF2 promotes SLC7A11 expression and enhances the function of system Xc- in HCC cells, leading to decreased sensitivity to ferroptosis and resistance to sorafenib. CONCLUSIONS The resistance to sorafenib in HCC is facilitated by the exosomal circUPF2, which promotes the formation of the circUPF2-IGF2BP2-SLC7A11 ternary complex and increases the stability of SLC7A11 mRNA. Focusing on exosomal circUPF2 could potentially be an innovative approach for HCC treatment.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Exosomes/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Sorafenib/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Ferroptosis/drug effects
- Drug Resistance, Neoplasm
- Cell Line, Tumor
- Animals
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mice, Nude
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+/genetics
- Antineoplastic Agents/pharmacology
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Feng-Lin Dong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zong-Zhen Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Ying-Qiao Wang
- Department of Hematology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Tao Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xin Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jie Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
7
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
DeSouza NR, Nielsen KJ, Jarboe T, Carnazza M, Quaranto D, Kopec K, Suriano R, Islam HK, Tiwari RK, Geliebter J. Dysregulated Expression Patterns of Circular RNAs in Cancer: Uncovering Molecular Mechanisms and Biomarker Potential. Biomolecules 2024; 14:384. [PMID: 38672402 PMCID: PMC11048371 DOI: 10.3390/biom14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Circular RNAs (circRNAs) are stable, enclosed, non-coding RNA molecules with dynamic regulatory propensity. Their biogenesis involves a back-splicing process, forming a highly stable and operational RNA molecule. Dysregulated circRNA expression can drive carcinogenic and tumorigenic transformation through the orchestration of epigenetic modifications via extensive RNA and protein-binding domains. These multi-ranged functional capabilities have unveiled extensive identification of previously unknown molecular and cellular patterns of cancer cells. Reliable circRNA expression patterns can aid in early disease detection and provide criteria for genome-specific personalized medicine. Studies described in this review have revealed the novelty of circRNAs and their biological ss as prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kate J. Nielsen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Robert Suriano
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Division of Natural Sciences, University of Mount Saint Vincent, Bronx, NY 10471, USA
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
9
|
Lin Z, Xie F, He X, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Zhang Y, Sun J. A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis. Int J Biol Macromol 2024; 257:128609. [PMID: 38056741 DOI: 10.1016/j.ijbiomac.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.
Collapse
Affiliation(s)
- Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
10
|
Gabryelska MM, Webb ST, Lin H, Gantley L, Kirk K, Liu R, Stringer BW, Conn VM, Conn SJ. Native Circular RNA Pulldown Method to Simultaneously Profile RNA and Protein Interactions. Methods Mol Biol 2024; 2765:299-309. [PMID: 38381346 DOI: 10.1007/978-1-0716-3678-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circular RNAs (circRNAs) are a widespread, cell-, tissue-, and disease-specific class of largely non-coding RNA transcripts. These single-stranded, covalently-closed transcripts arise through non-canonical splicing of pre-mRNA, a process called back-splicing. Back-splicing results in circRNAs which are distinguishable from their cognate mRNA as they possess a unique sequence of nucleic acids called the backsplice junction (BSJ). CircRNAs have been shown to play key functional roles in various cellular contexts and achieve this through their interaction with other macromolecules, particularly other RNA molecules and proteins. To elucidate the molecular mechanisms underlying circRNA function, it is necessary to identify these interacting partners. Herein, we present an optimized strategy for the simultaneous purification of the circRNA interactome within eukaryotic cells, allowing the identification of both circRNA-RNA and circRNA-protein interactions.
Collapse
Affiliation(s)
- Marta M Gabryelska
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stuart T Webb
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - He Lin
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Laura Gantley
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kirsty Kirk
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ryan Liu
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Brett W Stringer
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
12
|
Titze-de-Almeida SS, Titze-de-Almeida R. Progress in circRNA-Targeted Therapy in Experimental Parkinson's Disease. Pharmaceutics 2023; 15:2035. [PMID: 37631249 PMCID: PMC10459713 DOI: 10.3390/pharmaceutics15082035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer's and Parkinson's disease (PD)-the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
13
|
Gao Y, Yang L, Chen Y, Liu P, Zhou Y, Chen X, Gu J. Aal-circRNA-407 regulates ovarian development of Aedes albopictus, a major arbovirus vector, via the miR-9a-5p/Foxl axis. PLoS Pathog 2023; 19:e1011374. [PMID: 37146060 DOI: 10.1371/journal.ppat.1011374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/17/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Aedes albopictus shows a rapid global expansion and dramatic vectorial capacity for various arboviruses, thus posing a severe threat to global health. Although many noncoding RNAs have been confirmed to play functional roles in various biological processes in Ae. albopictus, the roles of circRNA remain a mystery. In the present study, we first performed high-throughput circRNA sequencing in Ae. albopictus. Then, we identified a cysteine desulfurase (CsdA) superfamily gene-originated circRNA, named aal-circRNA-407, which was the third most abundant circRNA in adult females and displayed a fat body highly expressed manifestation and blood feeding-dependent onset. SiRNA-mediated knockdown of circRNA-407 resulted in a decrease in the number of developing follicles and a reduction in follicle size post blood meal. Furthermore, we demonstrated that circRNA-407 can act as a sponge of aal-miR-9a-5p to promote the expression of its target gene Foxl and eventually regulate ovarian development. Our study is the first to report a functional circRNA in mosquitoes, expanding our current understanding of important biological roles in mosquitoes and providing an alternative genetic strategy for mosquito control.
Collapse
Affiliation(s)
- Yonghui Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulan Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Circular RNAs: Biogenesis, Biological Functions, and Roles in Myocardial Infarction. Int J Mol Sci 2023; 24:ijms24044233. [PMID: 36835653 PMCID: PMC9963350 DOI: 10.3390/ijms24044233] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Non-coding RNAs have been excavated as important cardiac function modulators and linked to heart diseases. Significant advances have been obtained in illuminating the effects of microRNAs and long non-coding RNAs. Nevertheless, the characteristics of circular RNAs are rarely mined. Circular RNAs (circRNAs) are widely believed to participate in cardiac pathologic processes, especially in myocardial infarction. In this review, we round up the biogenesis of circRNAs, briefly describe their biological functions, and summarize the latest literature on multifarious circRNAs related to new therapies and biomarkers for myocardial infarction.
Collapse
|
15
|
Foruzandeh Z, Dorabadi DG, Sadeghi F, Zeinali-Sehrig F, Zaefizadeh M, Rahmati Y, Alivand MR. Circular RNAs as novel biomarkers in triple-negative breast cancer: a systematic review. Mol Biol Rep 2022; 49:9825-9840. [PMID: 35534586 DOI: 10.1007/s11033-022-07502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
More effective prognostic and diagnostic tools are urgently required for early detecting and treating triple-negative breast cancer, which is the most acute type of breast cancer because of its lower survival rate, aggressiveness, and non-response to various common treatments. So, it remains the most harmful malignancy for women worldwide. Recently, circular RNAs, as a group of non-coding RNAs, with covalently closed loop and high stability have been discovered, which can modulate gene expression through competing with endogenous microRNA sponges. This finding provided further insight into novel approaches for controlling genes affected in many disorders and malignancies. This review concentrates on the dysregulated expression of circRNAs like their diagnostic and prognostic values in TNBC. This review aims to focus on the abnormal expression of circRNAs and their diagnostic and prognostic values in TNBC. We used PubMed, Embase, and Web of Science databases and ClinicalTrials.gov to systematically search for all relevant clinical studies. This review is based on articles published in databases up to April 2022 with the following keywords: "Circular RNA", "CircRNA", "Triple-Negative Breast Cancer" and "TNBC". We conducted a review of published CircRNA profiled-research articles to identify candidate CircRNA biomarkers for TNBC. The review is registered on JBI at https://jbi.global/systematic-review-register . Accumulating evidence has shown that several circRNAs are downregulated and some are upregulated in TNBC. The results of these studies confirm that circRNAs might be potential biomarkers with the diagnostic, prognostic, and therapeutic target value for TNBC. We also consider the connection between circRNAs and TNBC cell proliferation, apoptosis, metastasis, and chemotherapy resistance and sensitivity.
Collapse
Affiliation(s)
- Zahra Foruzandeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi Dorabadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sadeghi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Fatemeh Zeinali-Sehrig
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Chen LL, Wilusz JE. Methods for circular RNAs. Methods 2021; 196:1-2. [PMID: 34601050 DOI: 10.1016/j.ymeth.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|