1
|
Gao X, Zang H, Liu X, Guo S, Ye D, Liu Z, Jing X, Niu Q, Wu Y, Lü Y, Chen D, Guo R. Unraveling the modulatory manner and function of circRNAs in the Asian honey bee larval guts. Front Cell Dev Biol 2024; 12:1391717. [PMID: 39045457 PMCID: PMC11263028 DOI: 10.3389/fcell.2024.1391717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that can participate in biological processes such as gene expression, growth, and development. However, little has been explored about the function of circRNAs in the development of Apis cerana larval guts. By using our previously gained deep sequencing data from the guts of A. cerana worker larvae at 4-, 5-, and 6-day-old (Ac4, Ac5, and Ac6 groups), the expression pattern and regulatory role of circular RNAs (circRNAs) during the development process was comprehensively investigated, with a focus on differentially expressed circRNAs (DEcircRNAs) relevant to immunity pathways and developmental signaling pathways, followed by validation of the binding relationships among a key competing endogenous RNA (ceRNA) axis. Here, 224 (158) DEcircRNAs were detected in the Ac4 vs. Ac5 (Ac5 vs. Ac6) comparison group. It's suggested that 172 (123) parental genes of DEcircRNAs were involved in 26 (20) GO terms such as developmental process and metabolic process and 138 (136) KEGG pathways like Hippo and Wnt signaling pathways. Additionally, ceRNA network analysis indicated that 21 (11) DEcircRNAs could target seven (three) DEmiRNAs, further targeting 324 (198) DEmRNAs. These DEmRNAs can be annotated to 33 (26) GO terms and 168 (200) KEGG pathways, including 12 (16) cellular and humoral immune pathways (endocytosis, lysosome, Jak-STAT, etc.) and 10 (nine) developmental signaling pathways (Hippo, mTOR, Hedgehog, etc.). Interestingly, DEcircRNAs in these two comparison groups could target the same ace-miR-6001-y, forming complex sub-networks. The results of PCR and Sanger sequencing confirmed the back-splicing sites within four randomly selected DEcircRNAs. RT-qPCR detection of these four DEcircRNAs verified the reliability of the used transcriptome data. The results of dual-luciferase reporter assay verified the binding relationships between novel_circ_001627 and ace-miR-6001-y and between ace-miR-6001-y and apterous-like. Our data demonstrated that DEcircRNAs were likely to modulate the developmental process of the A. cerana worker larval guts via regulation of parental gene transcription and ceRNA network, and novel_circ_001627/ace-miR-6001-y/apterous-like was a potential regulatory axis in the larval gut development. Findings from this work offer a basis and a candidate ceRNA axis for illustrating the circRNA-modulated mechanisms underlying the A. cerana larval guts.
Collapse
Affiliation(s)
- Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Yang Lü
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
2
|
Shi G, Li H, Chen Y, Chen Z, Lin X. CircSEPT9 promotes breast cancer progression by regulating PTBP3 expression via sponging miR-625-5p. Thorac Cancer 2024; 15:808-819. [PMID: 38409914 PMCID: PMC10995703 DOI: 10.1111/1759-7714.15252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a common malignancy which threatens the health of women. Circular RNAs (circRNAs) are critical factors in multiple cancers, including BC. The aim of this experiment was to investigate the molecular mechanisms of circRNA Septin 9 (circSEPT9) in the progression of BC. METHODS CircSEPT9, microRNA-625-5p (miR-625-5p) and polypyrimidine tract-binding protein 3 (PTBP3) levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to detect the protein levels of PTBP3, E-cadherin and vimentin. Cell counting kit-8 assay (CCK8) and thymidine analog 5-ethynyl-2'-deoxyuridine (EDU) was utilized for proliferation examination. Flow cytometry was conducted to measure apoptosis. Transwell assay and wound healing assay to investigate the migration of BC cells. Glucose uptake and lactate production were determined by specific kits. Additionally, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were utilized to verify the interaction. A murine xenograft model was established to investigate the function of circSEPT9 in BC in vivo. RESULTS Overexpression of circSEPT9 was found in BC tissues and cells. Silencing circSEPT9 impeded BC cell proliferation, migration, epithelial-mesenchymal transition (EMT) and glycolytic metabolism but facilitated cell apoptosis in vitro. Meanwhile, circSEPT9 knockdown constrained tumor growth in vivo. MiR-625-5p was targeted by circSEPT9. The influence of silencing circSEPT9 on BC cell function was regained by miR-625-5p inhibitor. Furthermore, miR-625-5p regulated BC cell malignant phenotypes via downregulating PTBP3. CONCLUSION circSEPT9 contributed to the malignant progression of BC by up-regulating PTBP3 via sponging miR-625-5p.
Collapse
Affiliation(s)
- Guangtao Shi
- Zhejiang Society for Mathematical MedicineHangzhouChina
| | - Hongbo Li
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Ying Chen
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Zhi Chen
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| | - Xiaoji Lin
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou CityChina
| |
Collapse
|
3
|
Zhu Z, Wang J, Fan X, Long Q, Chen H, Ye Y, Zhang K, Ren Z, Zhang Y, Niu Q, Chen D, Guo R. CircRNA-regulated immune responses of asian honey bee workers to microsporidian infection. Front Genet 2022; 13:1013239. [PMID: 36267412 PMCID: PMC9577369 DOI: 10.3389/fgene.2022.1013239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Nosema ceranae is a widespread fungal parasite for honey bees, causing bee nosemosis. Based on deep sequencing and bioinformatics, identification of circular RNAs (circRNAs) in Apis cerana workers' midguts and circRNA-regulated immune response of host to N. ceranae invasion were conducted in this current work, followed by molecular verification of back-splicing sites and expression trends of circRNAs. Here, 10185 and 7405 circRNAs were identified in the midguts of workers at 7 days (AcT1) and 10 days (AcT2) post inoculation days post-inoculation with N. ceranae. PCR amplification result verified the back-splicing sites within three specific circRNAs (novel_circ_005123, novel_circ_007177, and novel_circ_015140) expressed in N. ceranae-inoculated midgut. In combination with transcriptome data from corresponding un-inoculated midguts (AcCK1 and AcCK2), 2266 circRNAs were found to be shared by the aforementioned four groups, whereas the numbers of specific ones were 2618, 1917, 5691, and 3723 respectively. Further, 83 52) differentially expressed circRNAs (DEcircRNAs) were identified in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group. Source genes of DEcircRNAs in workers' midgut at seven dpi were involved in two cellular immune-related pathways such as endocytosis and ubiquitin mediated proteolysis. Additionally, competing endogenous RNA (ceRNA) network analysis showed that 23 13) DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group could target 18 14) miRNAs and further link to 1111 (1093) mRNAs. These target mRNAs were annotated to six cellular immunity pathways including endocytosis, lysosome, phagosome, ubiquitin mediated proteolysis, metabolism of xenobiotics by cytochrome P450, and insect hormone biosynthesis. Moreover, 284 164) internal ribosome entry site and 54 26) ORFs were identified from DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group; additionally, ORFs in DEcircRNAs in midgut at seven dpi with N. ceranae were associated with several cellular immune pathways including endocytosis and ubiquitin-mediated proteolysis. Ultimately, RT-qPCR results showed that the expression trends of six DEcircRNAs were consistent with those in transcriptome data. These results demonstrated that N. ceranae altered the expression pattern of circRNAs in A. c. cerana workers' midguts, and DEcircRNAs were likely to regulate host cellular and humoral immune response to microsporidian infection. Our findings lay a foundation for clarifying the mechanism underlying host immune response to N. ceranae infection and provide a new insight into interaction between Asian honey bee and microsporidian.
Collapse
Affiliation(s)
- Zhiwei Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huazhi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongmin Ren
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsheng Niu
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Apiculture Science Institute of Jilin Province, Jilin, China
| |
Collapse
|
4
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
5
|
Chen Q, Li J, Shen P, Yuan H, Yin J, Ge W, Wang W, Chen G, Yang T, Xiao B, Miao Y, Lu Z, Wu P, Jiang K. Biological functions, mechanisms, and clinical significance of circular RNA in pancreatic cancer: a promising rising star. Cell Biosci 2022; 12:97. [PMID: 35729650 PMCID: PMC9210669 DOI: 10.1186/s13578-022-00833-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2022] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant solid tumor with insidious onset and easy early metastasis. Despite tremendous efforts devoted to research in this field, the mechanisms underlying PC tumorigenesis and progression remain unclear. Additionally, robust biomarkers and satisfactory therapeutic strategies for clinical use in PC patients are still lacking. Circular RNAs (circRNAs) are a new type of non-coding RNA originating from precursor messenger RNAs, with a covalent continuous closed-loop structure, strong stability and high specificity. Accumulating evidence suggests that circRNAs may participate in PC development and progression. Abnormal expression of circRNAs in PC is considered a vital factor that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis and drug resistance. In this review of relevant articles published in recent years, we describe the basic knowledge concerning circRNAs, including their classification, biogenesis, functions and research approaches. Moreover, the biological roles and clinical significance of circRNAs related to PC are discussed. Finally, we note the questions remaining from recent studies and anticipate that further investigations will address these gaps in knowledge in this field. In conclusion, we expect to provide insights into circRNAs as potential targets for specific PC diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajia Li
- Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Peng Shen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanli Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wujun Wang
- Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangbin Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Taoyue Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Chen W, Ma H, Li B, Yang F, Xiao Y, Gong Y, Li Z, Li T, Zeng Q, Xu K, Duan Y. Spatiotemporal Regulation of Circular RNA Expression during Liver Development of Chinese Indigenous Ningxiang Pigs. Genes (Basel) 2022; 13:746. [PMID: 35627131 PMCID: PMC9141790 DOI: 10.3390/genes13050746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND There have been many studies on the relationship between circRNAs and fat deposition. Although the liver is a central organ for fat metabolism, there are few reports on the relationship between circRNAs in the liver and fat deposition. METHODS In this study, we systematically analyzed circular RNAs in the liver of Ningxiang pigs, at four time points after birth (30 days, 90 days, 150 days and 210 days). RESULTS A total of 3705 circRNAs were coexpressed in four time periods were found, and KEGG analysis showed that the significantly upregulated pathways were mainly enriched in lipid metabolism and amino acid metabolism, while significantly downregulated pathways were mainly related to signal transduction, such as ECM-receptor interaction, MAPK signaling pathway, etc. Short time-series expression miner (STEM) analysis showed multiple model spectra that were significantly enriched over time in the liver. By constructing a competing endogenous RNA (ceRNA) regulatory network, 9187 pairs of networks related to the change in development time were screened. CONCLUSIONS The expression profiles of circRNAs in Ningxiang pig liver were revealed at different development periods, and it was determined that there is differential coexpression. Through enrichment analysis of these circRNAs, it was revealed that host genes were involved in metabolism-related signaling pathways and fatty acid anabolism. Through STEM analysis, many circRNAs involved in fat metabolism, transport, and deposition pathways were screened, and the first circRNA-miRNA-mRNA regulation network map in Ningxiang pig liver was constructed. The highly expressed circRNAs related to fat deposition were verified and were consistent with RNA-Seq results.
Collapse
Affiliation(s)
- Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610000, China
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Ting Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kang Xu
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang 410600, China; (K.X.); (Y.D.)
| | - Yehui Duan
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang 410600, China; (K.X.); (Y.D.)
| |
Collapse
|
7
|
Chen LL, Wilusz JE. Methods for circular RNAs. Methods 2021; 196:1-2. [PMID: 34601050 DOI: 10.1016/j.ymeth.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|